

PROCEEDINGS

OF THE

CALIFORNIA ACADEMY OF SCIENCES

Fourth Series

CALIFORNIA ACADEMY or SCIENCES FOUNDED 1853

The Wasp Genus Tachysphex Kohl, 1883, of Sahara, Sub-Saharan Africa, the Arabian Peninsula, and Madagascar

(Hymenoptera: Apoidea: Crabronidae)

The Wasp Genus Tachysphex Kohl, 1883, of Sahara, Sub-Saharan Africa, the Arabian Peninsula, and Madagascar (Hymenoptera: Apoidea: Crabronidae) ${ }^{1}$

Wojciech J. Pulawski
California Academy of Sciences, 875 Howard Street, San Francisco, California 94103, USA;
Email: wpulawski@calacademy.org

Table of Contents

Abstract 3
Introduction 4
General 4
Study Area 4
Taxonomic History 4
Current State of Species Level Taxonomy 5
Limitations of Current Study 5
Lectotype Selections 6
Technical Terms and Symbols 6
Sources of Material 8
Collectors Names 10
Specimen and Locality Records, Former and Current Geographic Names 10
Latitude and Longitude in Locality Records 11
Genus Tachysphex 20
Generic Diagnosis 20
Relationships and Species Groups 20
Cladistic Analysis 24
Correlations Between Structure and Function 31
Geographical Distribution of African Tachysphex 31
Geological Events that Affected Evolution of African Tachysphex 32
Life History 34
Keys to Species 35
Descriptions of Species 78
Acknowledgments 667
Literature Cited 668
Appendix I. Additional Species 687
Appendix II. Data Matrix for Cladistic Analysis 690
Index of Names 695

A. The author collecting Tachysphex onager at the type locality, 62 road km SW of Morogoro, Tanzania.
B. Monsieur Madougou Garba, a travel companion in Niger and a talented wasp collector.
C. A good collecting site in Kalahari Gemsbok National Park, South Africa.

Abstract

Saharan, sub-Saharan, Arabian, and Malagasy species of Tachysphex Kohl, 1883, are revised, and 203 species are recognized. The revision includes a diagnosis of the genus, differential diagnoses and descriptions of all species, illustrations, geographic records, distribution maps, and keys to species identification. Previously unnoticed characters are used in keys, diagnoses, and species descriptions. A cladistic analysis

 is based on most of the world species.The following 64 species are newly described: aburi (Ghana, Ivory Coast), ampijoroa (Madagascar), asmara (Eritrea, Ethiopia), aureorufoniger (Tanzania, Zambia), bara (Madagascar), bemba (Namibia, Zambia, Zimbabwe), bostryx (Ethiopia, Kenya, Somalia, Tanzania), brachypus (Zambia to northeastern South Africa), calidus (West Africa to South Africa), camptopygus (Namibia), carinatus (Tanzania, Zimbabwe), cavatus (Madagascar), coxalis (Mali), curvipes (Israel, Sinai Peninsula, Turkmenistan), dissimulatus (Botswana, Namibia, South Africa, Zimbabwe), erectus (Namaqualand region of South Africa), erythrurus (Kenya, Tanzania), eurystoma (eastern South Africa), excavatus (Mauritania to Niger and Togo), frigidus (southwestern Namib Desert), gastrotrichus (Namib Desert), gessianus (southern South Africa), hadronyx (Namib Desert, western South Africa), iaphetes (Kenya), ibi (South Africa), karoo (Little Karoo region of South Africa), khoikhoi (Namaqualand region of South Africa), longipes (Namib Desert), melanius (Angola, Botswana, Lesotho, Namibia, South Africa, Zimbabwe), merina (Madagascar), mesembrius (Eastern Cape Province of South Africa), mkomazi (Kenya, Tanzania), mzingeli (Botswana, Mozambique, Namibia, South Africa, Tanzania, Zimbabwe), namaqua (Namaqualand region of South Africa), onager (Malawi, Tanzania), ovambo (Angola), paulus (Namibia, South Africa), platystethus (Madagascar), pseudofasciatus (Algeria, Egypt, Israel, Tunisia), psilonotus (Eastern and Western Cape Provinces of South Africa), punctiger (western Namibia, western South Africa), rapax (Kenya, Tanzania), rhacodes (Ethiopia to Zimbabwe, Namibia), rotundus (Angola and Zaire to South Africa), ruber (Botswana, Namibia, northwestern South Africa), rugosipleuris (Cameroon to Senegal), sabulosus (northeastern South Africa, Zimbabwe), sahelensis (Mali, Senegal), samburu (Kenya, Tanzania), scaber (Botswana, Namibia, northeastern South Africa, Zambia, Zimbabwe), scopa (Angola, Namibia, western South Africa), silvestris (Ivory Coast to Tanzania), socotrae (Island of Socotra), spectrum (Kenya, Tanzania), taita (Namibia, Kenya, Tanzania), tanqua (South Africa), tembe (eastern South Africa), thysanomerus (Namibia), tryssus (northeastern South Africa, Zimbabwe), ulonyovu (Zimbabwe, eastern South Africa), ulothrix (Namibia), usakos (Namibia), zambius (Malawi, Zambia), and ziziphi (Namibia, western South Africa).
The following 13 taxa originally described as varieties or as subspecies are raised to full species status: Tachysphex hermia var. angustus Arnold, 1924; panzeri var. caliban Arnold, 1923; diabolicus var. claripes Arnold, 1924; ambiguus var. congoensis Arnold, 1924; schoenlandi var. detritus Arnold, 1924; fluctuatus var. flavofimbriatus Arnold, 1945; oberon var. halophilus Arnold, 1940; schoenlandi var. luctuosus Arnold, 1924; sericeus var. kalaharicus Arnold, 1924; oberon var. mashona Arnold, 1929; georgii montivagus Arnold, 1944; braunsi var. rufopictus Arnold, 1929; and panzeri var. sycorax Arnold, 1923.

The following are new synonyms (the valid name is listed last): arenarius Arnold, 1947 = lacertosus Arnold, 1944; brachycerus Arnold, $1940=$ rufopictus Arnold, 1929; braunsi var. boer Arnold, 1929 = barkeri Arnold, 1923; breijeri (Arnold, 1922), originally described in Schistosphex, and marshalli var. terrificus Arnold, 1935 = Tachysphex marshalli \mathbf{R}. Turner, 1917; consanguineus Arnold, 1924 = brinckerae \mathbf{R}. Turner, 1917; crassicornis Arnold, 1945 = insulsus Arnold, 1945; depilosellus R. Turner, 1917,
and depilosellus var. fallax Arnold, 1924 = quadricolor (Gerstaecker, 1858); diabolicus var. analis Arnold, 1924 = diabolicus Arnold, 1923; diabolicus var. trifasciatus Arnold, 1924 = claripes Arnold, 1924; dicksoni Arnold, 1962, and punctiventris Arnold, 1924 = modestus Arnold, 1924; gracilicornis baal Pulawski, 1971 = gracilicornis Mercet, 1909; halophilus Arnold, 1940 = mashona Arnold, 1929; incertus nattereri Kohl, 1888, incertus rufiventralis Ferton, 1905, and incertus kallipygus Pulawski, 1971 = incertus (Radoszkowski, 1877); julliani africanus Pulawski, 1971 = julliani Kohl, 1883; julliani nigripes Tsuneki, 1972 (junior primary homonym of nigripes Pulawski, 1962) = desertorum F. Morawitz, 1894; laticeps Arnold, 1924, costae canariensis de Beaumont, 1968, and costae fertoni Pulawski, 1971 = costae De Stefani Perez, 1882; halictiformis Arnold, 1945 = saturnus Arnold, 1924; liriformis tenax Pulawski, 1971 = aemulus Kohl, 1906; maidli de Beaumont, 1940 = detritus Arnold, 1924; minutus Nurse, 1909, miscophoides (Arnold, 1923, originally described in Atelosphex), fulvicornis R. Turner, 1918, heterochromus de Beaumont, 1955, sinaiticus Pulawski, 1964, and convexus Pulawski, 1971 = brevipennis Mercet, 1909; micromegas de Saussure, 1892 = fugax (Radoszkowski, 1877); nubilipennis de Beaumont, 1950 = albocinctus (Lucas, 1849); octodentatus var. inermis Arnold, 1924, and tridentatus Arnold, 1924 = octodentatus Arnold, 1924; panzeri var. nanus Arnold, 1924, and panzeri var. zavattarii Guiglia, 1939 = pentheri Cameron, 1905; scabrosus Arnold, 1929 = kalaharicus Arnold, 1924; subeditus Leclercq, 1961 = subcoriaceus Arnold, 1945; subfuscatus R. Turner, 1917 = prosopigastroides Bischoff, 1913; titania var. willowmorensis Arnold, 1924 = titania Arnold, 1923; tuckeri Arnold, 1923 = capensis (de Saussure, 1867); unguiculatus Arnold, 1924, and verhoeffi Pulawski, 1971 = harpax Arnold, 1923; villosus Arnold, 1947 = flavofimbriatus Arnold, 1945. Tachysphex selectus Nurse, 1909, synonymized with sericeus F. Smith, 1856 by R. Turner, 1917, and subsequently regarded as valid species, is placed in synonymy of the latter again. Lectotypes have been designated for 59 nominotypical species.

InTRODUCTION

General.- Tachysphex has been the object of my studies for many years. I have revised the Palearctic, Neotropical, Australian, and Nearctic species (Pulawski 1971, 1974a, 1976, 1988), and also treated Sri Lankan and several other Oriental species (in Krombein and Pulawski 1994). This revision focuses on Africa, an area of exceptional species richness (almost 50% of the world species occur there). The Indian subcontinent and southeast Asia are still largely unstudied.

Study area.- The revision encompasses the entire continent of Africa except its narrow Mediterranean climatic zone, and also the Arabian Peninsula, Madagascar, and Comoro Islands. The following 11 species found in North Africa are excluded: adjunctus Kohl, carli de Beaumont, denisi de Beaumont, latifrons Kohl, melas eatoni Saunders, obscuripennis (Schenck), persa Gussakovskij, pompiliformis (Panzer), pseudopanzeri de Beaumont, sericans gracilis Pulawski, and unicolor (Panzer). They are Asian and/or European species that extend into Africa only marginally. All were revised by Pulawski (1971).

With four exceptions (fulvitarsis, incertus, panzeri, tarsinus), all bibliographic references and available locality records are provided for the species whose ranges extend beyond the study area.

Taxonomic history.- The first African Tachysphex were described from Egypt (Spinola 1839; Dahlbom 1845) and Algeria (Lepeletier de Saint Fargeau 1845; Lucas 1849; Dufour 1853), whereas the first sub-Saharan species came from South Africa (Cape Province and Durban: F. Smith 1856; de Saussure 1867), Gambia (F. Smith 1856), Mozambique (Gerstaecker 1858), and Ethiopia (Taschenberg 1880). As Tachysphex was not recognized until later (Kohl 1883), these species were placed in Tachytes, its synonym Lyrops, or in Larrada (a junior synonym of Larra). Additional
species were described by Kohl (1888, 1892, 1898), Morice (1897), Cameron (1905), Mercet (1909), Morice in Saunders (1910), Bischoff (1913), and R. Turner (1917a). By 1920, the number of nominal species described or otherwise recorded from Africa amounted to 49 , of which 21 were sub-Saharan (16 of these 49 names were later recognized as junior synonyms). Arnold (1923, 1924) produced a comprehensive revision of southern African species, describing a total of 48 new species and 20 new varieties (of which 10 are actually good species), and provided the first, and so far the only, key to species determination for that area. He recognized 18 new species and five new varieties in his subsequent papers (1929, 1935, 1940, 1944, 1947, 1951, 1959, 1960, 1962), and Guiglia (1943, 1950) described one new species and one new variety.

The study of Malagasy Tachysphex began with de Saussure (1867), who described two species. Arnold (1945) provided an important revision, recognizing 12 species (seven new), and added two in 1947. The three species described by Leclercq $(1961,1967)$ were the latest additions.

For North Africa, de Beaumont's (1947) innovative revision of the Egyptian species was particularly important. All North African species were subsequently treated by Pulawski (1971) in a revision of the Palearctic Tachysphex.

Current state of species level taxonomy.- Our knowledge of sub-Saharan Tachysphex, stagnant since Arnold's major publications, is grossly inadequate. First, more than 60 species are still undescribed. Second, Arnold's material came mainly from Zimbabwe and South Africa, but species occurring elsewhere were largely unknown to him. Third, he could not recognize 14 species described by his predecessors and merely listed their names (Arnold 1923). Fourth, six of his new species are junior synonyms of species described from Europe: his egregius, lanatus, laticeps, lugubris, minutulus, and miscophoides. Fifth, he did not update his key to include the species described subsequently to his 1923 and 1924 papers. Most importantly, he was not aware of many essential characters that were discovered later, and this led to errors such as establishing a new genus, Schistosphex, for a teratological female of marshalli. In his keys, he relied heavily on coloration, which is often variable. He described the same species under different names (e.g., modestus, punctiventris, and dicksoni; or lugubris and miscophoides), often giving different names to each sex of one species (e.g., barkeri and boer, hippolyta and viarius, mashona and halophilus, rufopictus and brachycerus, octodentatus and tridentatus), or attributing to one species (argentifrons) females of one species and males of another. Some of his varieties are good species (e.g., the five varieties of panzeri), whereas others are only individual variants (analis, inermis, terrificus). As a result, recognition is not possible except for a few most distinctive species (for example, such an experienced and careful sphecid worker as de Beaumont, 1967, grossly misidentified argentifrons and barkeri using Arnold's key).

Limitations of current study.- In spite of my efforts, this study is also far from completeness for the following reasons: Large parts of Africa remain unexplored. Specifically, no material or little material has been collected in Angola, Benin, Central African Republic, Chad, Congo, Djibouti, Eritrea, Gabon, Guinea, Mozambique, Nigeria, Sierra Leone, Somalia, Sudan, and Zaire. A number of undescribed species are likely to occur there, and the known ranges of many species certainly extend to these countries.

Even in well explored parts of the continent (e.g., South Africa, western Zimbabwe), new species continued to come to light during my fieldwork there. Their number may still be significant. Also, there are significant seasonal differences in the wasp fauna composition, but very few areas have been monitored year round.

Some species apparently do not build up large populations and are rarely collected. For example, ambositrae, iaphetes, and merina are known from a single female each, and asmara and fulgidus from a single pair each. No specimens of fulgidus have been collected after 1912, and only
seven specimens of luctuosus have been found since 1924, in spite of intense prospecting of their habitats during the last 25 or so years. Nine species are known from one sex only (ambositrae, aureorufoniger, cavatus, erectus, iaphetes, merina, tembe, venator, zambius). Certainly more such species occur in Africa.

Some apparently undescribed species, represented by unique specimens in the material studied, have been excluded because of the unknown amount of individual variation and because of the lack of the opposite sex.

A number of poorly differentiated specimens have also been omitted from this study, with only a few being discussed in the text. They may be either good species or individual variants of described species, but it was impossible for me to decide on their status. Such problem specimens, common in Tachysphex, were first noticed by de Beaumont (1940, 1947a) and prompted him to comment later that "le genre Tachysphex semble avoir été créé pour décourager les taxonomistes." Particularly frustrating are members of the panzeri group.

Apart from limited material and taxonomic difficulties, the following are major inadequacies:

1. Insufficient knowledge of behavior, particularly of the nesting habits and male behavior.
2. Insufficient knowledge of preimaginal stages. Larvae of Tachysphex are known only for the following five African species: albocinctus, costae, nitidus, plicosus, and tarsinus, and for the following five extralimital species: apicalis (W. Fox), Nearctic (Evans 1964), obscuripennis (Schenck), Palearctic (Grandi 1961), pompiliformis (Panzer), Palearctic (Grandi 1928d, 1961), terminatus (F. Smith), Nearctic (Evans 1958), and unicolor (Panzer), Palearctic (Grandi 1928a, 1961, as nitidus).
3. Insufficiently resolved cladogram (see below).

Lectotype selections.- For the species described in 1923 and 1924, Arnold designated a female and a male as types when both sexes were available, even when he mentioned only one type specimen in the original description (usually without reference to its gender). This practice is in violation of Article 73.1 of the Code. In all such cases, I designated one of the specimens as the lectotype, and the other as paralectotype.

Technical terms and symbols.-As usual, I follow Bohart and Menke (1976) in their usage of morphological terms, but less known terms taken from other sources are redefined here for convenience. Mandibular terms are based on Michener and Fraser (1978) with modifications by Pulawski (1995).

Clypeus (Fig. 1): has a middle section and two lateral sections. The middle section usually has a densely punctate, setose basomedian area, a sparsely punctate, shiny bevel, and a marginal lip. The prominent, medioventral portion of the middle section is often referred to as the lobe. The free margin of the lobe can be straight, arcuate, biarcuate, sinuate, or concave; the lip can have a mesal emargination and/or lateral incisions on each side. The clypeal length is measured along the body's longitudinal axis.

Disk: the central part of a sclerite, e.g., scutal disk, tergal disk.

Episcrobal area: the portion of the mesopleuron above the scrobal groove and below the

Figure 1. Terms for clypeus of Tachysphex.
subalar fossa (Budrys 1990, 1993). Bohart and Menke (1976) called it hypoepimeral area, a morphologically inaccurate term meaning "area under the epimeron".

Episternal sulcus complete (incomplete): reaching (not reaching) mesothoracic foremargin.
Frons: the area between the frontoclypeal suture and hindocellus.
Hindwing crossvein cu-a vertical: both ends equally distant from wing base.
Mandible:

- acetabular groove: a setiferous longitudinal groove on the outer mandibular surface, starting at some distance from the acetabulum;
— acetabulum: mandibular articulation adjacent to clypeus;
— adductor ridge: extends distad from the mandibular base on its inner side, adjacent to oral fossa and, in most sphecids, gradually becomes visible from the outer side, constituting the distal part of the mandibular posterior margin. This ridge is often differentiated into a lower basal portion and a higher distal portion; when so, the two portions meet at an angle, or slightly overlap, or are separated by a gap; in species with notched mandibles, the distal portion delimits the notch from its distal side;
- basal width: distance between acetabular and condylar ridges measured next to acetabulum and condyle;
- condylar ridge: arises from the condyle, extends distad, and forms the basal portion of the posterior mandibular margin; it is angulate distally in many Larrinae (including most Tachysphex);
- condyle: mandibular articulation on the occipital side of the head capsule;
- notch: an emargination on the posterior margin, delimited basally by the condylar ridge and distally by the expanded portion of the adductor ridge;
- outer ridge: a longitudinal convex area on the outer mandibular surface ventrad of acetabular groove; in Tachysphex, passing just dorsad of the notch;
- trimmal carina: corresponds to the cutting edge of the mandible, and can also be described as the inner mandibular edge. Michener and Frazer (1978) distinguished between the trimmal carina, the basal portion of the cutting edge, and the upper carina, the remaining portion of the edge. The term "upper carina", however, is morphologically correct only when the mandibles are closed. I find it more practical to call the trimmal carina both these sections, as I did previously (Pulawski, 1992; Krombein and Pulawski, 1994).

Mesothoracic venter: area between the fore- and midcoxae, limited laterally by the mesopleural signa.

Postocellar area (Fig. 2):

- length: the distance between a hindocellus and an imaginary line connecting the eye hindcorners (i.e., the points where the inner and the posterior portions of the orbits meet). In spite of the orbit curvature, the length can be measured with enough precision to allow comparison with width;
— width: the shortest interocular distance.

Figure 2. Terms for postocellar area of Tachysphex.

Scutal flange (Menke, 1988): the reflexed upward, impunctate and glabrous portion of the scutal lateral margin, extending between the tegula foremargin and the scutellar foremargin. Called supra-alar carina by Melo (1999).

Scutum: shortened term for mesothoracic scutum.
Simple: without any specialized structure, e.g., frons simple (without supraantennal swelling).
Sternum, tergum: abbreviated terms for gastral sternum, gastral tergum.

Sources of Material.- This paper is based on a study of 24,908 .specimens. I collected many in Burkina Faso (2004), Cameroon (2003), Egypt (1957-58, 1993), Ethiopia (1997), Ghana (1991), India (1989), Ivory Coast (1991), Kenya (1999, 2000, 2002), Madagascar (1994), Mali (1991), Mauritania (1993), Namibia (1990, twice in 1996), Niger (2005), Oman (2003), Pakistan (1989), Senegal (1991), South Africa (1990, 1996, 2001), Tanzania (2001, 2003), Thailand (1988, 1989), Togo (1991), Turkmenistan (1964), Zambia (1995, 1998), and Zimbabwe (1995, twice in 1996, 1997, 1998); and many more were sent by institutions and individuals. Specimens for which a depository is not indicated in the Records sections under individual species are at the California Academy of Sciences (CAS). The following is a list of institutional and personal collections where the material is housed (the capitalized abbreviations preceding the names are used in the text to designate these collections; the name of the contact person is omitted, if no material was borrowed for this study):
A. Alfieri collection, Cairo, Egypt, now in care of the Entomological Society of Egypt, Cairo, Egypt.
A. Mochi collection (originally in Cairo, in care of A. Alfieri during World War II and thereafter, largely combined with his own collection; many types subsequently transferred by him to USNM; small part returned to Alessandro Mochi, Rome, Italy, now deposited at Museo Regionale di Scienze Naturali, Torino, Italy).
AAU: Addis Ababa University, Addis Ababa, Ethiopia.
AEI: American Entomological Institute, Gainesville, Florida (David B. Wahl).
AMG: Albany Museum, Grahamstown, South Africa (Friedrich W. Gess).
AMNH: American Museum of Natural History, New York, New York (James M. Carpenter, Jerome G. Rozen, Jr., Eric L. Quainter).
ANSP: The Academy of Natural Sciences, Philadelphia, Pennsylvania (Donald Azuma).
BALDOCK: David W. Baldock, Milford, Surrey, United Kingdom (personal collection).
BMNH: The Natural History Museum, London, formerly British Museum (Natural History), United Kingdom (Laraine Ficken, David G. Notton, Christine Taylor, George Else).
CNC: Canadian National Collection of Insects, Arachnids, and Nematodes, Biosystematic Research Institute, Ottawa, Ontario (John Huber).
CSE: Christian Schmid-Egger, Herrsching-Breitbrunn, Germany (personal collection).
CU: Cornell University, Department of Entomology, Ithaca, New York (E. Richard Hoebeke).
DURBAN: Durban Natural Science Museum, Durban, South Africa (Tanza Clark).
FB: Franco Borgato, Bruxelles, Belgium (personal collection).
FSAG: Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium (Camille Thirion, Alain Pauly).
FSCA: Florida State Collection of Arthropods, Gainesville, Florida (James R. Wiley).
GENOVA: Museo Civico di Storia Naturale "Giacomo Doria", Genova, Italy (Valter Raineri).
HALLE: Institut für Zoologie, Martin-Luther Universität, Halle-Wittenberg, Germany (M. Dorn).
JG: Josef Gusenleitner, Linz, Austria (personal collection).
JS: Jakub Straka, Praha, Czech Republic (personal collection).
KMG: Kenneth M. Guichard, London, United Kindgom (personal collection, recently transferred to BMNH). KRAKÓW: Instytut Systematyki i Ewolucji Zwierzạt, Polska Akademia Nauk, Kraków, Poland.
KU: Snow Entomological Museum, The University of Kansas, Lawrence, Kansas (Robert W. Brooks).
LACM: Natural History Museum of Los Angeles County, Los Angeles, California, USA (Brian V. Brown, Roy R. Snelling).

LAUSANNE: Musée Cantonal de Zoologie, Lausanne, Switzerland (Michel Sartori, Anne Freitag).
LB: Leo Blommers, Rhenen, The Netherlands (personal collection).
LEM: Lyman Entomological Museum and Research Laboratory, Mac Donald College, McGill University, Ste. Anne de Bellevue, Quebec, Canada (P. Michael Sanborne, Cha-Chi Hsiung).
MCZ: Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts (Gabriela Chavarria).
MHNB: Musée d'Histoire Naturelle de Bâle, Bâle (= Basel), Switzerland (Michel Brancucci).
MHNCF: Musée d'Histoire Naturelle de la Ville de Clermont-Ferrand, France (Frédéric Durand).

MHNG: Musée d'Histoire Naturelle de Genève, Switzerland (Ivan Löbl).
MILANO: Museo Civico di Storia Naturale, Milano, Italy (Carlo Pesarini).
MNCN: Museo Nacional de Ciencias Naturales, Madrid, Spain.
MNHN: Museum National d'Histoire Naturelle, Paris, France (Janine Casevitz-Weulersse, Claire Villemant).
MRAC: Musée Royal de l'Afrique Centrale, Tervuren, Belgium (Eliane De Coninck, Alain Pauly).
MS: Maximilian Schwarz, Ansfelden bei Linz, Austria (personal collection).
MSNT: Museo Regionale di Science Naturali, Torino, Italy (Mauro Daccordi, Guido Pagliano).
MTM: Magyar Természettudományi Múzeum, Budapest, Hungary (Jenö Papp).
NAPOLI: Istituto e Museo di Zoologia dell'Università di Napoli, Napoli, Italy.
NMK: National Museums of Kenya, Nairobi, Kenya.
NHMO: Natural History Museum of Oman, Muscat, Oman.
NHMW: Naturhistorisches Museum, Wien, Austria (the late Stefan Schödl).
NHMZ: Natural History Museum of Zimbabwe, Bulawayo, Zimbabwe.
NMN: The National Museum of Namibia, Windhoek, Namibia (Eugene Marais).
NRS: Naturhistoriska Riksmuseet, Stockholm, Sweden (Fredrik Ronquist).
OHL: Michael Ohl, Berlin, Germany (personal collection).
OÖLM: Oberösterreiches Landesmuseum, Linz, Austria (Fritz Gusenleitner, Maximilian Schwarz).
OXUM: Oxford University Museum of Natural History, Oxford, United Kingdom (Christopher O’Toole).
PMA: Provincial Museum of Alberta, Edmonton, Alberta, Canada (Albert T. Finnamore).
PPRI: Plant Protection Research Institute, Pretoria, South Africa (Connal D. Eardley).
RMNH: Nationaal Naturhistorisch Museum (formerly Rijksmuseum van Natuurlijke Historie), Leiden, the
Netherlands, including P.M.F. Verhoeff collection (Kees van Achterberg).
RTST: T. Terko Simon Thomas, Nunspeet, The Netherlands (personal collection).
SAM: South African Museum, Iziko Museums of Cape Town, Cape Town, South Africa, including G. Arnold collection previously housed in the then National Museum of Southern Rhodesia, Bulawayo, Zimbabwe (Margie A. Cochrane).
SCHL: Wolfgang Schlaeffle, Kaiseraugst, Switzerland (personal collection).
SDNHM: Natural History Museum, San Diego, California (David K. Faulkner).
STUTTGART: Staatliches Museum für Naturkunde in Stuttgart, Stuttgart, Germany (Till Osten via Michael Ohl and C. Schmid-Egger).
TMB: Termeszéttudományi Múzeum, Budapest, Hungary (Dr. Jenö Papp).
TMP: Northern Flagship Institution Natural History Museum (formerly Transvaal Museum), Pretoria, South Africa (Paul S. Bayliss, Annette Bennett, Barbara Dombrowsky, Iléma Fourie, Suzanne Prinsloo, Robert B. Toms).
UCD: Bohart Museum of Entomology, University of California, Davis, California, USA (Richard M. Bohart, Steve L. Heydon).
UDS: University of Dar es Salaam, Dar es Salaam, Tanzania.
USNM: National Museum of Natural History (formerly United States National Museum), Smithsonian Institution, Washington, D.C. (Arnold S. Menke, Maureen Mello).
UST: Università degli Studi di Torino, Dipartamento di Entomologia e Zoologia Applicate all'Ambiente Carlo Vidano, Torino, Italy (G. Pagliano).
USU: Bee Biology and Systematics Laboratory, Utah State University, Logan, Utah (Terry L. Griswold, Frank D. Parker).

ZIN: Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia.
ZMAN: Zoölogisch Museum, Universiteit van Amsterdam, Amsterdam, the Netherlands (Willem Hogenes).
ZMHU: Zoologisches Museum der Humboldt Universität, currently Museum für Naturkunde, Institut für Systematische Zoologie, Berlin, Germany (Frank Koch).
ZMMU: Zoological Museum, Moscow State University, Moscow, Russia.
ZMLU: Zoological Museum, Lund University, Lund, Sweden (Roy Danielsson).
ZMUC: Zoological Museum, Copenhagen, Denmark (the late Ole Lomholdt).
ZSBS: Zoologische Sammlung des Bayerischen Staates, Münich, Germany (Erich Diller).

Collectors Names.- For the sake of brevity, collector names in the type series of new species are abbreviated as follows (names mentioned only once or a few times are spelled in full):

AM: Alessandro Mochi
CDE: Connal D. Eardley
FSG: Friedrich W. Gess and Sarah K. Gess
MS: Maximilian Schwarz
WJP: Wojciech J. Pulawski
Specimen and locality records, former and current geographic names.- Except for some holotypes and lectotypes, only the specimens examined for this paper are listed under the relevant locality for each species (specimens studied previously but not reexamined are excluded). A reference to a publication after a locality name indicates that the record is taken from the literature.

All the locality names listed under Records have been checked against available maps and gazetteers and then used to produce the distribution maps. The country and locality names currently in use are often different from those given in the literature or on specimen labels, and I have tried to use only the current official names (with the exception of Zaire). A comparative list is given below for convenience:

Abercorn, Northern Rhodesia: now Mbala, Zambia.
Aiyina, Greece: also spelled Aegina or Egina.
Akmolinsk, Kazakhstan: now Astana.
Aktyubinsk, Kazakhstan: now Aktöbe.
Albert National Park, Belgian Congo: now Virunga National Park, Zaire.
Balkhash, Kazakhstan: now Balqash.
Basutoland: now Lesotho.
Belgian Congo: now Zaire, or Democratic Republic of Congo.
Boesmanland, Namibia: now Tsumkwe District.
Chimkent, Kazakhstan: now Shymkent.
Damaraland, Namibia: now Khorixas District.
Deesa, India: current alternative spelling is Disa.
Diégo-Suarez, Madagascar: now Antsiranana.
Dzhambul, Kazakhstan: now Zhambyl.
Dzhezkazgan, Kazakhstan: now Zhezqazghan.
Elisabethville, Belgian Congo: now Lubumbashi, Zaire.
Gold Coast: now Ghana.
Fort Dauphin, Madagascar: now Tolanaro.
Fort Gouraud, Mauritania: now Fdérik.
Fort Jameson, Northern Rhodesia, now: Chipata, Zambia.
Fort Victoria, Southern Rhodesia: now Nyanda, Zimbabwe.
Foulpointe, Madagascar: now Mahavelona.
Gur'yev, Kazakhstan: now Atyran.
Irghiz, Kazakhstan: now Yrghyz.
Harar, Ethiopia: currently spelled Harer.
Hester Malan Nature Reserve, South Africa: now Goegap Nature Reserve.
Kaokolandgebied 1, Namibia: now Opuwo District.
Karaganda, Kazakhstan: now Qaraghandy.
Katamia, Egypt: alternative spellings are Katana, Katania, or Qattania.
Katanga Province, Belgian Congo: now Shaba Province, Zaire.
Kavango Giebied 1, Namibia: now Rundu District.
Khami, Zimbabwe: now spelled Kami.
Kirovabad, Azerbaijan SSR: now Gäncä, Azerbaijan.

Kokchetav, Kazakhstan: now Kökshetaū.
Kustanai, Kazakhstan: now Qustanay.
La Calle, Algeria: now El Kala.
Léopoldville, Belgian Congo: now Kinshasa, Zaire.
Lourenço Marques, Mozambique: now Maputo.
Majunga, Madagascar: now Mahajanga.
Mangyshlak, Kazakhstan: now Mangghystaū.
Matopos, Southern Rhodesia: now Matobo, Zimbabwe.
Moçâmedes, Angola: now Namibe.
Nagele or Neghelli, Ethiopia: currently spelled Negele.
Northern Rhodesia: now Zambia.
Nyasaland: now Malawi.
Ohopoho, Namibia: now Opuwo.
Oloff Berghfontein, South Africa: also spelled Olaf Bergfontein or Oloff Bergh Fontein.
Owambo, Namibia: now divided between five regions, including the Oshana Region (with Oshakati and Ondangwa Districts).
Poona, India: now spelled Pune.
Port-Lyautey, Morocco: now Kenitra.
Punda Milia in Kruger National Park, South Africa: now Punda Maria.
Saint Augustin, Madagascar: now Anantsono.
Sainte Marie de Madagascar: now Nosy Boraha.
Salisbury, Southern Rhodesia: now Harare, Zimbabwe.
Semipalatinsk, Kazakhstan: now Semey.
Sinola, Zimbabwe: now Chinhoyi.
Southern Rhodesia: now Zimbabwe.
South West Africa: now Namibia.
Soutpan, or Saltpan: South Africa: now Tswaing
Stanleyville, Belgian Congo: now Kisangani, Zaire.
Tamatave, Madagascar: now Toamasina.
Tanqua-Karoo National Park, South Africa: also spelled Tankwa-Karoo.
Thysville, Belgian Congo: now Mbanza Ngunga, Zaire.
Transvaal, South Africa: now divided into Gauteng, Mpumalanga, and Northern provinces.
Tuléar, Madagascar: now Toliara.
Upper Volta or Haute Volta: now Burkina Faso.
Ural'sk, Kazakhstan: now Oral.
Ust'-Kamenogorsk, Kazakhstan: now Öskemen.
Usumbura, Urundi: now Bujumbura, Burundi.
Wankie, Zimbabwe: now Hwange.
Zaire: now Democratic Republic of Congo.
Latitude and longitude in locality records. - For brevity's sake, repetitive longitude and latitude data on the specimen labels are listed below, but not in the Record sections under individual species. The longitude and latitude are given as recorded on the locality labels, i.e., the fractions of the minutes are expressed either as seconds or as decimals (many collectors did not record fractions of minutes).

Botswana

Kuke Pan: $20^{\circ} 59^{\prime} \mathrm{S} 22^{\circ} 25^{\prime} \mathrm{E}$
Moremi Reserve: $19^{\circ} 23^{\prime} \mathrm{S}, 23^{\circ} 33^{\prime} \mathrm{E}$
Serowe, Farmers Brigade: $22^{\circ} 25^{\prime} \mathrm{S} 26^{\circ} 44^{\prime} \mathrm{E}$

Burkina Faso

Gorom Gorom, 15 km SE: $14^{\circ} 21.4^{\prime} \mathrm{N} 0^{\circ} 07.9^{\prime} \mathrm{W}$

Cameroon

Campement des Eléphants, 15 km W (67 km S Garoua): $8^{\circ} 46.6^{\prime} \mathrm{N} 13^{\circ} 36.5^{\prime} \mathrm{E}$
Maroua, $40 \mathrm{~km} \mathrm{~S}: 10^{\circ} 14.8^{\prime} \mathrm{N} 14^{\circ} 12.6^{\prime} \mathrm{E}$
Mokolo, ca $10 \mathrm{~km} \mathrm{~W}: 10^{\circ} 43.5^{\prime} \mathrm{N} 13^{\circ} 42.4^{\prime} \mathrm{E}$

ETHIOPIA

Arba Minch, 42 road km NNE: $6^{\circ} 17^{\prime} \mathrm{N} 37^{\circ} 47^{\prime} \mathrm{E}$
Arba Minch, 58 road km NNE: $6^{\circ} 24^{\prime} \mathrm{N} 37^{\circ} 45^{\prime} \mathrm{E}$
Condaraba: $4^{\circ} 58^{\prime} \mathrm{N} 36^{\circ} 49^{\prime} \mathrm{E}$
Jijiga, 44 km ENE: $9^{\circ} 29^{\prime} \mathrm{N} 43^{\circ} 10^{\prime} \mathrm{E}$
Jijiga, 37 km SE: $9^{\circ} 11^{\prime} \mathrm{N} 43^{\circ} 05^{\prime} \mathrm{E}$
Jijiga, 43 km SE: $9^{\circ} 09^{\prime} \mathrm{N} 43^{\circ} 08^{\prime} \mathrm{E}$
Lake Chamo, W shore: $5^{\circ} 56^{\prime} \mathrm{N} 37^{\circ} 32^{\prime} \mathrm{E}$
Langano: $7^{\circ} 35^{\prime} \mathrm{N} 38^{\circ} 42^{\prime} \mathrm{E}$
Moyale: $3^{\circ} 33^{\prime} \mathrm{N} 39^{\circ} 03^{\prime} \mathrm{E}$
Moyale, $13 \mathrm{~km} \mathrm{N:} 3^{\circ} 38^{\prime} \mathrm{N} 38^{\circ} 59^{\prime} \mathrm{E}$
Moyale, 16 km N: $3^{\circ} 39^{\prime} \mathrm{N} 38^{\circ} 57^{\prime} \mathrm{E}$
Moyale, $22 \mathrm{~km} \mathrm{N:} 3^{\circ} 40^{\prime} \mathrm{N} 38^{\circ} 55^{\prime} \mathrm{E}$
Moyale, $26 \mathrm{~km} \mathrm{N:} 3^{\circ} 41^{\prime} \mathrm{N} 38^{\circ} 53^{\prime} \mathrm{E}$
Moyale, $35 \mathrm{~km} \mathrm{~N}: 3^{\circ} 43^{\prime} \mathrm{N} 38^{\circ} 50^{\prime} \mathrm{E}$
Moyale, $100 \mathrm{~km} \mathrm{~N}: 4^{\circ} 01^{\prime} \mathrm{N} 38^{\circ} 22^{\prime} \mathrm{E}$
Moyale, $120 \mathrm{~km} \mathrm{~N}: 4^{\circ} 09^{\prime} \mathrm{N} 38^{\circ} 16^{\prime} \mathrm{E}$
Nazret, 8 km W: $8^{\circ} 25^{\prime} \mathrm{N} 39^{\circ} 20^{\prime} \mathrm{E}$
Negele: $5^{\circ} 19^{\prime} \mathrm{N} 39^{\circ} 35^{\prime} \mathrm{E}$
Sodo, 49 road km SE: $6^{\circ} 29^{\prime} \mathrm{N} 37^{\circ} 40^{\prime} \mathrm{E}$
Yabelo, 4 km E: $4^{\circ} 53^{\prime} \mathrm{N} 38^{\circ} 08^{\prime} \mathrm{E}$
Yabelo, $63 \mathrm{~km} \mathrm{~S}: 4^{\circ} 22^{\prime} \mathrm{N} 38^{\circ} 17^{\prime} \mathrm{E}$
Yabelo, $76 \mathrm{~km} \mathrm{~N}: 5^{\circ} 28^{\prime} \mathrm{N} 39^{\circ} 16^{\prime} \mathrm{E}$
Ziway: $7^{\circ} 56^{\prime} \mathrm{N} 38^{\circ} 43^{\prime} \mathrm{E}$

IsraEL

Ashkelon, 8 km NNE: $31^{\circ} 45^{\prime} \mathrm{N} 34^{\circ} 37^{\prime} \mathrm{E}$
Beersheba, 32 km SE ($=5 \mathrm{~km}$ E Yeroham): $30^{\circ} 58^{\prime} \mathrm{N} 34^{\circ} 58^{\prime} \mathrm{E}$
Elat, $5 \mathrm{~km} \mathrm{~W}: 29^{\circ} 32^{\prime} \mathrm{N} 34^{\circ} 54^{\prime} \mathrm{E}$
Elat Iddan, $135 \mathrm{~km} \mathrm{~N}: 30^{\circ} 47^{\prime} \mathrm{N} 35^{\circ} 17^{\prime} \mathrm{E}$
Elat Zuqim Resort on Dead Sea N Qumeran: $31^{\circ} 41^{\prime} \mathrm{N} 35^{\circ} 28^{\prime} \mathrm{E}$
En Zeelim on Dead Sea 5 km N Masada: $31^{\circ} 23^{\prime} \mathrm{N} 35^{\circ} 20^{\prime} \mathrm{E}$
En Zin in Arava Valley: $30^{\circ} 53^{\prime} 41^{\prime \prime} \mathrm{N} 35^{\circ} 09^{\prime} 11^{\prime \prime} \mathrm{E}$
Har Badad in Arava Valley: $30^{\circ} 36.1^{\prime} \mathrm{N} 35^{\circ} 03.0^{\prime} \mathrm{E}$
Hazeva in Arava Valley: $30^{\circ} 46.8^{\prime} \mathrm{N} 35^{\circ} 14.6^{\prime} \mathrm{E}$
Hazeva Field School in Arava Valley: $30^{\circ} 46.77^{\prime} \mathrm{N} 35^{\circ} 14.58^{\prime} \mathrm{E}$
Iddan in Arava Valley: $30^{\circ} 48.9^{\prime} \mathrm{N} 35^{\circ} 16.8^{\prime} \mathrm{E}$
Mazad Aqrabbim 45 km SE Beersheba: $30^{\circ} 57^{\prime} \mathrm{N} 35^{\circ} 08^{\prime} \mathrm{E}$
Moshaav Hazeva in Arava Valley: $30^{\circ} 46.3^{\prime} \mathrm{N} 35^{\circ} 16.3^{\prime} \mathrm{E}$
Nakhal Zin at El Aqrabim: $30^{\circ} 53.4^{\prime} \mathrm{N} 35^{\circ} 09.4^{\prime} \mathrm{E}$
Nasholim Beach 22 km S Haifa: $32^{\circ} 36^{\prime} \mathrm{N} 34^{\circ} 54^{\prime} \mathrm{E}$
Sede Boker, 5 km SSE: $30^{\circ} 49^{\prime} \mathrm{N} 34^{\circ} 48^{\prime} \mathrm{E}$
Shizaf Nature Reserve in Arava Valley: $30^{\circ} 45.18^{\prime} \mathrm{N} 35^{\circ} 15.50^{\prime} \mathrm{E}$
Wadi En Aqrabbim 50 km SE Beersheba: $30^{\circ} 57^{\prime} \mathrm{N} 35^{\circ} 08^{\prime} \mathrm{E}$
Wadi N'Aqev 5 km SSE Sede Boqer: $30^{\circ} 49^{\prime} \mathrm{N} 34^{\circ} 48^{\prime} \mathrm{E}$
Wadi Qelet 5 km W Jericho: $31^{\circ} 50^{\prime} \mathrm{N} 35^{\circ} 23^{\prime} \mathrm{E}$

Kenya

Archer's Gate to Samburu National Reserve: $0^{\circ} 37.7^{\prime} \mathrm{N} 37^{\circ} 38.3^{\prime} \mathrm{E}$

Archer's Post at Ewaso Ng'iro River: $0^{\circ} 39^{\prime} \mathrm{N} 37^{\circ} 41^{\prime} \mathrm{E}$
Archer's Post, $2 \mathrm{~km} \mathrm{~S}: 0^{\circ} 37.0^{\prime} \mathrm{N} 37^{\circ} 40.3^{\prime} \mathrm{E}$
Diani Beaches: $4^{\circ} 21.0^{\prime} \mathrm{S} 39^{\circ} 33.8^{\prime} \mathrm{E}$
Eliye Springs on W shore of Lake Turkana: $3^{\circ} 15.2^{\prime} \mathrm{N} 36^{\circ} 01.3^{\prime} \mathrm{E}$
Ewaso Ng'iro River opposite Archer's Post: $0^{\circ} 38.1^{\prime} \mathrm{N} 37^{\circ} 40.4^{\prime} \mathrm{E}$
Isiolo, 5 km NNE: $0^{\circ} 24.3^{\prime} \mathrm{N} 37^{\circ} 35.7^{\prime} \mathrm{E}$
Kajiado, $5 \mathrm{~km} \mathrm{~S}: 1^{\circ} 52.6^{\prime} \mathrm{S} 36^{\circ} 46.7^{\prime} \mathrm{E}$
Kakamega Forest Reserve: $0^{\circ} 20.7^{\prime} \mathrm{N} 34^{\circ} 52.0^{\prime} \mathrm{E}$
Lodwar: $3^{\circ} 07^{\prime} \mathrm{N} 35^{\circ} 35^{\prime} \mathrm{E}$
Lodwar, $33 \mathrm{~km} \mathrm{~N}: 3^{\circ} 20.7^{\prime} \mathrm{N} 35^{\circ} 27.8^{\prime} \mathrm{E}$
Lodwar, $120 \mathrm{~km} \mathrm{~S}: 2^{\circ} 13.7^{\prime} \mathrm{N} 35^{\circ} 33.3^{\prime} \mathrm{E}$
Lodwar road 4 km N road to Sigor: $1^{\circ} 33.7^{\prime} \mathrm{N} 35^{\circ} 27.7^{\prime} \mathrm{E}$
Magadi road 25 air km SW Nairobi (= 21 km SW Kiserian): $1^{\circ} 31.3^{\prime} \mathrm{S} 36^{\circ} 06.4^{\prime} \mathrm{E}$
Magadi road 46 air km SW Nairobi ($=43 \mathrm{~km}$ SW Kiserian): $1^{\circ} 34.0^{\prime} \mathrm{S} 36^{\circ} 27.4^{\prime} \mathrm{E}$
Magadi road 51 air km SW Nairobi ($=48 \mathrm{~km}$ SW Kiserian): $1^{\circ} 34.6^{\prime} \mathrm{S} 36^{\circ} 24.5^{\prime} \mathrm{E}$
Magadi road ca 53 air km SW Nairobi: $1^{\circ} 35.9^{\prime} \mathrm{S} 36^{\circ} 24.2^{\prime} \mathrm{E}$
Marich Pass Field Studies Centre: $1^{\circ} 32.2^{\prime} \mathrm{N} 35^{\circ} 27.4^{\prime} \mathrm{E}$
Marich Pass area 4 km N road to Sigor: $1^{\circ} 33.7^{\prime} \mathrm{N} 35^{\circ} 27.7^{\prime} \mathrm{E}$
Marich Pass area $24 \mathrm{~km} N$ road to Sigor: $1^{\circ} 42.2^{\prime} \mathrm{N} 35^{\circ} 29.5^{\prime} \mathrm{E}$
Matembur in West Pokot District: $1^{\circ} 22^{\prime} \mathrm{N} 35^{\circ} 03^{\prime} \mathrm{E}$
Mpala Research Station 48 km NW Nanyuki: $0^{\circ} 17.5^{\prime} \mathrm{N} 36^{\circ} 53.9^{\prime} \mathrm{E}$
Mtito Andei, 32 km NW: $2^{\circ} 30.5^{\prime} \mathrm{S} 38^{\circ} 00.9^{\prime} \mathrm{E}$
Muhaka: $4^{\circ} 20^{\prime} \mathrm{S} 39^{\circ} 30^{\prime} \mathrm{E}$
Mwingi, 12 km SW: $0^{\circ} 58.8^{\prime} \mathrm{S} 37^{\circ} 59.5^{\prime} \mathrm{E}$
Naivasha, 20 km NW: $0^{\circ} 34.2^{\prime} \mathrm{S} 36^{\circ} 21.6^{\prime} \mathrm{E}$
Naivasha, 30 km NW: $0^{\circ} 29.0^{\prime} \mathrm{S} 36^{\circ} 18.0^{\prime} \mathrm{E}$
Naivasha, 27 km SSE: $0^{\circ} 54.6^{\prime} \mathrm{S} 36^{\circ} 31.0^{\prime} \mathrm{E}$
Naivasha, 29 km SSE: $0^{\circ} 55.7^{\prime} \mathrm{S} 36^{\circ} 31.0^{\prime} \mathrm{E}$
Nakuru, 35 road km WNW: $0^{\circ} 13.2^{\prime} \mathrm{S} 35^{\circ} 44.6^{\prime} \mathrm{E}$
Namanga, 4 km NNE: $2^{\circ} 31.4^{\prime} \mathrm{S} 36^{\circ} 49.8^{\prime} \mathrm{E}$
Narok, 77 km E: $1^{\circ} 00.6^{\prime} \mathrm{S} 36^{\circ} 30.2^{\prime} \mathrm{E}$
Naro Moru: $0^{\circ} 09^{\prime} \mathrm{S} 37^{\circ} 01^{\prime} \mathrm{E}$
Olorgesailie: $1^{\circ} 34.5^{\prime} \mathrm{S} 36^{\circ} 26.6^{\prime} \mathrm{E}$
Papenditi: $0^{\circ} 18.7^{\prime} \mathrm{S} 34^{\circ} 56.0^{\prime} \mathrm{E}$
Shimba Hills: $4^{\circ} 12.3^{\prime} \mathrm{S} 39^{\circ} 25.2^{\prime} \mathrm{E}$
Taita Discovery Centre: $3^{\circ} 42.3^{\prime} \mathrm{S} 38^{\circ} 46.6^{\prime} \mathrm{E}$
Taita Discovery Centre, ca $10 \mathrm{~km} \mathrm{~N}: 3^{\circ} 35.8^{\prime} \mathrm{S} 38^{\circ} 45.8^{\prime} \mathrm{E}$
Taita Discovery Centre: Galla Hill area: $3^{\circ} 43.3^{\prime} \mathrm{S} 38^{\circ} 44.2^{\prime} \mathrm{E}$
Tiwi Beaches ca 17 km S Mombasa: $4^{\circ} 14.4^{\prime} \mathrm{S} 39^{\circ} 36.2$. $^{\prime} \mathrm{E}$
Thika, 94 km E: $1^{\circ} 06.6^{\prime} \mathrm{S} 37^{\circ} 42.1^{\prime} \mathrm{E}$
Thika, 118 km E: $1^{\circ} 02.3^{\prime} \mathrm{S} 37^{\circ} 51.5^{\prime} \mathrm{E}$
Voi: $3^{\circ} 24.0^{\prime} \mathrm{S} 38^{\circ} 33.2^{\prime} \mathrm{E}$
Voi, $2 \mathrm{~km} \mathrm{~S}: 3^{\circ} 24.7^{\prime} \mathrm{S} 38^{\circ} 32.3^{\prime} \mathrm{E}$
Voi, about 1 km SE: $3^{\circ} 24.5^{\prime} \mathrm{S} 38^{\circ} 33.7^{\prime} \mathrm{E}$
Voi, 14 km SW: $3^{\circ} 28.2^{\prime} \mathrm{S} 38^{\circ} 28.3^{\prime} \mathrm{E}$
Voi, 16 km SW: $3^{\circ} 28.3^{\prime} \mathrm{S} 38^{\circ} 27.6^{\prime} \mathrm{E}$
Madagascar
Ambatofitorahana 33 km S Ambositra: $20^{\circ} 46^{\prime} \mathrm{S} 47^{\circ} 11^{\prime} \mathrm{E}$
Ambohimanga: $18^{\circ} 46^{\prime} \mathrm{S} 47^{\circ} 34^{\prime} \mathrm{E}$
Amborovy 8 km NE Mahajanga: $15^{\circ} 40^{\prime} \mathrm{S} 46^{\circ} 20^{\prime} \mathrm{E}$
Ampanihy, 22 km E: $24^{\circ} 41^{\prime} \mathrm{S} 44^{\circ} 46^{\prime} \mathrm{E}$
Ampanihy, $3 \mathrm{~km} \mathrm{NW}: 24^{\circ} 40^{\prime} \mathrm{S} 44^{\circ} 43^{\prime} \mathrm{E}$

Berenty Reserve: $25^{\circ} 00^{\prime} \mathrm{S} 46^{\circ} 18^{\prime} \mathrm{E}$
Betioky, $22 \mathrm{~km} \mathrm{N:} 23^{\circ} 21^{\prime} \mathrm{S} 44^{\circ} 20^{\prime} \mathrm{E}$
Beza Mahafaly: $23^{\circ} 42^{\prime} \mathrm{S} 44^{\circ} 42^{\prime} \mathrm{E}$
Forêt d'Orangea 3.6 km SE Ramena: $12^{\circ} 15^{\prime} 32^{\prime \prime} \mathrm{S} 49^{\circ} 22^{\prime} 29^{\prime \prime} \mathrm{E}$
Ifaty (N Toliara): $23^{\circ} 08^{\prime} \mathrm{S} 43^{\circ} 37^{\prime} \mathrm{E}$
Ihosy, 84 km NE: $21^{\circ} 58^{\prime} \mathrm{S} 46^{\circ} 35^{\prime} \mathrm{E}$
Ihosy, 40 road km W: $22^{\circ} 28^{\prime} \mathrm{S} 45^{\circ} 49^{\prime} \mathrm{E}$
Isalo area: $22^{\circ} 42^{\prime} \mathrm{S} 45^{\circ} 13^{\prime} \mathrm{E}$
Isalo National Park: $22^{\circ} 36^{\prime} \mathrm{S} 45^{\circ} 10^{\prime} \mathrm{E}$
Isalo National Park: Piscine Naturelle: $22^{\circ} 34^{\prime} \mathrm{S} 45^{\circ} 22^{\prime} \mathrm{E}$
Mahabo: $20^{\circ} 22^{\prime} \mathrm{S} 44^{\circ} 40^{\prime} \mathrm{E}$
Mahavelona: $17^{\circ} 40^{\prime} \mathrm{S} 49^{\circ} 30^{\prime} \mathrm{E}$
Mandraka: $18^{\circ} 56^{\prime} \mathrm{S} 47^{\circ} 56^{\prime} \mathrm{E}$
Manjakatompa: $19^{\circ} 21^{\prime} \mathrm{S} 47^{\circ} 19^{\prime} \mathrm{E}$
Ranohira, near: $22^{\circ} 34^{\prime} \mathrm{S} 45^{\circ} 24^{\prime} \mathrm{E}$
Ranohira, 10 km E: $22^{\circ} 31^{\prime} \mathrm{S} 45^{\circ} 30^{\prime} \mathrm{E}$
Ranomafana: $21^{\circ} 15^{\prime} \mathrm{S} 47^{\circ} 27^{\prime} \mathrm{E}$
Ranomafana National Park: $21^{\circ} 16^{\prime} \mathrm{S} 47^{\circ} 25^{\prime} \mathrm{E}$
Reserve Spéciale d'Ankarana 2.6 km E Andrafiabe: $12^{\circ} 55^{\prime} \mathrm{S} 49^{\circ} 03^{\prime} \mathrm{E}$
Sakalava Beach, 1 km W: $12^{\circ} 15^{\prime} 59^{\prime \prime} \mathrm{S} 49^{\circ} 23^{\prime} 42^{\prime \prime} \mathrm{E}$
Sakalava Beach, $3 \mathrm{~km} \mathrm{~W}: 12^{\circ} 17^{\prime} 1^{\prime \prime} \mathrm{S} 49^{\circ} 22^{\prime} 00^{\prime \prime} \mathrm{E}$
Sakaraha, 38 km E: $22^{\circ} 46^{\prime} \mathrm{S} 44^{\circ} 51^{\prime} \mathrm{E}$
Tapia, col de: $20^{\circ} 17^{\prime} \mathrm{S} 47^{\circ} 07^{\prime} \mathrm{E}$
Toamasina: $18^{\circ} 07^{\prime} \mathrm{S} 49^{\circ} 24^{\prime} \mathrm{E}$
Toamasina, 20 road km SW: $18^{\circ} 15^{\prime} \mathrm{S} 49^{\circ} 16^{\prime} \mathrm{E}$
Tolanaro: $25^{\circ} 02^{\prime} \mathrm{S} 46^{\circ} 57^{\prime} \mathrm{E}$
Toliara, $5 \mathrm{~km} \mathrm{~N}: 23^{\circ} 18^{\prime} \mathrm{S} 43^{\circ} 39^{\prime} \mathrm{E}$
Toliara, 10 km NE: $23^{\circ} 18^{\prime} \mathrm{S} 43^{\circ} 45^{\prime} \mathrm{E}$
Toliara, 12 km SE: $23^{\circ} 25^{\prime} \mathrm{S} 43^{\circ} 45^{\prime} \mathrm{E}$
Tsiombe, $8 \mathrm{~km} \mathrm{~W}: 25^{\circ} 19^{\prime} \mathrm{S} 45^{\circ} 25^{\prime} \mathrm{E}$
Tsiombe, $20 \mathrm{~km} \mathrm{~W}: 25^{\circ} 16^{\prime} \mathrm{S} 45^{\circ} 21^{\prime} \mathrm{E}$
Vohiparara: $21^{\circ} 14^{\prime} \mathrm{S} 47^{\circ} 23^{\prime} \mathrm{E}$

Namibia

Aminuis: $23^{\circ} 43^{\prime} \mathrm{S} 19^{\circ} 21^{\prime} \mathrm{E}$
Aris, $2 \mathrm{~km} \mathrm{~S}: 22^{\circ} 46^{\prime} \mathrm{S} 17^{\circ} 08^{\prime} \mathrm{E}$
Arnhem Farm 110 km E Windhoek: $22^{\circ} 41^{\prime} \mathrm{S} 18^{\circ} 08^{\prime} \mathrm{E}$
Aus, near on road to Helmeringhausen: $26^{\circ} 37^{\prime} \mathrm{S} 19^{\circ} 20^{\prime} \mathrm{E}$
Bethanis: $20^{\circ} 24^{\prime}$ S $14^{\circ} 24^{\prime} \mathrm{E}$
Brandberg: Hungorob Ravine mouth: $21^{\circ} 13.36^{\prime}$ S $14^{\circ} 31.00^{\prime} \mathrm{E}$
Brandberg: Hungorob River: $21^{\circ} 13.05^{\prime} \mathrm{S} 14^{\circ} 31.01^{\prime} \mathrm{E}$
Brandberg: Messum Valley: $21^{\circ} 13.29^{\prime}$ S $14^{\circ} 30.98^{\prime} \mathrm{E}$
Brandberg: Plateau Valley: $21^{\circ} 10^{\prime} 46^{\prime \prime} \mathrm{S} 14^{\circ} 32^{\prime} 52^{\prime \prime} \mathrm{E}$
Brandberg: Wasserfallfläche: $21^{\circ} 10.42^{\prime} \mathrm{S} 14^{\circ} 32.55^{\prime} \mathrm{E}$
Büllsport, SE 4 km from road C14 on D854: $24^{\circ} 11^{\prime} \mathrm{S} 16^{\circ} 24^{\prime} \mathrm{E}$
Carlowa's Camp, Angra Fria: SE 1812Aa [$\left.=18^{\circ} 00^{\prime}-18^{\circ} 15^{\prime} \mathrm{S} 12^{\circ} 00^{\prime}-12^{\circ} 15^{\prime} \mathrm{E}\right]$
Churutabis [Farm]: 108 SE 2717Ad [$=27^{\circ} 15^{\prime}-27^{\circ} 30^{\prime} \mathrm{S}, 17^{\circ} 15^{\prime}-17^{\circ} 30^{\prime} \mathrm{E}$]
Gamsberg east of Pass: $23^{\circ} 19^{\prime} \mathrm{S} 16^{\circ} 31^{\prime} \mathrm{E}$
Ganab: $23^{\circ} 06^{\prime} \mathrm{S} 15^{\circ} 33^{\prime} \mathrm{E}$
Gaub Pass to Kuiseb Pass: $23^{\circ} 27^{\prime} \mathrm{S} 15^{\circ} 46^{\prime} \mathrm{E}$
Gaub River bed: $23^{\circ} 29^{\prime} \mathrm{S} 15^{\circ} 46^{\prime} \mathrm{E}$
Gelaus 6 [Farm]: SE2717Da [$=27^{\circ} 30^{\prime}-27^{\circ} 45^{\prime} \mathrm{S} 17^{\circ} 30^{\prime}-17^{\circ} 45^{\prime} \mathrm{E}$]
Ghaub: $19^{\circ} 29^{\prime} \mathrm{S} 17^{\circ} 47^{\prime} \mathrm{E}$

Gibeon, $41 \mathrm{~km} \mathrm{SW}: 21^{\circ} 20^{\prime} \mathrm{S} 17^{\circ} 29^{\prime} \mathrm{E}$
Gobabeb (also Gobabeb at Kuiseb River): $23^{\circ} 34^{\prime} \mathrm{S} 15^{\circ} 03^{\prime} \mathrm{E}$
Grootberg Pass, W of: $20^{\circ} 10^{\prime} \mathrm{S} 14^{\circ} 04^{\prime} \mathrm{E}$
Grootfontein, 10 km NE: $19^{\circ} 30.56^{\prime} \mathrm{S} 18^{\circ} 12.44^{\prime} \mathrm{E}$
Grootfontein, $40 \mathrm{~km} \mathrm{NE}: 19^{\circ} 20^{\prime} \mathrm{S} 18^{\circ} 23^{\prime} \mathrm{E}$
Gutscha Pan: $19^{\circ} 48^{\prime} \mathrm{S} 20^{\circ} 35^{\prime} \mathrm{E}$
Halali in Etosha National Park: $19^{\circ} 02^{\prime} \mathrm{S} 16^{\circ} 58^{\prime} \mathrm{E}$
Helmeringhausen, 30 road km from: $25.53^{\circ} \mathrm{S} 16.35^{\circ} \mathrm{E}$
Helmeringhausen, 34 km SE: $26^{\circ} 05^{\prime} \mathrm{S} 16^{\circ} 38^{\prime} \mathrm{E}$
Helmeringhausen, 32 km SW: $26^{\circ} 06^{\prime} \mathrm{S} 16^{\circ} 36^{\prime} \mathrm{E}$
Helmeringhausen, 76 km from on road to Spes Bona: $25^{\circ} 35^{\prime} \mathrm{S} 16^{\circ} 20^{\prime} \mathrm{E}$
Hentiesbaai: $22^{\circ} 08^{\prime}$ S $14^{\circ} 18^{\prime} \mathrm{E}$
Hentiesbaai, $20 \mathrm{~km} \mathrm{NE}: 21^{\circ} 58^{\prime} \mathrm{S} 14^{\circ} 22^{\prime} \mathrm{E}$
Hentiesbaai, 33 km NW: $21^{\circ} 52^{\prime} \mathrm{S} 14^{\circ} 05^{\prime} \mathrm{E}$
Homeb, N of: $23^{\circ} 38^{\prime} \mathrm{S} 15^{\circ} 13^{\prime} \mathrm{E}$
Kalkfeld, $18 \mathrm{~km} \mathrm{NE}: 20^{\circ} 45^{\prime} \mathrm{S} 16^{\circ} 16^{\prime} \mathrm{E}$
Kalkfeld, 25 km NE: $20^{\circ} 41^{\prime} \mathrm{S} 16^{\circ} 18^{\prime} \mathrm{E}$
Kamanjab, $5 \mathrm{~km} \mathrm{~S}: 19^{\circ} 39^{\prime} \mathrm{S} 14^{\circ} 51^{\prime} \mathrm{E}$
Karasburg, 30 km E: $28^{\circ} 00^{\prime} \mathrm{S} 19^{\circ} 03^{\prime} \mathrm{E}$
Karas Mountains: $27^{\circ} 09^{\prime} \mathrm{S} 19^{\circ} 01^{\prime} \mathrm{E}$
Karibib, 15 km W: $21^{\circ} 56^{\prime} \mathrm{S} 15^{\circ} 42^{\prime} \mathrm{E}$
Kaross Farm: $19^{\circ} 23^{\prime}$ S $14^{\circ} 40^{\prime}$ E
Khan River 23 km N Karibib: $21^{\circ} 47^{\prime} \mathrm{S} 15^{\circ} 57^{\prime} \mathrm{E}$
Khorixas, $2 \mathrm{~km} \mathrm{~W}: 20^{\circ} 23^{\prime} \mathrm{S} 14^{\circ} 56^{\prime} \mathrm{E}$
Khorixas, 4 km E: $20^{\circ} 22^{\prime} \mathrm{S} 15^{\circ} 00^{\prime} \mathrm{E}$
Khorixas, 120 km from on road to Palm: $20^{\circ} 17^{\prime} \mathrm{S} 14^{\circ} 05^{\prime} \mathrm{E}$
Klein-Aus Vista: $26^{\circ} 39^{\prime} \mathrm{S} 19^{\circ} 25^{\prime} \mathrm{E}$
Kombat: $19^{\circ} 43^{\prime} \mathrm{S} 17^{\circ} 43^{\prime} \mathrm{E}$
Kuiseb, between and Gaub passes: $23^{\circ} 24^{\prime}$ S $15^{\circ} 50^{\prime} \mathrm{E}$
Kuiseb River Delta near Rooibank: $23^{\circ} 12^{\prime} \mathrm{S} 14^{\circ} 39^{\prime} \mathrm{E}$
Kuiseb River near Gobabeb: $23^{\circ} 34^{\prime} \mathrm{S} 15^{\circ} 03^{\prime} \mathrm{E}$
Leeu River 9 km W Okahandja: $21^{\circ} 58^{\prime} \mathrm{S} 16^{\circ} 50^{\prime} \mathrm{E}$
Lüderitz: Agate Beach: $26^{\circ} 37^{\prime} \mathrm{S} 15^{\circ} 10^{\prime} \mathrm{E}$
Luderitz: Diaz Point: $26^{\circ} 39^{\prime} \mathrm{S} 15^{\circ} 05^{\prime} \mathrm{E}$
Lüderitz, Grosse Bucht: $26^{\circ} 39^{\prime} \mathrm{S} 15^{\circ} 05^{\prime} \mathrm{E}$
Mariental, $5 \mathrm{~km} \mathrm{~S}: 24^{\circ} 41^{\prime} \mathrm{S} 17^{\circ} 57^{\prime} \mathrm{E}$
Messum River: $21^{\circ} 15.31^{\prime} \mathrm{S} 14^{\circ} 28.17^{\prime} \mathrm{E}$
Mirabeb: $23^{\circ} 27^{\prime} \mathrm{S} 15^{\circ} 21^{\prime} \mathrm{E}$
Namib Desert Park, SE corner of: SE 2315Db [= $23^{\circ} 30^{\prime}-23^{\circ} 45^{\prime} \mathrm{S} 15^{\circ} 45^{\prime}-16^{\circ} 00^{\prime} \mathrm{E}$]
Namib Desert Research Station: $23^{\circ} 33^{\prime} 45^{\prime \prime} \mathrm{S} 15^{\circ} 02^{\prime} 38^{\prime \prime} \mathrm{E}$
Namuskluft 88 \{Farm]: SE 2716Dd [= $\left.27^{\circ} 45^{\prime}-28^{\circ} 00^{\prime} \mathrm{S} 16^{\circ} 45^{\prime}-17^{\circ} 00^{\prime} \mathrm{E}\right]$
Naukluft: $24.3^{\circ} \mathrm{S} 16.2^{\circ} \mathrm{E}$ [$=24^{\circ} 18^{\prime} \mathrm{S} 16^{\circ} 12^{\prime} \mathrm{E}$]
Okahandja, ca $30 \mathrm{~km} \mathrm{~W}: 21^{\circ} 55.56^{\prime} \mathrm{S} 16^{\circ} 31.61^{\prime} \mathrm{E}$
Okandukaseibe Farm 47 km S Wilhelmstal: $22^{\circ} 20^{\prime} \mathrm{S} 16^{\circ} 21^{\prime} \mathrm{E}$
Okaukuejo: $19^{\circ} 11^{\prime} \mathrm{S} 15^{\circ} 55^{\prime} \mathrm{E}$
Okosongomingo Farm 50 km ESE Otjiwarongo: $20^{\circ} 39^{\prime} \mathrm{S} 17^{\circ} 05^{\prime} \mathrm{E}$
Omaruru, $6 \mathrm{~km} \mathrm{~N}: 21^{\circ} 22^{\prime} \mathrm{S} 15^{\circ} 59^{\prime} \mathrm{E}$
Omaruru, $32 \mathrm{~km} \mathrm{~W}: 21^{\circ} 29^{\prime} \mathrm{S} 15^{\circ} 43^{\prime} \mathrm{E}$
Omaruru, between and Wilhelmstal: $21^{\circ} 31^{\prime} \mathrm{S} 16^{\circ} 03^{\prime} \mathrm{E}$
Ondangwa, 38.4 km : SE SE1618Ab [= between $16^{\circ} 00^{\prime} \mathrm{S}$ and $16^{\circ} 15^{\prime} \mathrm{S}, 18^{\circ} 15^{\prime} \mathrm{E}$ and $18^{\circ} 30^{\prime} \mathrm{E}$]
Ondorusu Falls: SE 1713 Bd [$\left.=17^{\circ} 15^{\prime}-17^{\circ} 30^{\prime} \mathrm{S} 13^{\circ} 45^{\prime}-14^{\circ} 00^{\prime} \mathrm{E}\right]$
Onze Rust 192 [Farm]: $24^{\circ} 09^{\prime} \mathrm{S} 18^{\circ} 02^{\prime} \mathrm{E}$

Ortmansbaum near Warmbad: SE2818 Bd $\left[=28^{\circ} 15^{\prime}-28^{\circ} 30^{\prime} \mathrm{S} 18^{\circ} 45^{\prime}-19^{\circ} 00^{\prime} \mathrm{E}\right]$
Osire: $21^{\circ} 01^{\prime} \mathrm{S} 17^{\circ} 21^{\prime} \mathrm{E}$
Otjikoko-Süd [Farm]: 2116 Ad [$\left.=21^{\circ} 15^{\prime}-21^{\circ} 30^{\prime} \mathrm{S} 16^{\circ} 15^{\prime}-16^{\circ} 30^{\prime} \mathrm{E}\right]$
Otjinungwa: SE $1712 \mathrm{Ac}\left[=17^{\circ} 00^{\prime}-17^{\circ} 15^{\prime} \mathrm{S} 12^{\circ} 15^{\prime}-12^{\circ} 30^{\prime} \mathrm{E}\right]$
Otjiwarongo, 28 km NW: $20^{\circ} 21^{\prime} \mathrm{S} 16^{\circ} 27^{\prime} \mathrm{E}$
Otjiwarongo, $44 \mathrm{~km} \mathrm{SW}: 2^{\circ} 37^{\prime} \mathrm{S} 16^{\circ} 22^{\prime} \mathrm{E}$
Popa Falls: $18^{\circ} 07^{\prime} \mathrm{S} 21^{\circ} 33^{\prime} \mathrm{E}$
Regenstein: SE $2217 \mathrm{Ca}\left[=22^{\circ} 30^{\prime}-22^{\circ} 45^{\prime} \mathrm{S} 17^{\circ} 00^{\prime}-17^{\circ} 15^{\prime} \mathrm{E}\right.$]
road C26 60 km E from road C14: $23^{\circ} 15^{\prime} \mathrm{S} 16^{\circ} 16^{\prime} \mathrm{E}$
road 511 to Mata Mata 2 km from road C17: $25^{\circ} 37^{\prime} \mathrm{S} 19^{\circ} 25^{\prime} \mathrm{E}$
Rooibank: $23^{\circ} 11^{\prime} \mathrm{S} 14^{\circ} 39^{\prime} \mathrm{E}$
Rosh Pinah, $16 \mathrm{~km} \mathrm{~S}: 28^{\circ} 04^{\prime} \mathrm{S} 16^{\circ} 51^{\prime} \mathrm{E}$
Rundu: $17^{\circ} 56^{\prime}$ S $19^{\circ} 46^{\prime} \mathrm{E}$
Rundu, $25 \mathrm{~km} \mathrm{E}: 17^{\circ} 57^{\prime} \mathrm{S} 19^{\circ} 57^{\prime} \mathrm{E}$
SE $1918 \mathrm{Cd}\left[=19^{\circ} 45^{\prime}-20^{\circ} 00^{\prime} \mathrm{S} 18^{\circ} 15^{\prime}-18^{\circ} 30^{\prime} \mathrm{E}\right]$
SE $2719 \mathrm{Ca}\left[=27^{\circ} 30^{\prime}-27^{\circ} 45^{\prime} \mathrm{S} 19^{\circ} 00^{\prime}-19^{\circ} 15^{\prime} \mathrm{E}\right]$
Spitzkopje: approximately $21^{\circ} 39^{\prime} \mathrm{S} 15^{\circ} 10^{\prime} \mathrm{E}$
Spitzkoppe 17 km from Usakos: $21^{\circ} 59^{\prime} \mathrm{S} 15^{\circ} 35^{\prime} \mathrm{E}$
Stampriet, 71 km E: $24^{\circ} 09^{\prime} \mathrm{S} 19^{\circ} 00^{\prime} \mathrm{E}$
Stampriet, 18 km SE on road to Goachas: $24^{\circ} 28^{\prime} \mathrm{S} 18^{\circ} 30^{\prime} \mathrm{E}$
Swakopmund, 21 km E on road to Usakos: $22^{\circ} 36^{\prime} \mathrm{S} 14^{\circ} 42^{\prime} \mathrm{E}$
Swakopmund, $10 \mathrm{~km} \mathrm{~N}: 22^{\circ} 35^{\prime} \mathrm{S} 14^{\circ} 32^{\prime} \mathrm{E}$
Swakopmund, $63 \mathrm{~km} \mathrm{NE}: 22^{\circ} 24^{\prime} \mathrm{S} 15^{\circ} 02^{\prime} \mathrm{E}$
Swakopmund, 110 km NNW : $21^{\circ} 50^{\prime} \mathrm{S} 14^{\circ} 05^{\prime} \mathrm{E}$
Swakopmund, 113 km NNW: $21^{\circ} 51^{\prime} \mathrm{S} 14^{\circ} 05^{\prime} \mathrm{E}$
Swakopmund, 33 km from on road to Usakos: $22^{\circ} 34^{\prime} \mathrm{S} 14^{\circ} 49^{\prime} \mathrm{E}$
Swakopmund, 97 km from on road to Usakos: $22^{\circ} 10^{\prime} \mathrm{S} 15^{\circ} 10^{\prime} \mathrm{E}$
Swakopmund, 117 km from on road to Usakos: $22^{\circ} 02^{\prime} \mathrm{S} 15^{\circ} 17^{\prime} \mathrm{E}$
Swakop River at bridge near mouth: $22^{\circ} 42^{\prime} \mathrm{S} 14^{\circ} 32^{\prime} \mathrm{E}$
Swakop River mouth : $22^{\circ} 42^{\prime}$ S $14^{\circ} 32^{\prime} \mathrm{E}$
Takuasa: SE $1720 \mathrm{Cd}\left[=17^{\circ} 45^{\prime}-18^{\circ} 00^{\prime} \mathrm{S} 20^{\circ} 15^{\prime}-20^{\circ} 30^{\prime} \mathrm{E}\right]$
Tses to Bersheba: $25^{\circ} 55^{\prime} \mathrm{S} 17^{\circ} 56^{\prime} \mathrm{E}$
Ugab River 12 km SE Outjo: $20^{\circ} 09^{\prime} \mathrm{S} 16^{\circ} 14^{\prime} \mathrm{E}$
Uguchab River near Aurusberg: $27^{\circ} 32^{\prime} \mathrm{S} 16^{\circ} 11^{\prime} \mathrm{E}$
Uis Myn, 94 km from coast on road to: $21^{\circ} 26^{\prime} \mathrm{S} 14^{\circ} 45^{\prime} \mathrm{E}$
Usakos, $8 \mathrm{~km} \mathrm{~W}: 21^{\circ} 59^{\prime} \mathrm{S} 15^{\circ} 31^{\prime} \mathrm{E}$
Vaalbank 319 [Farm]: $23^{\circ} 54^{\prime} \mathrm{S} 18^{\circ} 53^{\prime} \mathrm{E}$
Vogelstrausskluft 87 [Farm]: SE 2717Ba [= $\left.27^{\circ} 00^{\prime}-27^{\circ} 15^{\prime} \mathrm{S}, 17^{\circ} 30^{\prime}-17^{\circ} 45^{\prime} \mathrm{E}\right]$
Waldau River 17 km W Okahandja: $21^{\circ} 57^{\prime} \mathrm{S} 16^{\circ} 45^{\prime} \mathrm{E}$
Walvis Bay, 11 km E: $22^{\circ} 59^{\prime} \mathrm{S} 14^{\circ} 37^{\prime} \mathrm{E}$
Walvis Bay, $9 \mathrm{~km} \mathrm{NE}: 22^{\circ} 52^{\prime} \mathrm{S} 14^{\circ} 33^{\prime} \mathrm{E}$
Wasservallei: $22^{\circ} 55^{\prime} \mathrm{S} 16^{\circ} 22^{\prime} \mathrm{E}$
Waterberg : $20.5^{\circ} \mathrm{S} 17.3^{\circ} \mathrm{E}\left[=20^{\circ} 30^{\prime} \mathrm{S} 17^{\circ} 18^{\prime} \mathrm{E}\right]$
Windhoek: $22^{\circ} 34^{\prime} \mathrm{S} 17^{\circ} 05^{\prime} \mathrm{E}$

South Africa

Cape of Good Hope Nature Reserve near Olifantbosbaai: $34^{\circ} 16^{\prime} \mathrm{S} 18^{\circ} 23^{\prime} \mathrm{E}$
Clifton Farm 18 km NW Grahamstown: $33^{\circ} 11^{\prime} \mathrm{S} 26^{\circ} 24^{\prime} \mathrm{E}$
Constantia, Cape Town: $34^{\circ} 02.6^{\prime} \mathrm{S} 18^{\circ} 25.8^{\prime} \mathrm{E}$
Dassiefontein Farm 14 road km E Kamieskroon: $30^{\circ} 09.3^{\prime} \mathrm{S} 17^{\circ} 59.6^{\prime} \mathrm{E}$
Dikbome Farm (on Merweville-Koup road): $32^{\circ} 53^{\prime} \mathrm{S} 21^{\circ} 22^{\prime} \mathrm{E}$
D'Nyala Nature Reserve: $23^{\circ} 45^{\prime}$ S $27^{\circ} 49^{\prime} \mathrm{E}$
Elandsheuwels Farm 40 km W Steytlerville: $33^{\circ} 16.5^{\prime} \mathrm{S} 23^{\circ} 55.2^{\prime} \mathrm{E}$

Matjiesfontein: $33^{\circ} 14^{\prime} \mathrm{S} 20^{\circ} 35^{\prime} \mathrm{E}$
Mogol Nature Reserve: $23^{\circ} 58^{\prime} \mathrm{S} 27^{\circ} 45^{\prime} \mathrm{E}$
Goodehoop Farm 16 km W Steytlerville: $33^{\circ} 14.7^{\prime} \mathrm{S} 24^{\circ} 17.3^{\prime} \mathrm{E}$
Hilton Farm 18 km WNW Grahamstown: $33^{\circ} 16^{\prime} \mathrm{S} 26^{\circ} 21^{\prime} \mathrm{E}$
Kalkgat in Knersflakte: $31^{\circ} 07^{\prime} 30^{\prime \prime} \mathrm{S} 18^{\circ} 55^{\prime} 30^{\prime \prime} \mathrm{E}$
Karoo National Park, Mountain View: $32^{\circ} 15^{\prime} \mathrm{S} 22^{\circ} 32^{\prime} \mathrm{E}$
Konstabel Farm 30 km WSW Matjiesfontein: $33^{\circ} 16^{\prime} \mathrm{S} 20^{\circ} 17^{\prime} \mathrm{E}$
Langjan Nature Reserve: $22^{\circ} 52^{\prime} \mathrm{S} 29^{\circ} 14^{\prime} \mathrm{E}$
Loskop Dam Nature Reserve: $25^{\circ} 25^{\prime} \mathrm{S} 29^{\circ} 20^{\prime} \mathrm{E}$
Modjadji Nature Reserve: $23^{\circ} 38^{\prime} \mathrm{S} 30^{\circ} 20^{\prime}$ E
Mogoto Nature Reserve near Zebediela: $24^{\circ} 15^{\prime} \mathrm{S} 29^{\circ} 13^{\prime} \mathrm{E}$
Nylsvley Nature Reserve: $24^{\circ} 39^{\prime} \mathrm{S} 28^{\circ} 42^{\prime} \mathrm{E}$
Pafuri in Kruger National Park: $22^{\circ} 26^{\prime} \mathrm{S} 31^{\circ} 12^{\prime} \mathrm{E}$
Pakhuis Pass: $32^{\circ} 08.1^{\prime} \mathrm{S} 18^{\circ} 59.7^{\prime} \mathrm{E}$
Paleisheuwel: $32^{\circ} 28^{\prime} \mathrm{S} 18^{\circ} 43^{\prime} \mathrm{E}$
Pretoria, Botanical Garden: $25^{\circ} 44^{\prime} \mathrm{S} 28^{\circ} 16^{\prime} \mathrm{E}$
Pretoriuskop in Kruger National Park: $25^{\circ} 09^{\prime} \mathrm{S} 31^{\circ} 16^{\prime} \mathrm{E}$
Riversdale, $24 \mathrm{~km} \mathrm{SE}: 34^{\circ} 11.3^{\prime} \mathrm{S} 21^{\circ} 26.9^{\prime} \mathrm{E}$
Robertson, 5 km W: $33^{\circ} 49^{\prime} \mathrm{S} 19^{\circ} 49^{\prime} \mathrm{E}$
Rustenburg Nature Reserve: $25^{\circ} 40^{\prime} \mathrm{S} 27^{\circ} 12^{\prime} \mathrm{E}$
Sevilla 40 km E Clanwilliam: $32^{\circ} 05.1^{\prime} \mathrm{S} 19^{\circ} 05.4^{\prime} \mathrm{E}$ (incorrectly recorded as W Clanwilliam on the specimen labels)
Skukuza in Kruger National Park: $24^{\circ} 59^{\prime}$ S $31^{\circ} 36^{\prime} \mathrm{E}$
Steytlerville, $2 \mathrm{~km} \mathrm{~N}: 33^{\circ} 20.0^{\prime} \mathrm{S} 24^{\circ} 22.0^{\prime} \mathrm{E}$
Steytlerville, $3 \mathrm{~km} \mathrm{~N}: 33^{\circ} 18.3^{\prime} \mathrm{S} 24^{\circ} 22.0^{\prime} \mathrm{E}$
Steytlerville, $6 \mathrm{~km} \mathrm{~N}: 33^{\circ} 16.8^{\prime} \mathrm{S} 24^{\circ} 22.9^{\prime} \mathrm{E}$
Swartrivier 7 km NW Prince Albert: $33^{\circ} 10^{\prime} \mathrm{S} 21^{\circ} 59^{\prime} \mathrm{E}$
Tierberg Farm 23 km NE Prince Albert: $33^{\circ} 10^{\prime} \mathrm{S} 22^{\circ} 15^{\prime} \mathrm{E}$
Tswaing: $25^{\circ} 24^{\prime} \mathrm{S} 28^{\circ} 06^{\prime} \mathrm{E}$
Tussen Die Riviere Game Reserve: $30^{\circ} 30^{\prime}$ S $26^{\circ} 08^{\prime} \mathrm{E}$
Waaipoort Pass 19 km ENE Steytlerville: $33^{\circ} 14.8^{\prime} \mathrm{S} 24^{\circ} 19.8^{\prime} \mathrm{E}$
Willowmore, 9 km E: $33^{\circ} 15^{\prime} \mathrm{S} 23^{\circ} 34^{\prime} \mathrm{E}$
Willowmore, 43 km NE at Plessierivier: $33^{\circ} 08.3^{\prime} \mathrm{S} 23^{\circ} 50.4^{\prime} \mathrm{E}$
Willowmore, 37 km NW in Grootrivierberg Range: $33^{\circ} 11.5^{\prime} \mathrm{S} 24^{\circ} 09.5^{\prime} \mathrm{E}$
Willowmore, 11 km SW: $33^{\circ} 22.3^{\prime} \mathrm{S} 23^{\circ} 24.7^{\prime} \mathrm{E}$
Wolwekraal Farm 28 km S Steytlerville: $33^{\circ} 32.8^{\prime} \mathrm{S} 24^{\circ} 21.3^{\prime} \mathrm{E}$
Wolwekraal Farm 30 km S Steytlerville: $33^{\circ} 33.9^{\prime} \mathrm{S} 24^{\circ} 20.9^{\prime} \mathrm{E}$
Worcester, $24 \mathrm{~km} \mathrm{~W}: 33^{\circ} 40.2^{\prime} \mathrm{S} 19^{\circ} 14.3^{\prime} \mathrm{E}$
Ysterfontein Farm 11 km W Clanwilliam: $32^{\circ} 04.8^{\prime} \mathrm{S} 18^{\circ} 40.7^{\prime} \mathrm{E}$ (named Willie Nel Farm on the specimen labels and incorrectly recorded as $32^{\circ} 10.8^{\prime} \mathrm{S} 18^{\circ} 53.5^{\prime} \mathrm{E}$)

TAnzania

Bahari Beach 20 km N Dar es Salaam: $6^{\circ} 38.9^{\prime} \mathrm{S} 39^{\circ} 12.3^{\prime} \mathrm{E}$
Chalinze, 17 km E: $6^{\circ} 39.2^{\prime} \mathrm{S} 38^{\circ} 30.2^{\prime} \mathrm{E}$
Dodoma, 74 km E: $6^{\circ} 05.0^{\prime} \mathrm{S} 36^{\circ} 24.4^{\prime} \mathrm{E}$
Iringa: $7^{\circ} 46.0^{\prime} \mathrm{S} 35^{\circ} 40.9^{\prime} \mathrm{E}$
Iringa, 75 km ENE: $7^{\circ} 38.2^{\prime} \mathrm{S} 36^{\circ} 15.7^{\prime} \mathrm{E}$
Iringa, 12 km NNE: $7^{\circ} 41.7^{\prime} \mathrm{S} 35^{\circ} 44.3^{\prime} \mathrm{E}$
Iringa, $18 \mathrm{~km} \mathrm{~W}: 7^{\circ} 53.8^{\prime} \mathrm{S} 35^{\circ} 35.7^{\prime} \mathrm{E}$
Itigi: $5^{\circ} 42^{\prime} \mathrm{S} 34^{\circ} 29^{\prime} \mathrm{E}$
Kisiwani, 27 km SE Same: $4^{\circ} 07.7^{\prime} \mathrm{S} 37^{\circ} 56.6^{\prime} \mathrm{E}$
Korogwe, 73 km NW: $4^{\circ} 40.8^{\prime} \mathrm{S} 38^{\circ} 06.4^{\prime} \mathrm{E}$
Korogwe, 84 km NW: $4^{\circ} 37.5^{\prime} \mathrm{S} 38^{\circ} 01.8^{\prime} \mathrm{E}$

Korogwe, 11 km SW: $5^{\circ} 14.2^{\prime} \mathrm{S} 38^{\circ} 24.7^{\prime} \mathrm{E}$
Korogwe, 33 km SW: $5^{\circ} 20.2^{\prime} \mathrm{S} 38^{\circ} 15.8^{\prime} \mathrm{E}$
Mabokweni, 10 km WNW: $4^{\circ} 59.6^{\prime} \mathrm{S} 38^{\circ} 59.0^{\prime} \mathrm{E}$
Mikumi: $7^{\circ} 24.2^{\prime} \mathrm{S} 36^{\circ} 58.7^{\prime} \mathrm{E}$
Mikumi, $3 \mathrm{~km} \mathrm{~S}: 7^{\circ} 25.6^{\prime} \mathrm{S} 36^{\circ} 59.1^{\prime} \mathrm{E}$
Mkomazi, 2 km NE: $4^{\circ} 37.8^{\prime} \mathrm{S} 38^{\circ} 05.5^{\prime} \mathrm{E}$
Mkomazi Game Reserve, Dindera Dam area: $3^{\circ} 55^{\prime} \mathrm{S} 37^{\circ} 49^{\prime} \mathrm{E}$
Mkomazi Game Reserve, Ibaya: $3^{\circ} 58^{\prime} \mathrm{S} 37^{\circ} 48^{\prime} \mathrm{E}$
Mkomazi Game Reserve, Kikolo Plot: $4^{\circ} 07^{\prime} \mathrm{S} 38^{\circ} 02^{\prime} \mathrm{E}$
Mombo: $4^{\circ} 52.5^{\prime} \mathrm{S} 38^{\circ} 16.5^{\prime} \mathrm{E}$
Morogoro, 43 km E: $6^{\circ} 39.1^{\prime} \mathrm{S} 38^{\circ} 01.5^{\prime} \mathrm{E}$
Morogoro, 60 km ENE: $6^{\circ} 38.1^{\prime} \mathrm{S} 38^{\circ} 07.8^{\prime} \mathrm{E}$
Morogoro, 11 km W: $6^{\circ} 52.5^{\prime} \mathrm{S} 37^{\circ} 35.7^{\prime} \mathrm{E}$
Morogoro, 48 km W: $6^{\circ} 56.9^{\prime} \mathrm{S} 37^{\circ} 20.2^{\prime} \mathrm{E}$
Morogoro, $50 \mathrm{~km} \mathrm{NW}: 6^{\circ} 24.1^{\prime} \mathrm{S} 37^{\circ} 24.8^{\prime} \mathrm{E}$
Morogoro, 60 road km SW: $7^{\circ} 01.4^{\prime} \mathrm{S} 37^{\circ} 15.7^{\prime} \mathrm{E}$
Morogoro, 62 road km SW: $7^{\circ} 02.5^{\prime} \mathrm{S} 37^{\circ} 15.3^{\prime} \mathrm{E}$
Morogoro, ca 100 km NW: $6^{\circ} 08.3^{\prime} \mathrm{S} 36^{\circ} 56.7^{\prime} \mathrm{E}$
Pangani River Camp 86 km NW Korogwe: $4^{\circ} 37.3^{\prime} \mathrm{S} 38^{\circ} 00.7^{\prime} \mathrm{E}$
Pugu Forest near Kisarawe: $6^{\circ} 54.0^{\prime} 39^{\circ} 05.6^{\prime} \mathrm{E}$
Ruaha River bank 7 km S Mikumi: $7^{\circ} 27.4^{\prime} \mathrm{S} 37^{\circ} 00.5^{\prime} \mathrm{E}$
Same, 12 km NNE: $3^{\circ} 56.8^{\prime} \mathrm{S} 37^{\circ} 40.2^{\prime} \mathrm{E}$
Same, 24 km NNE: $3^{\circ} 52.2^{\prime} \mathrm{S} 37^{\circ} 38.7^{\prime} \mathrm{E}$
Same, 61 km NNE: $3^{\circ} 35.6^{\prime} \mathrm{S} 37^{\circ} 32.8^{\prime} \mathrm{E}$
Same, $18 \mathrm{~km} \mathrm{~S}: 4^{\circ} 13.0^{\prime} \mathrm{S} 37^{\circ} 46.0^{\prime} \mathrm{E}$
Same, 19 km SE: $4^{\circ} 05.3^{\prime} \mathrm{S} 37^{\circ} 53.6^{\prime} \mathrm{E}$
Udzungwa National Park 132 km E Iringa: $7^{\circ} 31.8^{\prime} \mathrm{S} 36^{\circ} 39.7^{\prime} \mathrm{E}$
University of Dar as Salaam campus: $6^{\circ} 47.2^{\prime} \mathrm{S} 39^{\circ} 12.2^{\prime} \mathrm{E}$

Zambia

Chibombo 97 road km N Lusaka: $14^{\circ} 39^{\prime} \mathrm{S} 28^{\circ} 10^{\prime} \mathrm{E}$
Chilanga 15 km S Lusaka: $15^{\circ} 34^{\prime} \mathrm{S} 28^{\circ} 16^{\prime} \mathrm{E}$
Chipata, 50 km NW: $13^{\circ} 25^{\prime} \mathrm{S} 32^{\circ} 19^{\prime} \mathrm{E}$
Chipata, 60 km SW: $13^{\circ} 57^{\prime} \mathrm{S} 32^{\circ} 12^{\prime} \mathrm{E}$
Choma, 5 km E: $16^{\circ} 47^{\prime} \mathrm{S} 27^{\circ} 02^{\prime} \mathrm{E}$
Choma, 56 road km NE: $16^{\circ} 37^{\prime} \mathrm{S} 27^{\circ} 20^{\prime} \mathrm{E}$
Kacholola, $38 \mathrm{~km} \mathrm{W:} 14^{\circ} 54^{\prime} \mathrm{S} 30^{\circ} 22^{\prime} \mathrm{E}$
Kafue, $8 \mathrm{~km} \mathrm{~S}: 15^{\circ} 52^{\prime} \mathrm{S} 28^{\circ} 13^{\prime} \mathrm{E}$
Kalomo, $22 \mathrm{~km} \mathrm{E}: 17^{\circ} 01^{\prime} \mathrm{S} 26^{\circ} 41^{\prime} \mathrm{E}$
Kalomo, 7 km SW: $17^{\circ} 02^{\prime} \mathrm{S} 26^{\circ} 26^{\prime} \mathrm{E}$
Kalomo, 9 km SW: $17^{\circ} 04^{\prime} \mathrm{S} 26^{\circ} 25^{\prime} \mathrm{E}$
Kapiri Mposhi, $14 \mathrm{~km} \mathrm{E}: 13^{\circ} 55^{\prime} \mathrm{S} 28^{\circ} 45^{\prime} \mathrm{E}$
Kapiri Mposhi, $25 \mathrm{~km} \mathrm{SSW}: 14^{\circ} 10^{\prime} \mathrm{S} 28^{\circ} 36^{\prime} \mathrm{E}$
Kasama, $60 \mathrm{~km} \mathrm{~N}: 9^{\circ} 42^{\prime} \mathrm{S} 31^{\circ} 10^{\prime} \mathrm{S}$
Kasama, $76 \mathrm{~km} \mathrm{~S}: 10^{\circ} 52^{\prime} \mathrm{S} 31^{\circ} 06^{\prime} \mathrm{E}$
Katete, 11 km SE: $14^{\circ} 09^{\prime} \mathrm{S} 32^{\circ} 04^{\prime} \mathrm{E}$
Katombora: $17^{\circ} 50^{\prime} \mathrm{S} 25^{\circ} 26^{\prime} \mathrm{E}$
Luangwa, E side of bridge: $14^{\circ} 59^{\prime} \mathrm{S} 30^{\circ} 13^{\prime} \mathrm{E}$
Lusaka, ca 20 km E International Airport: $15^{\circ} 21^{\prime} \mathrm{S} 28^{\circ}{ }^{\circ} 9^{\prime} \mathrm{E}$
Lusaka, 25 km E: $15^{\circ} 21^{\prime} \mathrm{S} 28^{\circ} 30^{\prime} \mathrm{E}$
Lusaka, 65 km WNW: $15^{\circ} 10^{\prime} \mathrm{S} 27^{\circ} 25^{\prime} \mathrm{E}$
Lusaka International Airport: $15^{\circ} 19^{\prime} \mathrm{S} 28^{\circ} 27^{\prime} \mathrm{E}$
Mbala, $16 \mathrm{~km} \mathrm{~W}: 8^{\circ} 53^{\prime} \mathrm{S} 31^{\circ} 16^{\prime} \mathrm{E}$

Mfuwe, 6-18 km SW: $13^{\circ} 07^{\prime} \mathrm{S} 31^{\circ} 45^{\prime} \mathrm{E}$
Monze: $16^{\circ} 16^{\prime} \mathrm{S} 27^{\circ} 28^{\prime} \mathrm{E}$
Mpika, 78 km SSW: $12^{\circ} 25^{\prime} \mathrm{S} 31^{\circ} 04^{\prime} \mathrm{E}$
Mpulungu, near: $8^{\circ} 48^{\prime} \mathrm{S} 31^{\circ} 05^{\prime} \mathrm{E}$
Mumbwa, $2 \mathrm{~km} \mathrm{E}: 15^{\circ} 01^{\prime} \mathrm{S} 27^{\circ} 04^{\prime} \mathrm{E}$
Mumbwa, $6 \mathrm{~km} \mathrm{~W}: 15^{\circ} 02^{\prime} \mathrm{S} 27^{\circ} 00^{\prime} \mathrm{E}$
Pemba, 18 km NE: $16^{\circ} 30^{\prime} \mathrm{S} 27^{\circ} 24^{\prime} \mathrm{E}$
Petauke, 27 km E: $14^{\circ} 18^{\prime} \mathrm{S} 31^{\circ} 34^{\prime} \mathrm{E}$
Petauke, 31 km E: $14^{\circ} 18^{\prime} \mathrm{S} 31^{\circ} 36^{\prime} \mathrm{E}$
Petauke, 32 km E: $14^{\circ} 17^{\prime} \mathrm{S} 31^{\circ} 37^{\prime} \mathrm{E}$
Petauke, 42 km WSW: $14^{\circ} 30^{\prime} \mathrm{S} 31^{\circ} 02^{\prime} \mathrm{E}$
Petauke, ca 210 road km WSW: $15^{\circ} 04^{\prime} \mathrm{S} 29^{\circ} 44^{\prime} \mathrm{E}$
Rufunsa, 50 km W: $15^{\circ} 12^{\prime} \mathrm{S} 29^{\circ} 13^{\prime} \mathrm{E}$
Serenje, 30 road km NE: $13^{\circ} 04^{\prime} \mathrm{S} 30^{\circ} 25^{\prime} \mathrm{E}$
Serenje, 54 road km NE: $13^{\circ} 05^{\prime} \mathrm{S} 30^{\circ} 35^{\prime} \mathrm{E}$
Serenje, 65 road km NE: $13^{\circ} 01^{\prime} \mathrm{S} 30^{\circ} 40^{\prime} \mathrm{E}$
Serenje, 82 road km NE: $12^{\circ} 55^{\prime} \mathrm{S} 30^{\circ} 45^{\prime} \mathrm{E}$
Wildlife Camp (at Luangwa River 7 km SW Mfuwe): $13^{\circ} 06^{\prime} \mathrm{S} 31^{\circ} 45^{\prime} \mathrm{E}$

Zimbabwe

Bembezi Lodge: $19^{\circ} 39^{\prime} \mathrm{S} 28^{\circ} 42^{\prime} \mathrm{E}$
Bulawayo airport: $20^{\circ} 00^{\prime} \mathrm{S} 28^{\circ} 38^{\prime} \mathrm{E}$
Bulawayo: Hillside: $20^{\circ} 12^{\prime} \mathrm{S} 28^{\circ} 37^{\prime} \mathrm{E}$
Bulawayo: Umguza River: $20^{\circ} 05^{\prime} \mathrm{S} 28^{\circ} 37^{\prime} \mathrm{E}$
Charara 20 km ESE Kariba: $16^{\circ} 33^{\prime} \mathrm{S} 28^{\circ} 58^{\prime} \mathrm{E}$
Dawn Mine 45 km NE Bulawayo: $19^{\circ} 48^{\prime} \mathrm{S} 28^{\circ} 45^{\prime} \mathrm{E}$
Harare: Mukuvisi Game Park: $17^{\circ} 50^{\prime} \mathrm{S} 31^{\circ} 05^{\prime} \mathrm{E}$
Kami (= Khami) Ruins: $20^{\circ} 09^{\prime} \mathrm{S} 28^{\circ} 26^{\prime} \mathrm{E}$
Kariba: $16^{\circ} 32^{\prime} \mathrm{S} 28^{\circ} 49^{\prime} \mathrm{E}$
Leighwoods 52 km SW Bulawayo: $20^{\circ} 26^{\prime} \mathrm{S} 28^{\circ} 15^{\prime} \mathrm{E}$
Lion and Cheetah Park 24 km W Harare: $17^{\circ} 50^{\prime} \mathrm{S} 30^{\circ} 49^{\prime} \mathrm{E}$
Matobo (= Matopos) National Park: $20^{\circ} 35^{\prime} \mathrm{S} 28^{\circ} 40^{\prime} \mathrm{E}$
Mbizi Game Reserve (= Rocky Farm) 20 km SE Harare: $17^{\circ} 58^{\prime} \mathrm{S} 31^{\circ} 08^{\prime} \mathrm{E}$
Nyamandhlovu, 11 km NE: $19^{\circ} 48^{\prime} \mathrm{S} 28^{\circ} 16^{\prime} \mathrm{E}$
Nyamandhlovu, 7 km WSW: Kami River: $19^{\circ} 53^{\prime} \mathrm{S} 28^{\circ} 13^{\prime} \mathrm{E}$
Redbank at Kami River: $20^{\circ} 00^{\prime} \mathrm{S} 28^{\circ} 22^{\prime} \mathrm{E}$
Sawmills at Umguza River: $19^{\circ} 35^{\prime} \mathrm{S} 28^{\circ} 02^{\prime} \mathrm{E}$
Trelawney Research Station WNW Harare: $17^{\circ} 32^{\prime} \mathrm{S} 30^{\circ} 28^{\prime} \mathrm{E}$
Victoria Falls: $17^{\circ} 56^{\prime} \mathrm{S} 25^{\circ} 50^{\prime} \mathrm{E}$

GENUS TACHYSPHEX

Tachysphex Kohl, 1883a:166. Type species: Tachysphex filicornis Kohl, 1883 [= Tachytes fugax Radoszkowski, 1877], designated by Bingham, 1897:192.
Schistosphex Arnold, 1922:137. Type species: Schistosphex breijeri Arnold, 1922, by original designation and monotypy [= Tachysphex marshalli R. Turner, 1917].
Atelosphex Arnold, 1923a:177. Type species: Atelosphex miscophoides Arnold, 1923 [= Tachysphex brevipennis Mercet, 1906], by original designation and monotypy.

Generic diagnosis.- Tachysphex, a member of Larrini as defined by Bohart and Menke (1976), has the hindocellus modified to a flat, elongate scar; a part of each scar is bordered by a narrow, translucent band, the only remnant of a lens (the band is broadly interrupted on the scar's outer, posterolateral, or lateral side, depending on its orientation). Within Larrini, Tachysphex belongs to the subtribe Gastrosericina (= Tachytina), in which the frons is evenly convex around the midocellus and lacks well-defined paraorbital swellings, and the anterior branch of lens scar is markedly longer than the posterior branch or (in Parapiagetia) the branches form a circle (scar length markedly more than midocellar diameter except slightly so in Parapiagetia). In Larrina, the frons is concave around the midocellus and has a paraorbital swelling, and the hindocellar scar consists of two parallel branches of nearly identical length and parallel to each other (scar length slightly more than midocellar diameter).

Within Gastrosericina, Tachysphex has no single character that would separate it from the other genera. Rather, it can be distinguished by the lack of their specializations, which are:

1. Gastrosericus: two rather than three submarginal cells.
2. Holotachysphex: clypeal lobe pointed (sharply or roundly), not angulate laterally but flanked by small tooth or oblique carina adjacent to free margin; foretarsal rake absent in both sexes (outer margin of forebasitarsus without preapical spines); hindtibial dorsum with one or two inconspicuous, nearly appressed bristles instead of spines; tergum II with lateral line; pygidial plate absent in female; male hindtarsomeres II-IV almost parallel-sided except basally; male sterna II-III or II-IV with large patches of velvety pubescence; and nest established in hollow twigs.
3. Kohliella: frons with a V-shaped swelling, mandible with subbasal, oblong tubercle; third submarginal cell petiolate posteriorly; lateral carina of tergum I evanescent behind spiracle and absent posteriorly; female claws with subbasal tooth.
4. Larropsis (including Ancistromma): frons with ill-defined paraorbital swelling; propodeal dorsum glabrous (partly glabrous in several Tachysphex).
5. Parapiagetia: gastro-propodeal articulation with a pair of sclerites ventrally.
6. Prosopigastra: tergum I with short, oblique carina that extends from each anterolateral corner; female tergum VI flattened, margins of tergum and pygidial plate forming an angle of about 10-20 (forming an angle of about 30-40 in Tachysphex).
7. Tachytella: frons with median, slightly raised, flat area that is delimited by lateral sulcus (sulci subparallel, close to orbit); pronotal collar rounded and reaching scutum level; submarginal cell III essentially rhomboidal (anterior and posterior margins equal in length or nearly so); hindwing jugal lobe short, ending well before crossvein cu-a (the jugal and anal excisions thus widely separated).
8. Tachytes: hindocellar scar elongate, longer than distance that separates it from midocellus; female hindfemur in most species with apical lobe.

Relationships and species groups.- In the past, attempts were made to arrange the species according to their putative relationships by assigning them to species groups. The groups were first recognized by de Beaumont $(1936,1947)$ in his revisions of French and Egyptian species. Pulawski ($1971,1974,1977,1988$) rejected some unreliable characters used in group recognition, added previously unnoticed ones, combined some of de Beaumont's groups, established new groups, and expanded the system to include all Palearctic and also the Australian and New World species.

Although based solely on traditional phenetic criteria that were never clearly defined (overall similarity, degree of difference), the group system was useful for comparative and descriptive purposes. Some groups appear to be well supported monophyletic lineages (the albocinctus, brevipennis, erythropus, geniculatus, julliani, terminatus, and undatus groups). Krombein and Pulawski (1995), however, abandoned the use of species groups because of problems with their delimitation. Also, the system has the following fatal flaws:

1. The largest group, the pompiliformis group, has no supporting synapomorphy and is a paraphyletic assemblage of species that could not have been placed elsewhere.
2. The second and the third largest groups, the brullii and the panzeri groups, break down when the world fauna is considered (see below for details).
3. Five of the groups were monotypic, stressing the unusual morphological characters of the included species, but providing no information about relationships among species.
4. The geniculatus group most likely developed from a member of the panzeri group. Recognition of the geniculatus group, therefore, made the panzeri group paraphyletic.
5. The two species of the plicosus group, mediterraneus and plicosus, share no unique synapomorphy, although each of them has conspicuous unique structures. The only feature that grouped them together is the Oecanthus prey, believed to be unique within the genus. The group, therefore, is likely to be another assemblage of unrelated species.

The following 16 groups have been recognized:
(1) albocinctus group of de Beaumont, 1940 (xeric areas of the world except North and Central America). Propodeal posterior face flattened mesodorsally (intersecting dorsum at about right angle), forebasitarsus expanded apicolaterally over the rake base (Figs. 15c, d), except in occasional males, female tarsomeres III and IV simple, male sterna IV-VI largely or totally glabrous, hindwing jugal lobe broadened, although less so in aborigenus than in pilosulus or albocinctus (as in Fig. 102a), and penis valve with ventral, preapical projection (Figs. 14f, g) except in remotus and tenuisculptus. The expanded forebasitarsus is shared with aethiopicus and its close relatives and with the female of the Australian pugnator R. Turner. In aethiopicus, however, the propodeal posterior face has a narrow median sulcus and the gastral setae are setose in the male, and in the female of pugnator tarsomeres IV and V are conspicuously modified (apparently for roach collecting). The included species are: aborigenus Pulawski, 1977 (Australia), albocinctus (Lucas, 1849), brasilianus Pulawski, 1974 (Brazil), bruneiceps Arnold, 1923, indicus Pulawski, 1994 (India), laticauda Gussakovskij, 1933 (southwest Asia), maculipennis Pulawski, 1977 (Australia), multifasciatus Pulawski, 1977 (Australia north of the Tropic of Capricorn), pilosulus R. Turner, 1908 (Australia), remotus Pulawski, 1974 (northern Colombia, northern Venezuela), and tenuisculptus Pulawski, 1977 (Australia). Prey consist of mantids, mostly juvenile ones. Behavioral data are available for albocinctus (summarized below under this species), indicus (Krombein and Pulawski, 1994), multifasciatus (Evans, Matthews, and Pulawski, 1976), and pilosulus (Evans, Matthews, and Pulawski, 1976; Alcock, 1980).
(2) brevipennis group of de Beaumont, 1940 (South Africa to Mediterranean Basin, India, Sri Lanka, and Transcaspia), originally named the imperfectus group but renamed by Pulawski, 1971, and corresponding to the genus Atelosphex Arnold (1923). Characterized by the total reduction of the episternal suture, a unique synapomorphy within the tribe Larrini. Included species: brevipennis, carli de Beaumont (Spain, northern Morocco), and sympleuron Pulawski (India, Sri Lanka). Prey consists of acridids (Pulawski, 1974b).
(3) brullii group of de Beaumont, 1936 (cosmopolitan), originally named the spoliatus group (spoliatus Giraud is a junior synonym of brullii F. Smith); includes the obscuripennis group of de Beaumont, 1936 (originally named the lativalvis group but lativalvis Thomson is a junior synonym
of obscuripennis Schenck) and the graecus group of de Beaumont, 1947. The group is defined by various apomorphies of the apical female tarsomeres, such as apicoventral margin convex or produced into a lobe (Pulawski 1971, 1988), and tarsomere IV as long as wide or wider. No group character is known for the males, which cannot be separated from those of the pompiliformis group. For practical purposes Pulawski $(1977: 219,1988: 168)$ recognized two subgroups, in spite of intermediate species found in Australia. The brullii subgroup was characterized essentially by elongate apical tarsomeres and claws, and the obscuripennis subgroup by tarsomere IV wider than long, tarsomeres V angulate basoventrally, and the foretibia without spines on the outer side. However, the South American acutemarginatus Strand was assigned to the brullii group following different criteria (Pulawski, 1974). In that species, the apicoventral margin of the apical tarsomere is straight, but the body sculpture is fine and the propodeal dorsum is covered with erect setae, slightly inclined posterad, two characters found in all Neotropical members of the brullii group. Similar confusing cases are found in Sri Lankan species. Members of this group provide their nests with tettigoniids (brullii subgroup) and blattids (obscuripennis subgroup).
(4) erythropus group of de Beaumont, 1936 (South Africa to Mediterranean Basin, India, Sri Lanka, and Transcaspia), originally named fluctuatus group and renamed by Pulawski (1971). Most members of this group are recognized by the combination of: hindwing vein cu-a oblique (Fig. 102a), apical depression of sternum I bisected by a longitudinal, obtuse carina (Fig. 132a), and in the male, presence of conspicuous fimbriae (e.g., Fig. 101) on the apical depression of at least sternum III (the fimbriae are either erect or appressed). Vein cu-a, however, is vertical or nearly so in many South African costae, some schoenlandi, and some Sri Lankan sericeus. Included species: costae, detritus, erythropus, flavofimbriatus, grandissimus, osiris, schoenlandi, sericeus, and sordidus. Prey, known only for costae and schoenlandi, consists of mantids, mostly juveniles.
(5) euxinus group of Pulawski, 1971 (Bulgaria to Lebanon). Monotypic. Characterized by the conspicuously fimbriate male sterna (as in the erythropus group but with unspecialized hindwing venation and simple sternum I). No group character is known for the female. Prey unknown.
(6) geniculatus group of de Beaumont, 1940 (North Africa, Middle East, Kenya, Tanzania), originally named the luxuriosus group and renamed by Pulawski, 1971. With the same characteristics as the panzeri group (see below), but postocellar area unusually broad (width more than twice length) and male forefemur not emarginate. Included species: geniculatus, horus, inextricabilis, luxuriosus, and niloticus. Prey unknown.
(7) isis group of de Beaumont, 1947 (Libya to Syria). Monotypic. Hindwing vein cu-a as in the erythropus group, but sternum I unspecialized and male sterna largely glabrous. Prey unknown.
(8) julliani group of de Beaumont, 1936 (South Africa to Mediterranean Basin, India, Southeast Asia and Mongolia, northern South America, western North America). In the female, the pygidial plate is either unusually broad or has a distinctive sculpture, and the preapical bristles of gastral segments IV and V, in most species, are conspicuously thickened. Male sterna are either glabrous or (some species) sparsely pruinose. The propodeal dorsum intersecting posterior face at about right angle is a subsidiary recognition feature of the group. The broad pygidial plate of the female and the asetose male sterna (at least mesally) are shared with the albocinctus group, in which, however, the forebasitarsus is expanded apicolaterally. Included species: argentatus, argenticeps, crocodilus, curvipes, deserticola, desertorum, dignus, incanus, julliani, mauretanus, vestitus, vulneratus, and the extralimital cockerellae Rohwer, 1914 (western USA to Colombia and Venezuela), coquilletti Rohwer, 1911 (western USA, Mexico), rugicauda Pulawski, 1994 (Tamil Nadu State of India), and testaceipes Bingham, 1897 (Burma, Laos, Thailand). Mantids are used as prey (known only for cockerellae, coquilletti, and julliani).
(9) mendozanus group of Pulawski, 1974 (Argentina). Monotypic. Gaster conspicuously
punctate, without pygidial plate in the female. A previously unnoticed recognition character is the shape of the female scutum whose lateral margin is not raised into a flange. Prey unknown.
(10) nepharius group of Pulawski, 1977 (Australia). Monotypic. The only species of the group, known from a single female, is unique in having a nonemarginate (slightly stepped) posterior mandibular margin, clypeus not protruding mesally into a lobe, sternum II with erect setae basally, and ill-defined pygidial plate. Prey unknown.
(11) panzeri group of de Beaumont, 1936 (South Africa to central Europe, eastwards to India, Sri Lanka, China, and Mongolia; unpublished records include Thailand). Characterized by a convex labrum that protrudes beyond the clypeal margin, galea longer than wide in profile, a narrow postocellar area (width less than length), and a basally emarginate male forefemur. Unlike the undatus group, which has a similar labrum, the postocellar area is inconspicuously punctate in the panzeri group. Also, the setae are appressed on the postocellar area in most species (erect in fulgidus, hadronyx, and tenuicornis), while erect in the undatus group. Prey: acridids. The group is easily recognized in the Palearctic and Oriental regions, but convergence and intergradation blur its limits elsewhere. Clearly, the convex labrum is an independent developments in the Neotropical remotus (a member of the albocinctus group) and the Australian pugnator Turner (brullii group). Several perplexing cases are found among the Afrotropical species. In marshalli and quadricolor, for example, the labrum is convex in most specimens, but flat in the smallest males. In asinus, the labrum is convex, but the specialized female tarsi suggest that the species is not a member of the panzeri group; the male, however, is strikingly similar to rhodesianus, a typical representative of the group. In fulgidus, the labrum is convex, but the propodeal sculpture and female clypeus are unlike any member of the panzeri group. The labrum is slightly convex in waltoni, which is not likely to be a member of the panzeri group, and only slightly more convex in claripes and diabolicus, which appear to be members of the group. Included species: aemulus, atlanteus, brevipecten, brinckerae, buyssoni, caliban, cheops, chephren, dissimulatus, excavatus, gracilicornis, gracilitarsis, incertus, lacertosus, liviformis, longipalpis micans, mocsaryi, mycerimus, notogoniaeformis, palopterus, panzeri, ptah, pulcher, ramses, rhodesianus, sycorax, ziziphi, and the following extralimtal species: conclusus Nurse (India), diadelus Pulawski (Sri Lanka), fuscispina Pulawski (Turkmenistan), liriformis Pulawski (Middle East to Tajikistan), lucillus Pulawski (Turkmenistan), noar Pulawski (Sri Lanka), obscurus Pulawski (Canary Islands), persa Gussakovskij (Egypt to Central Asia), pilosellus Pulawski (Kazakshtan, Turkmenistan), pseudopanzeri de Beaumont (SW Europe, NW Africa), sericans Gussakovskij (North Africa to Central Asia), svetlanae Pulawski (Central Asia), tessellatus Dahlbom (Greece, Turkey), and rubicundus Pulawski (Central Asia). The labrum is less convex in the following species which may or may not be related to the panzeri group: ashmeadii W. Fox (North America), claripes, diabolicus, lacertosus, marshalli, psilonotus, punctatus, quadricolor, and ziziphi.
(12) plicosus group of de Beaumont, 1936 (Africa to Mediterranean Basin, India, Sri Lanka, and Mongolia), originally named mediterraneus group but renamed by Pulawski, 1971. The two included species, mediterraneus and plicosus, share no synapomorphy, although each of them has various unique structures. The only feature that grouped them together is the prey, tree cricket of the genus Oecanthus, believed to be unique within the genus (but sometimes used by the Nearctic mundus W. Fox, a member of the brullii group).
(13) pompiliformis group of de Beaumont, 1936 (cosmopolitan), originally called the pectinipes group (pectinipes was a misdetermination of pompiliformis); includes the nitidus group of de Beaumont, 1940, and the speciosissimus group of de Beaumont, 1940. A heterogeneous assemblage of unassigned species. Most species prey upon acridids, but fulvitarsis and two Nearctic species, semirufus (Cresson) and tipai Pulawski, collect tettigoniids.
(14) schmiedeknechti group of de Beaumont, 1940 (Africa to Transcaspia). Described as monotypic, but prosopigastroides is clearly related. Characterized by a coarse mesothoracic sculpture, a triangularly prominent supraantennal swelling, flattened female flagellomeres IV-X, and a unique shape of the volsella and penis valve (Figs. 342h, 291). Prey: mantids.
(15) terminatus group of Pulawski, 1974 (New World). Defined by the presence of a callosity behind each postocellar scar and, in addition, a flat labrum, unmodified tarsomeres, and setae of the propodeal dorsum oriented toward the thorax. Included species: alpestris Rohwer, antillarum Pulawski, apicalis W. Fox, clarconis Viereck, galapagensis F. Williams, linsleyi Bohart, peruanus Pulawski, ruficaudis (Taschenberg), similis Rohwer, terminatus F. Smith. Prey: acridids.
(16) undatus group of Pulawski, 1974 (South America). As in the panzeri group, the labrum is convex and conspicuously projecting beyond the clypeal margin. Unlike that group, the postocellar area has well-defined punctures in the undatus group and is covered with erect setae. Included species: advenus Pulawski, apoctenus Pulawski, breviceps Pulawski, conceptus Pulawski, undatus F. Smith. Prey: acridids.

Two additional, apparently monophyletic groups can be recognized among sub-Saharan species: (17) asinus group. Characterized by shortened female middle tarsomeres: the length of midtarsomere II is less than twice apical width; also, the length of midtarsomere III is about equal to its apical width (except $1.2 \times$ apical width in ulonyovu and $1.3 \times$ apical width in ovambo and spectrum). In all other Tachysphex, the midtarsomere II is at least twice as long as wide, and midtarsomere III at least $1.3 \times$ as long as wide (length variable in rhacodes). Prey, known only for asinus, gryllivorus, and oberon, consists of nymphal gryllids. Included species: asinus, bipustulosus, brachypus, carinatus, eurystoma, mashona, oberon, onager, ovambo, scaber, spectrum, ulonyovu, and the Sri Lankan gryllivorus Pulawski; (18) pentheri group. As in the panzeri and geniculatus groups, the labrum is markedly convex and protruding beyond the clypeal free margin. Unlike these groups, the upper metapleural pit is oblong (rather than rounded), the setae of the propodeal dorsum diverge obliquely anterad from the midline, and (except in usakos) male sterna V and VI have each a subbasal fringe of dense, as if agglutinated setae, although the fringes are visible only when the sterna are fully extended. Prey, known only for pentheri, consists of immature acridids. Included species: aethiopicus, excisus, frigidus, melanius, miniatulus, montivagus, pentheri, rotundus, ruber, thysanomerus, and usakos.

Some of the Afrotropical species (e.g., fulgidus) do not fit any of the above groups.
Cladistic analysis. - Selection of characters for the analysis proved to be difficult, as many features excellent in recognition of individual species are too variable when the whole genus is considered (e.g., length of setae on the vertex, mesopleural sculpture, sculpture of the propodeal dorsum and side, male foretarsal rake, etc.). The following is the list of characters used (for data matrix, see Appendix II):
0. Labrum (surface): 0 . flat, 1 . moderately convex, 2 . markedly convex.

1. Labrum (free margin): 0 . entire, 1. emarginate.
2. Labrum (setae of the free margin): 0 . long, thin, 1. short, stout.
3. Galea (texture): 0 . sclerotized, 1. membranous.
4. Galea (length): 0 . no longer than wide in profile, 1 . longer than wide in profile.
5. Mandibular notch: 0 . present, 1. absent.
6. Mandibular notch (size): 0 . medium, 1. unusually small (as in hadronyx and tenuicornis).
7. Malar space: 0 . absent, 1. present.
8. Clypeus: 0 . variously shaped but not as in 1,1 . pointed and flanked by small tooth or carina.
9. Antennal socket: 0 . rim of equal height, 1 . rim higher dorsally than ventrally (bipustulosus, mashona, pusulosus).
10. Supraantennal swelling (presence and sculpture): 0 . absent, 1 . present, glabrous, 2 . evanescent, fully setose (asinus, carinatus, onager, scaber, sexinus, spectrum, ulonyovu).
11. Supraantennal swelling (size): 0 . low (most Tachysphex), 1. enlarged.
12. Supraantennal swelling (shape): 0 . not triangularly prominent, 1 . triangularly prominent (prosopigastroides, schmiedeknechti).
13. Frons: 0 . evenly convex, 1 . with conspicuous protuberance.
14. Width of female vertex (minimum value): 0 . less than twice width, 1 . at least twice width.
15. Swelling behind postocellar scar: 0 : absent, 1. present in female, 2 . present in both sexes.
16. Scutum : 0 . punctate, 1 . reticulate.
17. Scutum: 0 . with no longitudinal ridges, 1 . ridges present.
18. Episternal sulcus: 0 . present, 1 . absent.
19. Metapleuron (flange): 0 . narrow, 1 . broadened.
20. Metapleuron (oblique carina beneath flange's anterior end): 0 . absent, 1. present.
21. Metapleuron (prespiracular prominence): 0 . absent, 1 . present.
22. Upper metapleural pit: 0 . round, 1 . oblong.
23. Propodeum: 0 . with no carina between side and posterior surface, 1 . with carina.
24. Propodeal dorsum: 0 . setose throughout, 1. glabrous at least apicomesally.
25. Propodeal posterior surface (dorsal third): 0 . with median sulcus, 1 . varying from median sulcus to wide impression (costae), 2 . with wide impression.
26. Hindwing vein cu-a: 0 . vein vertical or anal end closer to wing base, 1. varying (aborigenus, asinus, buyssoni, costae, longipalpis), 2 . cubital end closer to wing base.
27. Hindcoxal dorsum: 0 : without tooth, 1 . with prominent tooth.
28. Hindtibial dorsum: 0 : spinose, 1 . with one or two inconspicuous bristles.
29. Hindtibial spur (rays): 0 . thin, dense, 1 . varying (thin to thick), 2 . thick, sparse.
30. Tergum I (sculpture): 0 . punctate throughout, 1 . impunctate apicomesally.
31. Tergum I (setae): 0 . all appressed, 1 . at least partly erect.
32. Tergum II (lateral lines): 0 . absent, 1. present.
33. Sternum I (longitudinal carina that bisects apical depression): 0 . absent, 1 . variable (present or absent), 2. present.
34. Female mandibular cleft: 0 . narrow, 1 . widely open.
35. Female flagellum (shape): 0 . cylindrical or nearly so, 1 . apical flagellomeres flattened.
36. Female flagellum (sensory areas): 0 . absent, 1. present.
37. Female clypeus (center of free margin): 0 . entire, 1. varying, 2. emarginate.
38. Female clypeal lobe (side of free margin): 0 . not incised, 1. varying, incised or not incised, 2 . with at least one incision.
39. Female scutum and scutellum: 0 . moderately convex, 1. flattened.
40. Female forefemoral venter: 0 . uniformly densely punctate or sparsely punctate basally, 1. impunctate or with large, sparse punctures.
41. Female foretibial outer surface (spines): 0 . absent, 1 . one or more spines present, 2 . one or more erect bristles present.
42. Female foretarsomere I: 0 . not expanded, 1. expanded apicolaterally.
43. Female foretarsal rake: 0 . present, 1 . absent.
44. Female foretarsomere IV: 0 . both lateral margins of equal length, 1 . outer margin shorter than inner margin.
45. Female midfemoral venter: 0 . evenly curved, 1. expanded distally except contrastingly narrow preapically.
46. Female midtarsomere II (length): 0 . more than twice apical width, 1. twice apical width, 2.less than twice apical width.
47. Female tarsomeres IV (proportions): 0 . longer than wide, 1 . as long as wide, 2 . wider than long.
48. Female tarsomeres IV (dorsoapical emargination): 0 . acutely angulate, 1 . roundly emarginate, 2. obtusely angulate.
49. Female tarsomeres IV (apicoventral margin): 0 . concave or straight, 1 . convex.
50. Female apical tarsomeres: 0 . not angulate basoventrally, 1 . angulate basoventrally.
51. Female apical tarsomeres (ventral spines): 0 . spines absent, 1 . spines present.
52. Female apical tarsomeres (apicoventral margin): 0. straight, concave, or convex, 1. produced mesally into a lobe.
53. Female apical tarsomeres (lateral margin): 0 . spines absent, 1. spines present.
54. Female claw (length): 0 . of medium length, 1 . claws elongate, at least twice length of arolium.
55. Female claws (symmetry): 0 . equal in each pair, 1 . outer claw shorter and thinner than inner claw (opposite on foretarsus).
56. Female tergum VI (transverse internal carina): 0 . carina absent, 1. carina present.
57. Female pygidial plate (lateral carina): 0 . well defined, 1. evanescent.
58. Female pygidial plate (punctures): 0 . sparse (averaging more than 1 diameter apart mesally), 1. dense (averaging 1 diameter apart or less, at least mesally).
59. Female pygidial plate (integument): 0. punctate or aciculate, 1. apical portion granulose, uniformly microsculptured, or ridged (contrasting with remaining integument), 2 all granulose.
60. Female pygidial plate (apex): 0 . narrow, 1 . broadly rounded.
61. Female sterna IV-VI: 0 . setae not thickened, 1. setae delimiting preapical depressions thickened.
62. Male flagellum: 0 . uniformly sculptured, 1 . with longitudinal sulcus.
63. Male mandible (trimmal carina): 0 . well defined, 1 . reduced distad of tooth.
64. Male clypeus (lobe corner): 0 . corner present, 1. corner absent.
65. Male clypeus (lip): 0 . lip arcuate, sinuate, or similar, 1. lip a fingerlike projection, reduced laterally.
66. Male forefemoral notch: 0 . absent, 1 . varying (present or absent), 2. present.
67. Male forefemoral notch (surface): 0 . not margined, 1 . margined on at least one side.
68. Male hindtarsomeres II-IV (lateral margins): 0 . diverging posterad, 1. parallel-sided (except basally), as in Holotachysphex holognathus.
69. Male apical tarsomeres (venter): 0 . spines absent, 1 . spines present.
70. Male apical tarsomere (lateral margin): 0. not expanded, 1. expanded (auropilosus, changi, hippolyta, scaurus).
71. Male sternum II (patches of velvety pubescence): 0 . absent, 1. present.
72. Male sterna: 0 . uniformly punctate, 1 . sterna IV-VI largely or all impunctate.
73. Male sterna III-VI (apical setal fringes): 0 . absent, 1 . present.
74. Male sterna IV-VI (subbasal fringes): 0 . fringes absent, 1. fringes present.
75. Volsella (dorsal process): 0 . present, 1. absent (secondary process may be present near volsella's apex), 2, thin, elongate (as in pentheri).
76. Volsella (basodorsal portion): 0. not expanded, 1. expanded into acute process on cephalic side (as in vulneratus).
77. Volsellar setae: 0: thin, 1. club-like.
78. Penis valve (preapical angular ventral projection): 0 . absent, 1 . present.
79. Penis valve (curvature): 0 . straight or evenly curved, 1 . markedly curved apically.
80. Penis valve (lamellar expansion in apical third or so): 0 . absent, 1 . present (as in julliani).

A preliminary cladistic analysis of Larrini by Pulawski and Prentice (unpublished) indicates the following relationships: $\ldots+$ Gastrosericus $+(($ Kohliella + Parapiagetia $)+($ Holotachysphex + Tachysphex)). The following species (thought to be the most ancestral in their respective genera) were selected as the outgroup: Gastrosericus simplex Arnold, Kohliella anula Pulawski, Parapiagetia genicularis (F. Morawitz), Holotachysphex mochii de Beaumont, and Holotachysphex turneri Arnold. Most of the world species of Tachysphex, representing all the major lineages except nefarius Pulawski, have been included. Not included in the analysis are the species known from one sex only (e.g., nefarius), several currently unavailable species, and also the species with identical character coding (the following is the list of species used in the analysis and of those, in parentheses, that have identical character codes):
aethiopicus (miniatulus)
albocinctus (laticauda)
apoctenus Pulawski (breviceps Pulawski)
argentifrons (drymobius Pulawski, rugosipleuris, silvestris, suavis, theseus)
brevipennis (sympleuron)
brinckerae (clypeatus, rhodesianus)
consocius (congoensis)
coquilletti (cockerellae)
coriaceus (A. Costa) (blattivorus Gussakovskij)
diabolicus (claripes)
fugax (ambiguus, amplus W, Fox, angustatus Pulawski, angustus, apricus Pulawski, arizonac Pulawski, asmara, ctenophorus Pulawski, erythrurus, idiotrichus Pulawskis, krombeini Kurczewski, laevifrons (F.Smith), lindbergi, miwok Pulawski, morosus (F. Smith), nitidior, oasicola Pulawski, opata Pulawski, pseudofasciatus, solaris Pulawski, stachi de Beaumont, tarsinus, texanus (Cresson), yolo Pulawski, yuma Pulawski)
galapagensis Rohwer (peruanus Pulawski)
geniculatus, (horus, inextricabilis, luxuriosus, niloticus)
gujaraticus (bohartorum Pulawski, crenulatus W. Fox, ebeninus, eldoradensis Rohwer, excelsus R. Turner, opacus F. Morawitz, spatulifer Pulawski, williamsi Bohart)
helveticus aegyptiacus (yarrowi)
incertus (dissimulatus, excavatus)
jujuensis Brèthes (subandinus Pulawski)
julliani (argentatus)
lacertosus (bemba)
mocsaryi (brevipecten, persa Gussakovskij)
montivagus (ulothrix)
mycerinus (atlanteus, pilosellus Pulawski)
nitidus (agnus, anubis, hermia, huchiti Pulawski, lamellatus Pulawski, nitidissimus, occidentalis Pulawski, psammobius (Kohl), sonorensis (Cameron), sulcatus Pulawski, tahoe Pulawski, tipai Pulawski, unicolor (Panzer))
notogoniaeformis (liriformis Pulawski)
palopterus (camptopygus, ptah)
panzeri (aemulus, bostryx, caliban, calidus, cheops, chephren, conclusus Nurse, dolosus, georgii, gracilicornis, lucillus Pulawski, pseudopanzeri de Beaumont, rubicundus Pulawski, socotrae, sycorax, taita)
pisonoides Reed (reedi Menke)
pompiliformis (Panzer) (angelicus Pulawski, antennatus W. Fox, aterrimus, crassiformis Viereck, crassipes, erythrophorus, ferrugineus Pulawski, morawitzi Pulawski, pinal Pulawski)
punctatiformis (montanus (Cresson), punctifrons (W. Fox))
similis Rohwer (alpestris Rohwer)
speciosissimus (hostilis, samburu)
subdentatus F. Morawitz (pauxillus W. Fox)
tarsatus (Say) (irregularis Pulawski, powelli Bohart)
terminatus (F. Smith) (linsleyi Bohart)
undatus (F. Smith) (advenus) Pulawski
vestitus (incanus)
The data were analysed using the Nona program by Pablo Goloboff, with $h / 1$ and nixwts 100 70 commands, developed to deal with large data sets (one initial tree retained, with 70 replications, each with 100 iterations). The program converted characters 40,41 , and 45 to nonadditive, and character 40 in tarsatus to a range. It generated 49 shortest, equally parsimonious trees, each with 522 steps, consistency index of 18 , and retention index of 75 . The strict consensus tree, with 946 steps, consistency index of 9, and retention index of 51, is represented in Fig. 3 (see pp. 28-30).

Figure 3. Cladogram of Tachysphex (strict consensus tree).

Figure 3 (continued). Cladogram of Tachysphex (strict consensus tree).

Figure 3 (continued). Cladogram of Tachysphex (strict consensus tree).

As can be expected when 258 terminals are analyzed with only 81 characters, the resulting conensus tree is largely unresolved. The following, however, are among most significant results:

Tachysphex is not monophyletic. This is because the genus has not a single autapomorphy (or such an autapomorphy is currently unknown), as discussed under the Generic Diagnosis above.

A number of species are not assigned to any lineage.
Of the 18 species groups discussed above, the following are recognized: the albocinctus, asinus, brevipennis, erythropus (with inclusion of isis and kalaharicus), geniculatus (represented on the cladogram by geniculatus alone), julliani (with the exclusion of deserticola), pentheri, schmiedeknechti, and terminatus (with the exclusion of clarconis and galapagensis) groups. Not recognized are the panzeri, plicosus, pompiliformis, and the undatus groups. The brullii group is not recognized except for the obscuripennis subgroup.

The albocinctus, julliani, and schmiedeknechti species groups form together a larger, monophyletic lineage.

Correlations between stucture and function.- At least nine structural characters of Tachysphex can be correlated with a specific function, and namely:

1. a convex labrum, protruding from beneath the clypeus, apparently is an adaptation to protect the elongate mouthparts, which in turn are an adaptation to visit flowers with deep corollae.
2. a flattened scutum and scutellum in the females of the obscuripennis subgroup (the flattening reaching its maximum in the Australian depressiventris R. Turner and foliaceus Pulawski) apparently is an adaptation for hunting cockroaches, helping the female penetrate narrow crevices where their prey live.
3. the abbreviated middle tarsomeres in the females of the asinus group apparently are an adaptation for catching or carrying the gryllid prey.
4. similarly, the modified preapical and apical tarsomeres of the obscuripennis subgroup are an adaptation for either catching or carrying the blattid prey.
5. the apically broadened foretarsomeres I and II apparently facilitate digging burrows. This feature has developed independently at least three times: in the albocinctus group, in aethiopicus and its relatives, and in the Australian pugnator.
6. the increase in size of the hindwing jugal lobe (and the resulting shift of vein cu-a from vertical to oblique) in the albocinctus, erythropus, and isis species groups apparently adds to the flight velocity. Judging by my field observations, members of these groups fly more rapidly than the other Tachysphex.
7. the dense, reflective setae that reach their maximum development in deserticola, isis, luxuriosus, osiris, and vestitus, clearly protect the body against intense solar radiation in the desert habitat where these species occur.
8. the highly shiny integument (as in gagates) reflects the solar radiation, again in the desert habitats.
9. the long, erect setae of hadronyx and tenuicornis clearly protect the body against cold oceanic winds of the Namib Desert.

Geographic distribution of African Tachysphex.- Tachysphex is a cosmopolitan genus, and individual ranges vary greatly. Some species are known from a single locality or a few localities, whereas others extend over three continents and three zoogeographic regions. Although no two species heave exactly identical ranges, most of them can be arranged into similar groups. Among the African species, I have recognized the following distribution types:

1. Africa to at least Central Asia or India, extending to Europe in most cases: albocinctus, brevipennis, consocius, costae, detritus, fugax, fulvitarsis, mediterraneus, plicosus, sericeus, vulneratus.
2. North Africa, southern Europe, east to at least Central Asia: erythropus (south to Tanzania), incertus, julliani, mocsaryi, nitidior (south to Kenya), nitidissimus, nitidus (north to northern Europe), panzeri, tarsinus.
3. Sahara to Central Asia or India: argentatus, buyssoni (east to Iraq only), cheops, crocodilus (Lower Egypt to Turkmenistan), desertorum, erythrophorus (also Benin and Togo), grandissimus, gujaraticus, longipalpis, micans, priesneri, schmiedeknechti (south to Kenya), speciosissimus.
4. Sahara: deserticola, gracilicornis (also Israel), gracilitarsis, helveticus aegyptiacus, incanus, luxuriosus (also Israel), osiris, pseudofasciatus (also Israel), sulcidorsum, yarrowi (also Israel).
5. Sahara and Arabian Peninsula: geniculatus, horus, inextricabilis, isis, mycerinus, palopterus, ptah (Lower Egypt to Yemen), vestitus.
6. Arabian Peninsula to Central Asia: curvipes (Sinai to Turkmenistan), dignus, pulcher, sordidus.
7. Lower Egypt: anubis, chephren (also Israel), fasciatus, ramses.
8. West Africa: aburi, coxalis, excavatus, rugosipleuris, sahelensis, theseus.
9. Sub-Saharan Africa: aethiopicus, argenticeps (also Oman), bruneiceps (also Madagascar), calidus (also Sahara), dolosus, harpax (also Israel and Syria), modestus, oberon, pentheri (also Arabian Peninsula), quadricolor, saturnus (also Madagascar), silvestris (south to Tanzania), suavis (also Madagascar).
10. East Africa (southern Ethiopia to Tanzania): auropilosus, bostryx, erythrurus, iaphetes, mkomazi, omoi, rapax, samburu, spectrum, taita (also Namibia).
11. Southern Africa (South Africa to Zambia): ambiguus (north to Zaire), angustus (north to Tanzania), asinus (north to Tanzania), aterrimus, barkeri, bipustulosus (north to Tanzania), brachypus, brinckerae, caliban, claripes, crassipes, diabolicus, dissimulatus, gagates (north to Kenya), georgii (north to Kenya and Uganda), hippolyta (north to Kenya), kalaharicus, lacertosus, marshalli, mashona, melanius, miniatulus, mzingeli (north to Tanzania), octodentatus, paulus, prosopigastroides, punctatiformis, punctatus, rhodesianus, rotundus, ruber, sabulosus, saevus, scaber, schoenlandi, scopa, stevensoni, sycorax, titania, tryssus, ulonyovu.
12. Namib Desert: frigidus, gastrotrichus, longipes, tenuicornis, thysanomerus, ulothrix, usakos.
13. Namibia, western South Africa: hadronyx, punctiger, ziziphi.
14. South Africa: argentifrons, braunsi, diversilabris, fulgidus, gessianus, ibi, karoo, limatus (also southern Namibia), luctuosus, mesembrius, montivagus, namaqua, psilonotus, rufopictus, waltoni (also Namibia), subfimbriatus (also Namibia), ziziphi (also Namibia).
15. Western South Africa: capensis, erectus, khoikhoi, tanqua, vanrhynsi.
16. Eastern South Africa: agilis, eurystoma, montivagus, tembe.
17. Madagascar: ambositrae, ampijoroa, anceps, bara, cavatus, excisus, flavofimbriatus, insulsus, merina, perniger, platystethus, scaurus (also Aldabra), sexinus, seyrigi, subcoriaceus.
18. Abd-el-Kuri, Socotra: glaber, socotrae.

A number of species do not fit any of the above categories. They are: aemulus (Tanzania to Israel and Jordan), agnus (southern Spain, Morocco to Tunisia, Sinai and Israel, Turkey, Arabian Peninsula, Socotra), asmara (Eritrea, Ethiopia), atlanteus (Morocco, Tunisia), aureorufoniger (Tanzania, Zambia), bemba (Zambia, Namibia, northern Zimbabwe), brevipecten (Morocco to Libya and Jordan), camptopygus (Namibia outside Namib Desert), carinatus (Tanzania, Zimbabwe), clypeatus (Zaire, Zambia, northern Namibia), congoensis (Zaire), ebeninus (Zimbabwe), hermia (Namibia, Zimbabwe), lindbergi (Cape Verde Islands, Madeira), mauretanus (Morocco, Algeria), niloticus (Egypt, Kenya, Tanzania), notogoniaeformis (Morocco to Libya), onager (Tanzania, Malawi), ovambo (Angola), pusulosus (Morocco, Libya, Israel, northern Turkey), rhacodes (Ethiopia to Zimbabwe and Namibia), venator (Zambia), zambius (Zambia, Malawi).

The species concentration in individual areas in Africa is quite uneven (Fig. 4). Although many differences in the species number result from inadequate collecting, it is clear that the highest number of species is in South Africa, Namibia, and Zimbabwe, followed by Egypt and Kenya-Tanzania area. The southern Africa, with its 70 species, significantly exceeds any other area in the world. For example, the highest species richness in North America is in California-Nevada, where 50 species occur.

Geological events that affected evolution of African Tachysphex.- In the absence of any fossil evidence, we can only speculate about the age of Tachysphex. The following geological events, however, must have significantly affected the evolution of African Tachysphex:

Figure 4. Number of species of Tachysphex in squares of 10 degrees of latitude and longitude.

1. Separation of Madagascar. Madagascar, with the Indian subcontinent still attached to it eastern margin, separated from the African mainland in the Later Jurassic, some 165 my B.P., moved south-southeastward relative to the African coast and came to rest some 400 km E of Mozambique approximately $130-125 \mathrm{my}$ B.P., well before the beginning of the Late Cretaceous; the Indian subcontinent and Seychelles detached some 88 my B.P. (Krause, 2003). It is not certain that Tachysphex existed before the split from Africa, as the earliest record of Crabronidae is from Lower Cretaceous of England (Iwestia provecta Rasnitsyn and Jarzembowski, 1998, an extinct species and genus attributed to Pemphredoninae). Rather, they colonized Madagascar by oversea dispersal at a later time. Most have evolved into endemic species or radiated in situ.
2. Slow northward movement of the African plate during the late Mesozoic and Cenozoic that resulted in the shift of much of North Africa from wet equatorial into dry tropical latitudes, and much of southern Africa into dry tropical latitudes as well (Africa was $15-18$ degrees farther south in Late CretaceousPaleocene; southern Africa may have supported temperate rainforest: Axelrod and Raven, 1978).
3. Closure of the Tethys Sea that took place 17-18 my B.P., in middle Miocene, allowed migration from Asia to Africa and ended long-persistent latitudinal circulation system that had brought warm moist climate into the Mediterranean and southern Asian regions.
4. Desertification of Namib. The arid condition prevailed in the Namib Desert as early as Late Cretaceous (Ward, Seely, and Lancaster, 1983). Weak upwelling of the cool coastal waters, associated with the development of the Benguela current, began as early as the Middle or Late Oligocene. Upwelling was greatly intensified during the late Miocene (Siesser, 1978). Maximum aridity was attained during the Pleistocene, with the establishment of the present Namib sand sea, and it is likely that the marked aridification of the Kalahari and the northwestern Cape Province of South Africa was a contemporary phenomenon, although no well-dated sequences are available to confirm it (Partrige, Wood, and deMenocal, 1995).
5. Desertification of Sahara. This took place in several steps (Williams et al., 1998):
a. the northward movement of the African plate mentioned above.
b. built up of polar ice caps (on Antarctica 10 my B.P, in Northern Hemisphere towards 2.5 my B.P) resulted in steepening the temperature and pressure gradient between the equator and the poles, which in turn resulted in increased Trade Winds velocities. Faster Trade Winds were better able to mobilize the alluvial sands of increasingly dry Sahara and to fashion them into desert dunes.
c. the Neogene uplift of the Tibetan plateau and the ensuing creation of the easterly jet stream which brought dry subsiding air to the incipient deserts of Pakistan, Arabia, Somalia, Ethiopia, and Sahara.
d. from about late Pliocene (3.7-1.7 my B.P.) onwards, the great tropical inland lakes in Sahara, Ethiopia, and Arabia began to dry out, and a network of major rivers became increasingly obliterated by wind-blown sands.
e. during the ice-age, the sea level lowered, and the dessicating influence of the greater continentality was also enhenced. Stronger Trade Wingds accociated with steeper pressure gradient between the equator and the poles caused increased upwelling of cold waters offshore, further accentuanting the aridity of costal deserts. During the last glacial maximum (18 ky B.P.), the effective range of Sahara extended 400 to 600 km further south.
f. in early Holocene (9-6 ky B.P.), Sahara became verdant. As postglacial temperatures and sea level rose around the world, summer monsoons once more became reliable sources of seasonal rainfall. Groundwater levels rose, aquifers were replenished, lakes refilled, mobile dunes became vegetated and stable, and savanna woodlands and grasslands reoccupied their previous areas, and a remarquable and well-integrated drainage network became established in many parts of Sahara, Arabia, and Rajasthan.
g. in late Holocene (after 6 ky B.P.), Sahara dried out again to its present condition.

Life history. - Life history of Tachysphex, reviewed in detail in Pulawski, 1988, is not repeated here. In Africa, habits are unknown but for the following 11 species: albocinctus, consocius, costae, fugax, fulvitarsis, mediterraneus, nitidus, plicosus, rhacodes, schmiedeknechti, and tarsinus. Most of the relevant observations, however, have been conducted outside Africa. Information on prey is available for an additional 18 species: anceps, asinus, brevipennis, dolosus, erythrophorus, excisus, georgii, gracilicornis, insulsus, julliani, montivagus, oberon, pentheri, perniger, schoenlandi, suavis, titania and vanrhynsi. Nothing is known on the vast majority of species.

Keys to Species
 The characters used in the keys require fresh material with well-preserved pilosity. Specimens may be misdetermined if the erect setae become appressed due to moisture.

Malagasy, Comoro, and Seychelle species

> Unknown and not included: the male of merina. Unknown but tentatively included: the female of cavatus and the male of ambositrae
\qquadGaster all black. 5
2. Labrum convex, protruding beyond clypeal free margin (Fig. 141a); mesopleuron uniformly microareolate (Fig. 141c); male sterna V and VI each with conspicuous fimbrial fringe (Figs. 141d-f) . . excisus Arnold, p. 278 Labrum flat, not protruding or barely protruding beyond clypeal free margin; mesopleuron finely punctate to punctatorugose; male sterna without fimbrial fringes 3
3. Mesopleuron punctatorugose; setae of postocellar area erect. Female: width of postocellar area $2.0 \times$ length; forefemoral venter impunctate and glabrous except for a few setigerous punctures (Fig. 20c). ambositrae Leclercq, p. 104 Mesopleuron finely sculptured; setae of postocellar area appressed. Female: width of postocellar area no more than $1.2 \times$ length; forefemoral venter with evenly distributed, evanescent punctures that are close to each other 4
4. Propodeal dorsum rugose (rugae evanescent in some males), with setae inclined posterad. Female: pygidial plate punctatorugose (Fig. 50d). Male: sterna IV-VI with erect setae that are slightly more than one midocellar diameter long bara Pulawski, sp. nov., p. 139 Propodeal dorsum evenly microareolate, with setae (all or most) inclined obliquely anterad. Female: pygidial plate in most specimens punctate, with unsculptured interspaces, but exceptionally punctatorugose. Male: sterna with appressed setae. insulsus Arnold, p. 358
5. Tergum I, on basal declivity, with suberect, sinuous setae; foretarsomere I somewhat expanded apicolaterally in female and most males (as in Figs. 15c, d). Female: pygidial plate uniformly granulose except for superficial, sparse punctures (as in Fig. 15e)
. bruneiceps Arnold, p. 171
Tergum I with appressed, straight, inconspicuous setae; foretarsomere I not expanded apicolaterally. Female: pygidial plate not granulose .6
6. Hindwing crossvein cu-a with anal end further away from wing base than cubital end (as in Fig. 102a); sternum I with apical depression that is bisected by longitudinal carina (as in Fig. 132a). Female: clypeal bevel step-like. Male: forefemur not emarginate, sterna III and IV with conspicuous, dense setae on apical depressions . flavofimbriatus Arnold, p. 283 Hindwing crossvein cu-a vertical or anal end closer to wing base than cubital end; sternum I in most specimens without longitudinal carina. Female: clypeal bevel flat or evenly convex. Male: forefemur emarginate basally, sterna without conspicuous setae on apical depressions 7
7. Male: scutal flange becoming unusually thickened and raised above scutal plane toward posterior end, apically protruding over scutal hindmargin (Fig. 89b); scutellar lateral area and axillar posterolateral surface conspicuously, deeply sunken (Fig. 89c); scutum with short, longitudinal ridges next to hindmargin (Figs. 89b, c). Female unknown, probably with identical characteristics . cavatus Pulawski, sp. nov., p. 192 Scutal flange, axilla, and scutellum unmodified; scutum without longitudinal ridges 8

Abstract

8. Female: forefemoral venter, midtrochanteral venter, and midfemoral posteroventral face with large punctures that are several to many diameters apart; tarsomeres IV as long as wide, with apicoventral margin concave; apical tarsomeres with one or a few preapical spines on venter; setae of propodeal dorsum oriented posterad. Male unknown, probably with fore- and/or midfemoral venter sparsely punctate . merina Pulawski, sp. nov., p. 687 Female: at least midfemoral posterior face with fine, dense punctures except similar in scaurus and suavis in which tarsomeres IV are wider than long, with apicoventral margin obtusely prominent; either apical tarsomeres without preapical spines or setae of propodeal dorsum oriented anterad. Male: femora densely punctate except in scaurus

9. Venter of apical tarsomeres without spines or (seyrigi, some perniger) with one small, preapical spine; most or all setae of propodeal dorsum pointing anterad. Female: apicoventral margin of tarsomeres IV concave or straight; apical tarsomeres not angulate basoventrally, lateral margin without spines; claws equal in size in each pair 10
Venter of apical tarsomeres with small spines (spines difficult to see in males of suavis in which most setae of propodeal dorsum are pointing posterad). Female: apicoventral margin of tarsomeres IV convex (e.g., Fig. 338d); apical tarsomeres angulate basoventrally, lateral margin with spines (e.g., Fig. 338c); on each leg one claw smaller than other. 17
10. Setae sinuous at least on mesopleuron and propodeal dorsum. 11

Setae straight or curved, not sinuous, on mesopleuron and propodeal dorsum 12
11. Propodeal dorsum with conspicuous ridges that are diverging posterad on basal quarter to half and transverse on remaining surface (Fig. 282c). Female: thorax conspicuously, unusually flattened in profile; scutum flat; clypeal lip not incised laterally; lateral carinae of pygidial plate nearly parallel to each other, present only apically. Male: clypeal lip nearly reduced laterally, with well-defined corner (Fig. 282b); sternum VIII simple apically
.platystethus Pulawski, sp. nov., p. 493
Propodeal dorsum with only fine, transverse ridges. Female: thorax not flattened, scutum convex (the usual shape); clypeal lip with two lateral incisions on each side; lateral carinae of pygidial plate diverging anterad, present on most of tergum length. Male: clypeal lip pointed, without corner; sternum VIII tridentate apically. ampijoroa Pulawski, sp. nov., p. 688
12. Scutum: notaulus conspicuous (at least from certain angles), hindcorner prominent (Fig. 334a) . saturnus Arnold, p. 557 Scutum: notaulus inconspicuous, hindcorner not prominent or slightly prominent 13
13. Setae of postocellar area longer than midocellar diameter (conspicuously so in most females). Female: clypeal lip not incised laterally (Figs. 149a, c); tergum V microsculptured (except on apical depression); apicoventral margin of tarsomeres V minimally concave. Male: clypeal lobe with prominent corner, distance between corners more than clypeal midlength (Figs. 149b, d); sterna IV-VI evenly sculptured (with minute, ill-defined punctures, interspaces microsculptured); outer margin of forebasitarsus in most specimens with preapical spines (Fig. 149g) .fugax (Radoszkowski), p. 287
Setae of postocellar area about as long as midocellar diameter. Female: clypeal lip with two lateral incisions on each side (e.g., Fig. 353a); tergum V unsculptured except for a few, sparse punctures anterad of apical depression; apicoventral margin of tarsomeres V arcuate. Male: clypeal lobe different; sterna IV-VI punctate apically, largely impunctate preapically; outer margin of forebasitarsus without preapical spines. 14
14. Frons uniformly punctate above antennal socket sexinus Leclercq, p. 585 Frons with usual glabrous swelling above antennal socket. 15
15. Clypeal lobe wider (Figs. 355a, b): distance between lip corners $2.0-2.1 \times$ distance between cor-
ner and orbit in female and 1.1-1.2 in male. seyrigi Arnold, p. 587
Clypeal lobe narrower (Figs. 22a, b, 280a, b, 338a, 339a, 367a, b, and 369a, b): distance between lobe corners $1.5-1.6 \times$ distance between corner and orbit in female, 0.7 in male of perniger (corners absent in male of anceps)
16. Female: terga I-III each with well-developed silvery setal fascia; foretibia evenly setose throughout. Male: clypeal lobe without angulate corner, its free margin forming single curved line with rest of clypeal margin (Fig. 22b); inner mandibular margin without tooth (Fig. 22b) anceps Arnold, p. 105
Female: terga I-III with largely reduced, inconspicuous fasciae (fasciae present only laterally); foretibial outer surface, in some specimens, impunctate and asetose between spines. Male: clypeal lobe with corner (Fig. 280b); inner mandibular margin with tooth
. perniger Arnold, p. 491
17. Female: forebasitarsus and foretarsomere II with 8-10 and 4-6 rake spines, respectively, apical three or four spines on both tarsomeres with contiguous sockets; outer margin of foretarsomere IV markedly shorter than inner margin. Male: lateral margin of apical tarsomeres expanded, with group of small spines subbasally (Figs. 339d, e) scaurus Arnold, p. 564 Female: forebasitarsus with 5-7 rake spines, only apical two with contiguous sockets; foretarsomere II with no more than three spines, at most two apical spines with contiguous sockets; outer margin of foretarsomere IV slightly longer than inner margin (which is not reduced). Male: lateral margins of apical tarsomeres not expanded, without spines 18
18. Setae of propodeal dorsum all erect or slightly inclined posterad; scutal setae in most specimens erect, about one midocellar diameter long. Female: scutal punctures equal in size or nearly so; scutellum convex; propodeal dorsum slightly shorter than scutellum and postscutellum combined. Male: apical portion of tergum VII without lateral carina; clypeal lobe broader (distance between lip corners equal to distance between corner and orbit or greater)
subcoriaceus Arnold, p. 607
Setae of propodeal dorsum inclined obliquely posterad except for basomedian setae that are pointing contrastingly anterad; scutal setae appressed. Female: scutal punctures of two sizes: smaller dense punctures interspersed with larger sparse punctures; scutellum flat; propodeal dorsum slightly longer than scutellum and postscutellum combined. Male: apical portion of tergum VII with lateral, obtuse carina (therefore with rudimentary pygidial plate); clypeal lobe narrower (distance between lip corners smaller than distance between corner and orbit). suavis Arnold, p. 604

Saharan, Sub-Saharan and Arabian species

WARNing: A number of forms of uncertain status have not been included, and still unknown species are likely to be found. Determinations must therefore be carefully checked against diagnoses and descriptions of individual species.

Unknown and not included: erectus (Namaqualand region of South Africa), sahelensis (Mali, Senegal), and zambius (Malawi, Zambia); unknown but tentatively included: aureorufoniger (Tanzania, Zambia).

1. Episternal sulcus absent; mesopleuron not concealed by vestiture (Fig. 65d)
brevipennis Mercet, p. 159
Episternal sulcus present, in some species concealed by vestiture .2
2. Tarsomeres IV each with dorsoapical margin very broadly emarginate, almost straight, apical
width greater than length (e.g., Fig. 357d), and apicoventral margin roundly prominent mesally (e.g., 357e); length of midtarsomere III more than twice apical width; tarsomeres V each with venter angulate basoventrally and apicoventral margin produced into lobe (e.g., Fig. 357f)); on each leg one claw smaller than other (e.g., Figs. 357d, f) 3 Tarsomeres IV each with dorsoapical margin roundly to acutely emarginate, and apicoventral margin straight or concave; apical width not greater than length or, if greater, then length of midtarsomere III less than twice apical width; tarsomeres V each with venter not angulate basally and apicoventral margin in most species not produced into lobe; claws in most species even in each pair. 11
3. Mesopleuron rugose . rugosipleuris Pulawski, sp. nov., p. 547

Mesopleuron punctate . 4
4. Forebasitarsus with 5-7 rake spines; in most specimens only two apical spines with confluent sockets (three sockets confluent in some); mesopleural punctures minute, ill defined 5 Forebasitarsus with $8-11$ rake spines, of which at least three apical ones have sockets confluent (or nearly so); mesopleural punctures well defined. .7
5. Scutal punctures of two sizes (denser small punctures interspersed with sparser large punc- tures); mesopleural punctures about as large as smaller scutal punctures; basomedian setae of propodeal dorsum inclined anterad; width of postocellar area $1.5-1.7 \times$ length

suavis Arnold, p. 604

Scutal punctures of equal size or nearly so; mesopleural punctures markedly finer than those on scutum; setae of propodeal dorsum all erect or inclined posterad; width of postocellar area $1.0-1.2 \times$ length . 6
6. Foretarsomere II with three rake spines, two apical spines with sockets confluent; mid- and hindtibiae largely red. Eastern South Africa agilis (F. Smith), p. 88 Foretarsomere II with four rake spines, three apical spines with sockets confluent; tibiae black. West Africa to Tanzania. silvestris Pulawski, sp. nov., p. 589
7. Gastral segments V and VI red . 8

Gaster all black. 9
8. Legs red; setae of propodeal dorsum all (or nearly all) oriented anterad. Southern Africa .
stevensoni Arnold, p. 602
Femora and tibiae black or at most foretibial inner surface reddish; setae of propodeal dorsum erect or oriented posterad. West Africa . theseus Arnold, p. 629
9. Fore- and midfemora densely punctate and setose (at most a narrow zone on forefemoral venter sparsely setose); inner and outer margins of foretarsomere IV almost equal in length hippolyta Arnold, p. 340
Fore- and midfemoral posteroventral surface with sparse setigerous punctures that are many diameters apart (Fig. 33e); outer margin of foretarsomere IV about $0.5 \times$ length of inner margin.
10. Dorsal length of flagellomere I 1.4-1.6 \times apical width (Fig. 33c), about $0.6 \times$ length of II; clypeal lip with two lateral incisions on each side (Fig. 33a), although incisions may disappear in worn specimens; midtrochanteral venter punctate; apical depression of sternum I not bisected by carina. South Africa
. argentifrons Arnold, p. 120
Dorsal length of flagellomere I about $2.25 \times$ apical width, about $0.85 \times$ length of II; clypeal lip shallowly, broadly emarginate laterally (Fig. 405); midtrochanteral venter impunctate; sternum I with longitudinal carina that bisects apical depression. Zambia venator Arnold, p. 648
11. Hindtarsomere IV: dorsoapical emargination rounded proximally (e.g., Fig. 179a); tarsomeres V and claws elongate (e.g., Figs. 179b, c), arolium less than half length of each adjacent claw
(e.g., Figs. 179b, c) except in some harpax; apicoventral margin of tarsomere V produced into lobe that can be round or acute (e.g., Fig. 179c) 12
Hindtarsomere IV: dorsoapical emargination angulate or nearly so; tarsomeres V and claws notelongate (slightly elongate in iaphetes), arolium in most species more than half length of eachadjacent claw; apicoventral margin of tarsomere V varying from slightly concave to slightlyconvex17
12. Fore- and midfemoral venters with a few large punctures and as many setae (punctures many diameters apart, setae not concealing integument).tanqua Pulawski, sp. nov., p. 620 Fore- and midfemora densely punctate and setose (punctures inconspicuous, largely hidden by vestiture) 13
13. Setae sinuous, conspicuously erect on gena, mesothorax, and fore- and midfemoral venters14
Setae straight and appressed on head, mesothorax, and femora 15
14. Propodeal side not ridged; gaster black except reddish apically; middle clypeal lobe wider, with corners closer to adjacent orbit than to each other (Fig. 313a). Kenya, Tanzania
. rapax Pulawski, sp. nov., p. 531Propodeal side ridged; gaster all red, segments III-VI black in some specimens; middle clypeallobe narrower, with corners about equidistant from each other and adjacent orbit (Fig. 346a).Angola, Namibia, South Africa . scopa Pulawski, sp. nov., p. 575
15. Hindtarsomere III shorter: length about $1.2 \times$ apical width; frontal setae silvery, femora black;length $7.1-9.1 \mathrm{~mm}$. harpax Arnold, p. 329
Hindtarsomere III longer: length about $1.5 \times$ apical width; frontal setae golden, femora red(fore- and midfemora black basodorsally); length $13.0-14.5 \mathrm{~mm}$16
16. Middle clypeal section with sparsely punctate, subapical area (Fig. 48a); tergum V finely punc-tate throughout; wings uniformly yellow; apical tarsomeres with two or three spines on eachlateral margin (Figs. 48d, g) . auropilosus R. Turner, p. 136Middle clypeal section uniformly punctate (Fig. 247a); apical depression of tergum V impunc-tate and glabrous; wings yellow basally, distally brown with violet shimmer; apical tarsomereswith one or two spines on each lateral margin (Fig. 247d).
. mzingeli Pulawski, sp. nov., p. 435
17. Forefemoral venter and posteroventral midfemoral surface impunctate and glabrous or withlarge punctures that are several to many diameters apart and a few associated setae (exceptforefemoral venter densely punctate apically in ibi and on apical half or third in longipalpis);and frons with glabrous swelling above each antennal socket, swellings not unusually expand-ed; punctures of pygidial plate averaging several to many diameters apart mesally; width ofpostocellar area no more than $1.4 \times$ length18
Fore- and midfemora uniformly, densely punctate, or venter with minute punctures that aremany diameters apart, or large, sparse punctures present only basally (desertorum, speciosis-simus), or forefemoral posteroventral surface, in distal half, with punctures that are severaldiameters apart; if forefemoral venter partly or all impunctate, then frons evenly punctateabove antennal socket (asinus, onager, scaber), or supraantennal swelling unusually expanded(mashona, pusulosus), or pygidial plate punctatorugose or with punctures averaging about 1diameter apart mesally (asinus, onager, saevus, scaber); if forefemoral venter sparsely punc-tures (glaber, some punctatiformis), then also with erect setae; width of postocellar area vary-
ing. 33
18. Setae sinuous, erect or suberect, on postocellar area, scutum, and mesopleuron, setal length markedly more than midocellar diameter 19

Setae straight, appressed on postocellar area and thorax, or if erect on postocellar area (ibi, khoikhoi, namaqua) then about as long as midocellar diameter or shorter.
19. Propodeal side ridged; free margin of clypeal lobe with two lateral incisions on each side (Fig. 230c); labrum flat; setae of tergum I appressed or nearly so, no longer than midocellar diameter; tibiae black . mesembrius Pulawski, sp. nov., p. 412 Propodeal side punctate; free margin of clypeal lobe without lateral incisions (Figs. 153a, 303a); labrum slightly (punctiger) to markedly (fulgidus) convex; setae of tergum I erect on basal declivity, longer than midocellar diameter; tibiae red 20
20. Propodeal dorsum longitudinally ridged, dull; galea practically unsculptured in about basal two thirds, contrastingly densely micropunctate in apical third, with punctures practically contiguous (Fig. 153c); gaster red basally; terga not fasciate fulgidus Arnold, p. 297 Propodeal dorsum punctate, with shiny, unsculptured interspaces (Fig. 303c); galea with a few, minute punctures; gaster black; terga I-III or I-IV silvery fasciate apically
21. Clypeal lobe unusually wide (Fig. 206c), distance between lip corners about $1.8 \times$ clypeal midlength; gaster, femora, and tibiae all black; labrum flat . . khoikhoi Pulawski, sp. nov., p. 375 Clypeal lobe narrower, distance between lip corners in most species $0.9-1.3 \times$ clypeal midlength, but 1.4-1.5 in some (in which gaster and legs are all or partly red and/or labrum is

22. Gena adjacent to orbit unsculptured or with a few, sparse punctures . . limatus Arnold, p. 380 Gena minutely, densely punctate (interspaces about equal to punctures) 23
23. Setae of postocellar area erect, about as long as midocellar diameter; propodeal dorsum finely, irregularly rugose or ridged; propodeal side ridged; gaster black, wing membrane moderately infumate . ibi Pulawski, sp. nov., p. 347
Setae of postocellar area appressed except in namaqua in which gaster is red basally; propodeal dorsum uniformly microareolate except in many marshalli in which wings are black with violet shimmer; propodeal side ridged, finely punctate, or uniformly microsculptured 24
24. Thoracic vestiture dark brown; propodeal dorsum all or partly ridged or rugose and labrum flat, emarginate mesally; wings moderately infumate capensis (de Saussure), p. 187 Thoracic vestiture silvery (dark in many marshalli); propodeal dorsum uniformly microareolate (irregularly ridged in many marshalli in which labrum is markedly convex apically, not emarginate mesally, and wings are black with violet shimmer)
25. Wing membrane hyaline to moderately infumate; mesopleuron uniformly microsculptured or with punctures that are several to many diameters apart near center; propodeal side unridged at least mesally. 26
Wing membrane black or nearly so, bicolored in some quadricolor (yellowish with infumate apical band); mesopleuron slightly rugose to uniformly microsculptured; propodeal side ridged (ridges evanescent in some specimens)31
26. Gaster red at least basally 27
Gaster all black. 29
27. Labrum conspicuously convex, markedly protruding from beneath clypeus (Fig. 214a); mesopleuron uniformly microsculptured; dorsal length of flagellomere I 3.2-3.4 \times apical width. Libya to Turkmenistan. . longipalpis de Beaumont, p. 385 Labrum flat or minimally convex apically, not protruding or slightly protruding from beneath clypeus; mesopleuron punctate at least beneath scrobe; length of flagellomere I no more than $2.0 \times$ apical width. South of equator 28
28. Setae of postocellar area appressed; femora black; length of flagellomere VIII $1.5 \times$ maximum
width
rufopictus Arnold, p. 544
Setae of postocellar area erect, about as long as midocellar diameter; femora red; length of flagellomere VIII $2.0 \times$ maximum width namaqua Pulawski, sp. nov., p. 437
29. Tibiae red; length of flagellomere VIII $1.2 \times$ maximum width braunsi Arnold, p. 154

Tibiae black; length of flagellomere VIII about $1.5 \times$ maximum width 30
30. Flagellomeres III-VIII with well-defined sensory areas (as in Figs. 38c-e)
... . . gessianus Pulawski, sp. nov., p. 312
Flagellomere III without sensory area, following flagellomeres with ill-defined sensory areas karoo Pulawski, sp. nov., p. 374
31. Mesopleural setae erect; forebasitarsus along outer margin concave, unsculptured and glabrous, at least in basal two thirds . marshalli R. Turner, p. 395 Mesopleural setae appressed; forebasitarsus along outer margin flat, setose 32
32. Clypeal lip markedly arcuate (Fig. 308a); gaster red or tergum IV black, tibiae red; scutal punctures fine, uniform, no more than one diameter apart quadricolor (Gerstaecker), p. 524 Clypeal lip only slightly arcuate (Fig. 301a); gaster and tibiae black or terga I-V with illdefined preapical reddish zones; scutal punctures of medium size, many discal punctures in most specimens two or more diameters apart. punctatus (F. Smith), p. 518
33. Pygidial plate uniformly granulose except for superficial, sparse punctures (Figs. 15e, f); hindwing crossvein cu-a with anal end further away from wing base than cubital end (as in Fig. 102a); foretarsomere I somewhat expanded apicolaterally (Fig. 15c) 34
Pygidial plate impunctate, punctate, or punctatorugose; orientation of hindwing crossvein cu-a and shape of foretarsomere I varying but not in above combination 35
34. Postocellar area narrow (Fig. 14a), its width $0.6-1.0 \times$ length; scutal punctures no more than one diameter apart (Fig. 15a); forebasitarsus with 11-13 rake spines albocinctus (Lucas), p. 92
Postocellar area wide (Fig. 70a), its width 1.7-2.0 \times length; discal punctures of scutum several to many diameters apart (Fig. 71a); forebasitarsus with seven or eight rake spines.
bruneiceps Arnold, p. 171
35. Scutum coarsely punctatorugose or areolate (Fig. 342c), scutal integument not concealed by vestiture; supraantennal swelling in profile triangularly prominent (Fig. 289c); clypeal free margin without median tooth; hindcoxal dorsum not expanded into tooth; tibiae black; flagellomeres III-X flattened laterally, with well-defined ventral edge (Figs. 290a-c). 36 Scutum punctate (punctures ill defined in some species), microsculptured in some species (in which integument is concealed by vestiture), largely punctatorugose in some mediterraneus (in which clypeal free margin has an obtuse median tooth, supraantennal swelling is nonprominent, rounded in profile, and dorsal hindcoxal carina is expanded into tooth basally), and areolate in some vulneratus (in which tibiae are red); flagellomeres in cross-section round or nearly so 37
36. Clypeal free margin arcuate (Fig. 342a); inner hindtibial spur with widely spaced rays (Fig. 343b). schmiedeknechti Kohl, p. 568
Free margin of clypeal lip with median notch and three pairs of obtuse teeth (Fig. 289a); inner hindtibial spur with usual, closely spaced rays prosopigastroides Bischoff, p. 502
37. Pygidial plate unusually broad (e.g., Fig. 200c) and/or longitudinally microridged in apical third or so, apex not incised; hindwing vein cu-a vertical or nearly so 38
Pygidial plate narrow or somewhat broadened but not microridged apically, apex incised or not incised; hindwing vein cu-a variously oriented. 48
38. Pygidial plate somewhat constricted preapically (Figs. 409c, 410a); clypeal lip in vast majori-
ty of specimens with two pairs of lateral incisions (Fig. 409a); gaster all black or red apically . vulneratus R. Turner, p. 654
Pygidial plate not or inconspicuously constricted preapically; clypeal lip not incised laterally; gaster all red or black apically, all black in most desertorum . 39
39. Free margin of clypeal lip with six obtuse but well-defined teeth (Figs. 29a, 30a), although two admedian teeth are confluent in some specimens; mesopleural punctures well defined, interspaces shiny. Sub-Saharan. . argenticeps Arnold, p. 115 Free margin of clypeal lip arcuate, nearly straight, or with somewhat ill-defined, obtuse, median tooth; mesopleuron with ill-defined punctures or finely rugose, dull. Sahara and/or western Asia. 40
40. Setae of maxillary stipes about $1.5-2.0 \times$ midocellar diameter, concealing underlying integument; setae erect and sinuous adjacent to entire occipital carina, longest setae about $0.7 \times$ basal mandibular width; scutal setae suberect anteriorly; maximum length of marginal cell (membrane only) $2.8 \times$ maximum width (Fig. 107c). Egypt, Turkmenistan
. crocodilus Pulawski, p. 230
Setae of maxillary stipes shorter, not concealing integument; genal setae not sinuous or sinuous only next to occipital carina, longest setae $0.4 \times$ basal mandibular width or less; scutal setae all appressed; maximum length of marginal cell 3.5-4.0 maximum width 41
41. Pygidial plate sparsely punctate from base to apex; mandibular outer ridge not swollen and not expanded over notch; galea well sclerotized; propodeal posterior face with median sulcus that extends up to dorsal margin; apical tarsomeres each with a pair of small basoventral spines .dignus Kohl, p. 246
Pygidial plate sparsely punctate only basally or all impunctate; mandibular outer ridge somewhat swollen and expanded over notch; galea membranous; propodeal posterior face, near dorsal margin, with flat median impression; apical tarsomeres without basoventral spines or with one such spine . 42
42. Mesopleural vestiture completely or largely concealing integument; hindfemoral outer surface with dense, reflective setae at least near ventral margin (Fig. 407a) 43
Mesopleural integument easily visible, not concealed by vestiture; hindfemoral outer surface with less dense, nonreflective setae . 46
43. Frons swollen at about midheight (Figs. 406c, e); tergum I with dense, conspicuous vestiture that largely conceals integument; pygidial plate narrower (Fig. 407b); forewing longer in distal half (Fig. 408a) . vestitus Kohl, p. 650 Frons evenly convex; tergum I with usual setae that do not conceal integument; pygidial plate broader (Figs. 27c, 109c), forewing shorter (the usual shape) 44
44. Trimmal carina with inconspicuous, obtuse tooth (Fig. 109a); pygidial plate without transverse groove, all uniformly unsculptured curvipes Pulawski, sp. nov., p. 232 Trimmal carina with usual tooth (Figs. 27a, 191a); pygidial plate with transverse groove and/or conspicuously microsculptured apically (Fig. 27c).45
45. Free margin of clypel lip evenly arcuate to insignificantly, obtusely pointed mesally (Fig. 27a); trimmal carina with narrow cleft (Fig. 27a). argentatus Gussakovskij, p. 112 Free margin of clypeal lip obtusely pointed mesally (Fig. 191a); trimmal carina with cleft broader (Fig. 191a) . incanus de Beaumont, p. 349
46. Mesothoracic venter sparsely punctate (punctures several to many diameters apart); trochanteral venters of all legs at most with a few, sparse punctures; forefemoral venter with large, sparse punctures in basal half or so; hindfemoral venter asetose except basally; tergum IV not fascate desertorum F. Morawitz, p. 237

Mesothoracic venter uniformly densely punctate (punctures about one diameter apart); trochanteral venters and forefemur densely punctate; tergum IV silvery fasciate
 47

47. Mandibular outer ridge swollen and expanded over notch. North Africa, southern Europe, east to Kazakhstan and Pakistan. julliani Kohl, p. 364 Mandibular outer ridge not swollen, not expanded over notch. Morocco, Algeria. mauretanus Pulawski, p. 402
48. Scutum longitudinally ridged at least in posterior half (Figs. 315e, 316c).
rhacodes Pulawski, sp. nov., p. 534
Scutum not ridged except ridged next to hindmargin in some specimens 49
49. Tarsi shortened (Fig. 39d): length of midtarsomere II 1.3-1.8 \times apical width, $1.9 \times$ apical width in tembe, that of midtarsomere III about equal to apical width except $1.1 \times$ apical width in tembe, $1.2 \times$ apical width in ulonyovu, and $1.3 \times$ in ovambo and spectrum; middle flagellomeres in many specimens with sensory areas (Figs. 38c-e); pygidial plate emarginate or incised apically (Fig. 39a)
Tarsi not shortened: length of midtarsomere II more than twice apical width, that of midtarsomere III at least $1.3 \times$ apical width; flagellum without sensory areas; pygidial plate either incised or rounded apically 64
50. Supraantennal swelling punctate almost like surrounding surface (as in Fig. 316a) and propodeal side ridged or coarsely rugose throughout 51
Supraantennal swelling shiny, impunctate except punctate in spectrum and some ulonyovu in which propodeal side is finely sculptured, at most with vestigial ridges 54
51. Sternum I with median carina that is conspicuously prominent apically (Fig. 88c); femora and tibiae black . carinatus Pulawski, sp. nov., p. 191 Sternum I not carinate; at least mid- and hindfemora red; tibiae red 52
52. Scutum with minute punctures that are no more than one diameter apart, and with larger punctures that are many diameters apart; clypeal bevel rudimentary or shorter than basomedian area (Fig. 38a) . asinus Arnold, p. 124
Scutal punctures different (see next couplet for details); clypeal bevel about as long as basomedian area 53
53. Scutal disk with small punctures (no larger than those on postocellar area) that are several diameters apart and with larger punctures that are many diameters apart; apical mid- and hindtarsomeres with subbasal spine or a pair of such spines . . . onager Pulawski, sp. nov., p. 463 Scutal punctures coarse, of equal size, slightly larger than those on postocellar impression; apical tarsomeres without subbasal spines scaber Pulawski, sp. nov., p. 562
54. Labrum free margin obtusely pointed mesally (Fig. 54a) and femora and tibiae black; galea in profile longer than wide, with lateral surface concave in most specimens55

Labrum free margin arcuate to emarginate mesally, obtusely pointed mesally in saevus in which femora and tibiae are red; galea in profile longer or shorter than wide, its lateral surface not concave. 56
55. Clypeal lobe wider: distance between lip corners about $1.4-1.6 \times$ distance between lip and adjacent orbit; propodeal side finely ridged; flagellum thicker, e.g., length of flagellomere III $1.3-1.4 \times$ apical width; flagellomeres with well-defined sensory areas
barkeri Arnold, p. 142
Clypeal lip narrower: distance between lip corners about $1.1 \times$ distance between corner and adjacent orbit; propodeal side not ridged; flagellum thinner, e.g., length of flagellomere III $1.7-8 \times$ apical width; flagellomeres with ill-defined sensory areas
brachypus Pulawski, sp. nov., p. 152
56. Gaster red basally . ulonyovu Pulawski, sp. nov., p. 639
Gaster all black or at most with a pair of red spots (some mashona) 57
57. Both clypeal free margin and labrum free margin obtusely pointed mesally (Fig. 327a); ventral midfemoral margin evenly convex except contrastingly concave preapically (Fig. 327c); femora and tibiae red. . saevus Arnold, p. 551
Free margin of clypeal lip arcuate to shallowly emarginate, that of labrum mesally straight to emarginate; ventral midfemoral margin evenly convex throughout; femora and tibiae variously colored 58
58. Supraantennal swelling markedly enlarged, with practically vertical lateral sides (Figs. 58a, c-e), not connected to antennal socket rim, which is markedly higher dorsally than ventrally bipustulosus Arnold, p. 147
Supraantennal swelling the usual shape in most species, but enlarged in mashona (in which it is fused with antennal socket rim) and ovambo (in which it is markedly lower, with lateral sides swollen, not perpendicular); antennal socket rim about equal in height dorsally and ventrally except higher dorsally in mashona and slightly so in ovambo
59. Supraantennal swelling enlarged but not fused with antennal socket rim (Fig. 267c); length of midtarsomeres II and III 1.8 and $1.3 \times$ respective apical width; femora and tibiae red; punctures of pygidial plate averaging less than one diameter apart . . ovambo Pulawski, sp. nov., p. 467 Supraantennal swelling not enlarged except in mashona; length of midtarsomeres II and III $1.3-1.4$ and $0.8-0.9 \times$ respective apical width (1.6 and 1.0 in oberon, 1.9 and 1.1 in tembe); femora and tibiae black except red in some oberon; punctures of pygidial plate: see next couplet . 60
60. Pygidial plate with punctures several to many diameters apart mesally 61

Most or all punctures of pygidial plate less than one diameter apart 62
61. Distance between clypeal lip corners equal to 1.3 clypeal midlength; clypeal lip somewhat produced mesally (Fig. 260a), exceptionally with three teeth; mesopleuron with well-defined punctures that are about one diameter apart; length of midtarsomere II about $1.6 \times$ apical width, of midtarsomere III about equal to apical width; apical tarsomeres without ventral spines oberon Arnold, p. 454
Distance between clypeal lip corners equal to clypeal midlength; clypeal lip shallowly emarginate (Fig. 383); mesopleuron with ill-defined punctures that are about 2-3 diameters apart near center; length of midtarsomere II $1.9 \times$ apical width, of midtarsomere III about $1.1 \times$ apical width; apical tarsomeres with at least one apicomedian spine on venter
tembe Pulawski, p. 624
62. Supraantennal swelling punctate (as in Fig. 316a); clypeal lip with one lateral incision on each side (Fig. 364a); setae of postocellar area appressed spectrum Pulawski, sp. nov., p. 600 Supraantennal swelling impunctate; clypeal lip with two lateral incisions on each side; setae of postocellar area erect, about one midocellar diameter long 63
63. Supraantennal swelling enlarged, fused with antennal socket rim (Fig. 224c); clypeal lobe narrower (Fig. 224a), distance between corners $1.3 \times$ clypeal midlength, bevel evenly convex; apical margin of forebasitarsus practically straight mashona Arnold, p. 399 Supraantennal swelling the usual shape, not fused with antennal socket rim; clypeal lobe wider (distance between corners $1.6 \times$ clypeal midlength), bevel slightly impressed; apical margin of forebasitarsus emarginate (as in Fig. 54d) eurystoma Pulawski, sp. nov., p. 273
64. Upper frons markedly swollen (Figs. 111c, 198c); sternum I without median carina; setae fully concealing integument on outer hindfemoral surface, at least in ventral half, and labrum flat, not protruding beyond clypeal free margin; gaster all or largely red. Northeast Africa, Sudan,

Abstract

Syria, Arabian Peninsula

Frons evenly convex, somewhat swollen in upper half in osiris (in which sternum I is carinate mesally) and markedly so in ramses; setae not concealing integument on outer hindfemoral surface except concealing in micans and ramses (in which labrum is conspicuously convex and protruding beyond clypeal free margin); gaster red to black.66
65. Clypeus with well-defined bevel (Fig. 198a); flagellum black; setae not concealing integument on interocellar area; crossvein cu-a of hindwing with anal end further away from wing base than cubital end (as in Fig. 102a); pygidial plate constricted preapically (Fig. 198e) .
isis de Beaumont, p. 362
Clypeus without bevel (Fig. 111a); flagellum reddish in basal half; setae fully concealing integument on interocellar area; crossvein cu-a of hindwing vertical or nearly so; pygidial plate not constricted . deserticola de Beaumont, p. 234
66. Sternum I with apical depression bisected by longitudinal carina (Fig. 132a) and propodeal posterior face with wide median impression in dorsal half or third; hindwing crossvein cu-a with anal end further away from wing base than cubital end (Fig. 102a), but vertical or nearly so in many southern African costae, some detritus, and some schoenlandi67

Sternum I with or without apical depression bisected by longitudinal carina; if depression and carina present, then propodeal posterior face with longitudinal sulcus (except kalaharicus); hindwing crossvein cu-a varying, but in most specimens vertical (as in kalaharicus) or with anal end closer to wing base than cubital end74
67. Apical tarsomeres of mid- and hindtarsi without spines on lateral margins 68
Apical tarsomeres of mid- and hindtarsi each with 1-3 small spines near midlength of each lat-eral margin (Figs. 132b, c).70
68. Labrum: median notch evanescent; clypeal lip not incised laterally; frons markedly convex; scutal setae entirely concealing integument; hindfemoral venter largely glabrous; flagellum largely red; marginal cell sparsely microsetose; length $11-13 \mathrm{~mm}$.

$$
\text { osiris de Beaumont, p. } 465
$$

Labrum: median notch well defined; clypeal lip incised laterally; frons not unusually convex; scutal setae not concealing integument on disk; hindfemoral venter setose; flagellum black; marginal cell densely microsetose; length $12-18 \mathrm{~mm}$. 69
69. Clypeal bevel clearly step-like; gena present in dorsal view (Fig. 360c); setae largely but not entirely concealing integument on thorax and gena; pygidial plate broad basally and contrastingly narrowing preapically (Fig. 360d) sordidus (Dahlbom), p. 594 Clypeal bevel at most minimally step-like; gena practically absent in dorsal view; setae fully concealing integument on scutum anterolaterally and on mesopleuron, nearly so on gena; pygidial plate gradually narrowing posterad grandissimus Gussakovskij, p. 319
70. Setae straight or angled apically on head, thorax (except propodeum posterolaterally), and forecoxa 71
Setae sinuous on gena, mesopleuron anteroventrally, propodeal dorsum, and forecoxa 73

Labrum: median notch well defined; gaster all black except red basally in many European and
Asian costae . 72
72. Pygidial plate margined laterally; gaster all black or red basally
............................... costae (De Stefani Perez), p. 218
Pygidial plate not margined laterally, at least near apex, most of margin delineated by row of setigerous punctures (Figs. 132d, e) in most specimens; gaster black
\qquad
73. Tergum I without erect setae; scutum not punctatorugose sericeus (F. Smith), p. 579

Tergum I with erect setae basolaterally; scutum in some specimens punctatorugose.
. detritus Arnold, p. 240
74. Pygidial plate narrowly ovoid, densely setose apically (Fig. 188d); foretarsal rake short: spines (except basal and apical) shorter than basitarsus width, apical spine of forebasitarsus shorter than tarsomere II (Fig. 188c); legs and gaster black. Kenya.
iaphetes Pulawski, sp. nov., p. 345
Pygidial area triangular, at most with a few, sparse setae; middle forebasitarsal spines longer than basitarsus width, apical spine longer than tarsomere II except in brevipecten (in which tibiae and in most specimens parts of gaster are red) 75
75. Gaster and tibiae black; terga without silvery apical fasciae; setae of propodeal dorsum erect or inclined posterad; labrum flat, not protruding beyond clypeal free margin; middle clypeal section convex; supraantennal swelling the usual size . 76 Gaster and/or tibiae red (all or partly) or black; if black, then at least terga I-III silvery fasciate apically and/or dorsal propodeal setae diverging anterolaterad from midline (propodeal dorsum glabrous in some species, at least apicomesally); tergal fasciae inconspicuous in some notogoniaeformis (Morocco to Libya) in which labrum in conspicuously convex and protruding from beneath the clypeus, in some priesneri (North Africa to Mali and Pakistan) in which middle clypeal section is flat, and in pusulosus (Morocco to Turkey) in which the supraantennal swelling is unusually large.80
76. Setae straight on postocellar area, lower gena, and thorax (at most angled apically), appressed or nearly so on midfemoral venter; near anterior end of scutum about as long as midocellar diameter, mesopleuron dull, with minute, inconspicuous punctures. Southern Africa. . vanrhynsi Arnold, p. 646
Setae sinuous on thorax; near anterior end of scutum markedly longer than midocellar diameter; mesopleuron variously punctured . 77
77. Free margin of clypeal lip not emarginate mesally nor incised laterally (Fig. 166b). Abd el Kuri Island . glaber Kohl, p. 314
Free margin of clypeal lobe emarginate mesally and/or incised laterally (Figs. 106a, 126c, 300a). Southern Africa. 78
78. Width of postocellar area $1.1-1.6 \times$ length; basal declivity of tergum I and hindfemoral venter, in many but not all specimens, with erect setae. punctatiformis Arnold, p. 514 Width of postocellar area $0.8-1.0 \times$ length; tergum I with appressed setae; setae of hindfemoral venter nearly appressed, shorter than midocellar diameter . 79
79. Propodeal dorsum irregularly ridged or rugose; mesopleuron between punctures varying from unsculptured to microsculptured. crassipes Arnold, p. 227 Propodeal dorsum regularly ridged longitudinally; mesopleuron unsculptured between punctures ebeninus Arnold, p. 258
80. Hindcoxal dorsum with inner margin markedly expanded basally (Fig. 362a); clypeal middle section convex, with well-defined bevel; body black 81
Hindcoxal dorsum not expanded except slightly expanded in some extralimital populations of fugax (in which middle clypeal section is flat, without bevel); body black or partly red. . . 84
81. Free margin of clypeal lip arcuate to sinuate, without median tooth, median emargination, or lateral incisions (Fig. 283a); trimmal carina of mandible with conspicuous tooth, without cleft (Fig. 283a); propodeum with carina between dorsum and side; propodeal side punctate, dorsum in most specimens with transversely ridged median or apicomedian area that contrasts in sculp-
ture with adjacent areas (Figs. 283c, d); forebasitarsus rake with median gap between basal and apical clusters of spines (Fig. 283e) .plicosus (A. Costa), p. 495 Free margin of clypeal lip with median tooth or emargination and with lateral incisions; trimmal carina of mandible with two teeth of usual size that are separated by cleft; propodeum not carinate between dorsum and side; propodeal side ridged, dorsum without specialized median area; forebasitarsus with rake spines evenly distributed along its entire length 82
82. Clypeal lip with obtuse median tooth (Fig. 226c); setae sinuous on postocellar area mediterraneus Kohl, p. 404 Free margin of clypeal lip at least shallowly emarginate mesally (Figs. 104a, 261a); setae of postocellar area straight or angled apically
83. Mesopleuron punctate; scutal hindcorner roundly prominent (as in Fig. 334a); punctures large, conspicuous on sterna I and II, gradually decreasing in size on following sterna. Southern Africa . octodentatus Arnold, p. 458 Mesopleuron punctatorugose; scutal hindcorner nonprominent; sternal punctures minute, inconspicuous. Mali, Niger . coxalis Pulawski, sp. nov., p. 225
84. Tergum I with erect setae on basal declivity; labrum flat, galea shorter than wide; gaster and legs black; postocellar area concave, unusually wide (Fig. 286c), width 1.7-2.3 \times length
\qquad
Tergum I with appressed setae except setae erect in gastrotrichus and hadronyx (in which labrum is convex, galea markedly longer than wide, gaster red at least basally, and tibiae are red); postocellar area flat except in angustus and longipes, in most species narrower. 85
85. Clypeal lip unusually narrow (corners equidistant from each other and respective orbit), its free margin markedly arcuate (Fig. 395a); scutum in many specimens with short, longitudinal ridges along hindmargin; mesopleural punctures well defined, in many specimens coarse, compressed against each other; body all black. tryssus Pulawski, sp. nov., p. 638 Clypeal lip with corners closer to adjacent orbit than to each other; its free margin variously shaped; scutum without longitudinal ridges next to hindmargin; mesopleuron variously sculptured; gaster and legs black to red 86
86. Scutum deeply impressed anteromesally (Fig. 375c); mesopleural flange conspicuously expanded, yellowish brown, overhanging subalar fossa (Fig. 375d); metapleural flange unusually large. Northwest Africa . sulcidorsum de Beaumont, p. 613 Scutum and mesopleural and metapleural flanges the usual shape. 87
87. Propodeal dorsum shiny, with inconspicuous, microscopic punctures gagates Arnold, p. 302
Propodeum dull, dorsum evenly microareolate, irregularly rugose, or ridged 88
88. Clypeal lobe obtusely pointed (Fig. 293c); trimmal carina of mandible without tooth or cleft (Fig. 293c); setae erect on postocellar area (about as long as midocellar diameter); width of postocellar area about $3.5 \times$ length (Fig. 293a); labrum not emarginate; propodeal side uniformly microsculptured. Algeria to Israel . pseudofasciatus Pulawski, sp. nov., p. 506 Clypeal lobe not pointed except pointed in fulvitarsis in which setae are appressed on postocellar area, width of postocellar area is $1.2-1.3 \times$ length, labrum is emarginate, and propodeal side is ridged; trimmal carina of mandible with tooth and cleft 89
89. Mesopleural punctures well defined (minute in many specimens, somewhat compressed against each other in longipes); setae erect on postocellar area, on propodeal dorsum either inclined anterad or diverging anterolaterad (erect in longipes and some diversilabris), suberect to erect on midfemoral venter (in many specimens no longer than midocellar diameter); labrum flat, galea shorter than wide.

Mesopleural punctures ill defined; setae appressed or nearly so on postocellar area and midfemoral venter (erect on postocellar area and suberect on midfemoral venter in many speciosissimus) and/or labrum convex and galea longer than wide in profile and/or setae of propodeal dorsum inclined posterad . 113
90. Gaster all or largely red . 91

Gaster black . 92
91. Clypeal bevel perpendicular to basomedian area, parallel to body's longitudinal axis; clypeal lip with prominent median projection and unusually deep lateral incision (Figs. 42a, b); width of postocellar area $1.4 \times$ length; scutal setae oriented almost uniformly posterad; setal tergal fasciae ill defined. Eritrea, Ethiopia . asmara Pulawski, sp. nov., p. 128 Clypeal bevel not perpendicular to basomedian area, not parallel to body's longitudinal axis; clypeal lip evenly arcuate; width of postocellar area $1.9 \times$ length; scutum with rosette-like setal pattern in basal third to half: setae oriented posterad along midline, adjacent setae oriented transversely (Figs. 330c, d); terga I-V with conspicuous silvery setal fasciae. Kenya, Tanzania . samburu Pulawski, sp. nov., p. 555
92. Clypeal lip with two lateral incisions on each side (Fig. 332a); outer margin of forebasitarsus somewhat expanded subbasally, most of outer margin concave; notaulus in many specimens wider and deeper than admedian line (Fig. 334a) saturnus Arnold, p. 557 Clypeal lip not incised or with one lateral incision; outer margin of forebasitarsus straight, not expanded subbasally; notaulus ill defined, no more conspicuous than admedian line 93
93. Tibiae at least partly red. 94

Tibiae all black. 97
94. Middle clypeal section almost flat, bevel ill defined, not contrasting with basomedian area; basal flagellomeres and two apical segments of gaster red.
erythrurus Pulawski, sp. nov., p. 271
Middle clypeal section convex, differentiated into basomedian area and bevel; flagellum black; at most part of pygidial plate red . 95
95. Postocellar area slightly concave; midtrochanteral venter with a few, sparse punctures; mesopleural setae largely concealing integument; metapleural setae about as dense as those on mesopleuron . yarrowi de Beaumont, p. 661 Postocellar area not concave; midtrochanteral venter densely punctate; pleural setae different (see next couplet) 96
96. Clypeal free margin shallowly concave between lip and orbit (Fig. 26a); mesopleural setae largely concealing integument, contrastingly denser than those on metapleuron; costal and subcostal veins of forewing yellowish brown. Lower Egypt anubis Pulawski, p. 110 Clypeal free margin distinctly concave between lip and orbit (Fig. 263a); mesopleural setae not concealing integument, not contrasting with those on metapleuron; costal vein of forewing yellowish brown, subcostal vein brown. Ethiopia, Kenya omoi Guiglia, p. 461
97. Middle clypeal section minimally, uniformly convex, almost flat 98 Middle clypeal section markedly convex or somewhat angled between basomedian area and bevel100
98. Middle clypeal section densely, almost uniformly punctate, apicomedian punctures at most 2-3 diameters apart; flagellum elongate, dorsal length of flagellomere I 2.6-3.7× apical width, that of flagellomere IV 4.0-4.7 \times apical width (Fig. 149e) fugax (Radoszkowski), p. 287 Middle clypeal section either unevenly punctate (apicomedian punctures markedly further apart than basolateral punctures) or with punctures that are several diameters apart; flagellum not elongate, dorsal length of flagellomere I 2.1-2.4 \times apical width, that of flagellomere IV
PULAWSKI: AFRICAN WASPS OF THE GENUS TACHYSPHEX 49
2.3-2.6 \times apical width 99
99. Most punctures of middle clypeal section about one diameter apart; clypeal setae denser, large- ly concealing integument. Egypt to Niger helveticus aegyptiacus Morice, p. 335 Most punctures of middle clypeal section more than one diameter apart; clypeal setae sparser, not concealing integument. Southern Africa aterrimus Arnold, p. 130
100.Clypeal bevel meeting basomedian area at an angle (basomedian area impunctate next to bevel); lip free margin undulate (Fig. 18a), undulation not visible in worn specimens
ambiguus Arnold, p. 101
Middle clypeal section not angulate between bevel and basomedian section; lip free margin not undulate 101
101. Clypeal lip with one lateral incision on each side (Figs. 97a, 121a). 102
Clypeal lip without lateral incision 104
102. Apical depression of tergum V minutely punctate, finely setose; in most specimens setae ofpostocellar area 2.0-3.0 \times midocellar diameters long ($1.5 \times$ in some) and scutal and mesopleur-al setae sinuous (simple in some). South Africa: Drakensberg Mountains, Cape Town area, andKamiesberg Mountainsdiversilabris Arnold, p. 251
Apical depression of tergum V unsculptured, asetose; setae of postocellar area about 1.0-1.5 \times
midocellar diameters long; at least scutal setae straight 103
103. Most mesopleural setae sinuous. Zaire congoensis Arnold, p. 205Mesopleural setae straight or angled apically. Africa, part of Eurasia
. consocius Kohl, p. 207
104.Hindfemoral venter with suberect setae that are markedly longer than midocellar diameter (Fig. 215 e); tarsi elongate, length of hindtarsomere IV $1.7 \times$ apical width (Fig. 215 g); postocellar area concave (Fig. 215a); mesopleural punctures slightly compressed against each other .longipes Pulawski, sp. nov., p. 388
Hindfemoral venter with appressed setae or setae no longer than midocellar diameter; tarsi notelongate, length of hindtarsomere IV 1.2-1.4× apical width; postocellar area flat or nearly soexcept concave in angustus; mesopleural punctures not compressed against each other. . 105
105.Postocellar area concave (Fig. 24a), its width $1.2-1.5 \times$ length. angustus Arnold, p. 107
Postocellar area flat or nearly so, its width varying 106
106. Clypeal lip obtusely projecting mesally (Fig. 182c); galea in profile shorter than wide; width of postocellar area 1.8-2.0 \times length; terga I-IV silvery fasciate apically. Zimbabwe, Namibia
hermia Arnold, p. 338
Clypeal lip not projecting mesally except projecting in exceptional titania in which galea islonger than wide in profile; width of postocellar area varying (0.9-2.1 \times length); tergum IVwithout silvery fascia except in some titania107
107. Clypeal bevel about as long as basomedian area. 108
Clypeal bevel shorter than basomedian area (Figs. 212a, 251a, 381a), but narrowly extending to about clypeal midlength in some tarsinus 111
108. Clypeal lobe narrower: distance between corners about $1.3 \times$ clypeal midlength (Fig. 392c);width of postocellar area 1.9-2.1 \times length (Fig. 392a); galea in profile slightly longer than wide(Fig. 393). Southern Africatitania Arnold, p. 634
Clypeal lobe wider: distance between corners $1.5-1.7 \times$ midlength; galea in profile wider thanlong; width of postocellar area $0.9-2.1 \times$ width. Northern Hemisphere .109
109.Frons punctatorugose; setae sinuous at least on postocellar area and on mesopleuron anterior- ly. agnus Pulawski, p. 90 Frons punctate; setae straight. 110

Abstract

110. Setae of postocellar area longer than midocellar diameter; scutal punctures no more than two diameters apart, mostly less nitidus (Spinola), p. 449 Setae on postocellar area about as long as midocellar diameter or, if longer, scutal punctures many diameters apart . nitidissimus de Beaumont, p. 446

111. Mesopleural punctures beneath center about two diameters apart, rudimentary in many specimens; width of postocellar area about $1.0-1.2 \times$ length. Cape Verde Islands, Madeira .
lindbergi de Beaumont, p. 382
Mesopleural punctures well defined, at center varying from less than one diameter apart to somewhat more than one diameter apart; width of postocellar area 1.2-1.6 length. Continental Africa north of equator, part of Eurasia. 112
112. Punctures of sterna III and IV fine but well defined, reaching base of apical depression
. nitidior de Beaumont, p. 441

Punctures of sterna III and IV ill defined, in most specimens not reaching apical depression .tarsinus (Lepeletier de Saint Fargeau), p. 622
113. Dorsal portion of antennal socket rim and supraantennal swelling unusually expanded (Fig. 305c). Morocco to Turkey
pusulosus de Beaumont, p. 522
Antennal socket rim and supraantennal swelling not expanded 114
114. Venters of all trochanters unsculptured except for a few, sparse punctures; labrum flat. North Africa to Iran, Mauritania . speciosissimus Morice, p. 597 Trochanteral venters densely punctate or labrum markedly convex 115
115. Gaster all or partly red and labrum flat; galea in profile shorter than wide 116

Gaster black or, if all or partly red, then labrum convex (only slightly so in luctuosus) and galea in profile longer than wide (only slightly so in mkomazi). 120
116. Free margin of clypeal lobe with pair of admedian teeth and three pairs of lateral teeth (Fig. 173a), but some of lateral teeth may be ill defined or confluent . . . gujaraticus Nurse, p. 323 Free margin of clypeal lobe without teeth . 117
117. Width of postocellar area 1.4-1.7 \times length; anterior (oblique) portion of mesothoracic venter longer than posterior (horizontal) part (Fig. 130); mesopleural vestiture fully concealing integument in fresh specimens; propodeal side all setose. . erythrophorus Dalla Torre, p. 262 Width of postocellar area less than length; mesothoracic venter the usual shape: anterior (oblique) portion shorter than posterior (horizontal) part; mesopleural vestiture not concealing or only partly concealing integument; propodeal side glabrous anteriorly 118
118. Propodeal side ridged at most near margins but not at center; clypeal lobe unusually short, free margin of lateral section less concave than average for the genus (Fig. 240a); setae no longer than midocellar diameter on gena, fully appressed on scutum, straight on propodeum.
. modestus Arnold (red form), p. 426
Propodeal side all ridged; clypeal lobe longer, free margin of lateral section more concave; setae longer than midocellar diameter on gena, erect on scutum anteriorly, sinuous on propodeum
119. Free margin of clypeal lobe shallowly notched mesally (Fig. 202c); hindtarsomeres V in most specimens with spine on each lateral margin (Fig. 202e); basal platform of sternum II acutely angulate (Fig. 202g) . kalaharicus Arnold, p. 369 Free margin of clypeal lobe evenly arcuate mesally (Fig. 372); hindtarsomeres V without spines on lateral margins; basal platform of sternum II broadly rounded (with sharp median point in some specimens) . subfimbriatus Arnold, p. 610
120. Scutellum depressed at center, punctures contrastingly finer and denser on depression than near margins (Fig. 5c).
aburi Pulawski, sp. nov., p. 79
Scutellum without depression, punctures not finer and denser at center than on periphery.121
121.Labrum flat, not or minimally protruding beyond clypeal free margin; galea in profile shorter than wide (slightly longer than wide in mkomazi). 122
Labrum convex, protruding beyond clypeal free margin (Fig. 270e), but only slightly so insome species; galea in profile longer than wide126
122.Clypeal lip obtusely pointed (Fig. 155a); labrum flat, narrowly, deeply emarginate (Fig. 155c).fulvitarsis (A. Costa), p. 299Clypeus and labrum differently shaped (see next couplets for details).123
123.Clypeal lip with lateral incision that separates two teeth (Fig. 237a); galea slightly longer thanwide in profile, with crease oriented longitudinally, sparsely punctate anterad of crease, con-trastingly densely posterad of crease (Fig. 237c); apical tarsomeres with at least one spine nearmidlength of each lateral margin. mkomazi Pulawski, sp. nov., p. 420Clypeal lip without lateral incision (fasciatus, modestus), or with one or two lateral incisions(paulus); galea shorter than wide, with usual, transversely oriented crease, uniformly punctate;apical tarsomeres without spines on lateral margins124
124.Free margin of clypeal lobe emarginate mesally, with one or two lateral incisions (Fig. 273a); propodeal side ridged in many specimens paulus Pulawski, sp. nov., p. 480 Free margin of clypeal lobe not emarginate mesally, without lateral incisions; propodeal side not ridged 125
125.Clypeal bevel shorter than basomedian area (Fig. 145b); labrum emarginate; tergum V (anter-ad of apical depression) with a few, sparse punctures; trimmal carina of mandible with usual,narrow cleft (Fig. 145b). Egyptfasciatus Morice, p. 282
Clypeal bevel about as long as basomedian area (Fig. 240a); labrum not emarginate; tergum V(anterad of apical depression) closely punctate; trimmal carina of mandible with widely opencleft (Fig. 240a). Sub-Saharan Africa. modestus Arnold, p. 426
126.Free margin of clypeal lip with two lateral incisions on each side (Fig. 217c); apical tarsomerewith spine at about midlength of each lateral margin (Fig. 217e); sternum I with median cari-na; scutal and mesopleural punctures well defined luctuosus Arnold, p. 390Free martin of clypeal lobe laterally simple, sinuous, or with one incision; apical tarsomereswithout spines on lateral margins; sternum I without median carina or (some bemba, some clar-ipes) with rudimentary carina; scutal and mesopleural punctures varying127
127. Width of postocellar area about twice length (Fig. 161a); setae of postocellar area straight, shorter than midocellar diameter. North Africa to Kenya, Middle East including Arabian Peninsula 128
Width of postocellar area less than twice length (nearly twice in hadronyx in which setae of postocellar area are sinuous, markedly longer than midocellar diameter) 132
128.Propodeal side glabrous adjacent to metapleural sulcus 129
Propodeal side all setose 131
129. Setae erect or nearly so on postocellar impression and on each side of it, not completely con- cealing sculpture beneath midocellus; gaster in many specimens black.
geniculatus (Spinola), p. 306
Setae appressed or nearly so on postocellar impression and on each side of it, fully concealingintegument beneath midocellus; gaster red at least basally.130
130.Setae concealing integument on forecoxa and hindfemoral outer surface
horus de Beaumont, p. 343
Setae not concealing integument on forecoxa and hindfemoral outer surface
.luxuriosus Morice, p. 393
Lateral carina of pygidial plate obtuse but well defined; mesothoracic venter densely punctate (punctures less than one diameter apart to insignificantly more)
inextricabilis Pulawski, p. 356
132. At least genal and propodeal setae partly to all sinuous, many setae markedly longer than mido- cellar diameter (Fig. 233a) 133
Genal and propodeal setae straight, at most slightly longer than midocellar diameter (genalsetae slightly sinuous in many southern African dolosus, up to two diameters in cheops) . 139
133.Setae of postocellar area erect, markedly longer than midocellar diameter; length of flagello- mere I 4.0-4.2 apical width 134Setae of postocellar area appressed to erect, at most slightly longer than midocellar diameter;length of flagellomere I up to $3.7 \times$ apical width in thysanomerus and $3.6 \times$ in cheops, but most-ly less135
134.Gaster black (apical depressions of segments translucent); width of postocellar area 1.0-1.2×length; setae of tergum I appressed or nearly so, no longer than midocellar diameter; forecoxawithout apical process, hindfemur and claws not thickened, seta beneath each claw not thick-ened . tenuicornis Bischoff, p. 626Gaster red basally; width of postocellar area 1.7-1.8 \times length; setae of tergum I (except poste-riorly) erect, markedly longer than midocellar diameter (short, inconspicuous in some speci-mens); forecoxa with apical process (Fig. 175c); hindfemur thickened (Fig. 175d), claws andseta beneath each claw conspicuously thickened (Fig. 175f)
hadronyx Pulawski, sp. nov., p. 326
135.Propodeal side ridged; hindfemoral venter asetose at least in distal half 136
Propodeal side not ridged; hindfemoral venter all setose 137
136. Setae of tergum I erect on basal declivity gastrotrichus Pulawski, sp. nov., p. 304
Setae of tergum I appressed or nearly so ulothrix Pulawski, sp. nov., p. 642
137.Propodeal side asetose anteriorly; apical depression of tergum V asetose; setae of hindfemoralouter surface inconspicuous, not concealing integument; inner hindtibial spur with usual, close-ly spaced rays; outer dorsal margin of foretarsomere IV about 0.7 length of inner margin.bostryx Pulawski, sp. nov., p. 150Propodeal side and tergum V setose throughout; setae of hindfemoral outer surface conspicu-ous, concealing integument at least apicoventrally; inner hindtibial spur (except in many pul-cher) with sparsely spaced rays (Fig. 233d), at least near midlength; inner and outer margin offoretarsomere IV about equal in length138
138.Free margin of lateral clypeal section straight or minimally concave (Fig. 232a); longest setaeof lower gena about twice midocellar diameter long (Fig. 233a), those of propodeal dorsum sin-uous, of tergum I somewhat sinuous, largely concealing integument, in most specimens notfully appressed (Fig. 233b) . micans (Radoszkowski), p. 414Free margin of lateral clypeal section concave (Fig. 298a); longest setae of lower gena slight-ly more than one midocellar diameter long, those of propodeal dorsum straight in most speci-mens, of tergum I straight, not concealing integument, fully appressed.
. pulcher Pulawski, p. 512
139.Propodeal dorsum with asetose apicomedian area (e.g., Figs. 56c, 418c) that is at least twice as long as midocellar diameter, adjacent setae oriented posterad 140
Propodeal dorsum setose throughout or with rudimentary glabrous area apicomesally, setae variously oriented 151
140. Clypeal lip not incised laterally 141
Clypeal lip incised laterally (Figs. 68a, 96a, 318a) 144
141.Gaster and tibiae black; pygidial plate unsculptured between punctures. Morocco to Libya. notogoniaeformis Nadig, p. 452
Gaster red, black in some bemba in which pygidial plate is conspicuously microsculptured; tib-iae red except in bemba. Southern Africa142
142.Femora and tibiae black; pygidial plate conspicuously microsculptured, dull, with evanescent punctures bemba Pulawski, sp. nov., p. 145 Femora varying from red to black, tibiae red; pygidial plate with well-defined punctures, inter- spaces varying from microsculptured, dull to unsculptured, shiny 143
143.Clypeal lip corner somewhat prominent (Fig. 418a); terga I-III fasciate; punctures of terga IVand V minute, inconspicuous . ziziphi Pulawski, sp. nov., p. 665Clypeal lip corner nonprominent (Fig. 325a); terga not fasciate; punctures of terga IV and Vfine but well defined . sabulosus Pulawski, sp. nov., p. 549
144. Gaster all red or red basally and black apically. 145
Gaster all black or with red apex 147
145.Fore- and midfemoral posteroventral surface, near apex, unsculptured except for a few, sparse punctures clypeatus Arnold, p. 204Fore- and midfemora uniformly, densely punctate146
146. Gaster all red or with red base and apex; clypeal bevel in many specimens with longitudinal ridges; setae golden on frons, on thorax golden or with golden tinge
rhodesianus Bischoff, p. 537
Gaster black apically; clypeal bevel without longitudinal ridges; setae silvery or golden onfrons, silvery on thoraxbrinckerae R. Turner, p. 168
147.Terga not fasciate diabolicus Arnold, p. 243
At least terga I-II with silvery or golden apical fascia 148
148.Basomedian setae of propodeal dorsum oriented obliquely anterad, adlateral and apical setae oriented obliquely posterad (Fig. 46b); tergal fasciae golden in fresh specimens. aureorufoniger Pulawski, sp. nov. (presumed, only male known), p. 135Setae of propodeal dorsum oriented obliquely posterad both basally and apically; tergal fasci-ae silvery149
149.Episcrobal area with setae nearly appressed, shorter than midocellar diameter; galea closelymicropunctate; costal and subcostal veins of forewing reddish brown, almost identical in colorlacertosus Arnold, p. 378Episcrobal area with setae erect or nearly so, at least as long as midocellar diameter; galeasparsely punctate; costal and subcostal veins of forewing reddish brown to nearly black (twospecies morphologically indistinguishable in female sex)150
150.Namibia, Zimbabwe, South Africa 199Eastern Cape and Western Cape provinces of South Africa. psilonotus Pulawski, sp. nov., p. 508
151.Propodeal dorsum with setae diverging obliquely anterad from midline (except in montivagus);propodeal side ridged; upper metapleural pit oblong152
Propodeal dorsum with different setal pattern; propodeal side varying; upper metapleural pitround.161
152.Foretarsomeres I and II not broadened, outer margin not expanding over rake spine bases,
spines thus originating at tarsomere's outer edge 153
Distal portions of foretarsomeres I and II slightly broadened (Fig. 9c), outer margins expand- ing over rake spine bases (insignificantly so in some specimens), spines thus originating at tar- somere's ventral surface (Fig. 9e) 155
153. Midfemoral venter with erect setae (Fig. 389c). Namib Desert
thysanomerus Pulawski, sp. nov., p. 631
Midfemoral venter with appressed setae 154
154.Most setae of propodeal dorsum diverging laterad or posterolaterad (Fig. 243c); mid- and hindtibiae black; pygidial plate microsculptured and dull between punctures. Lesotho.
montivagus Arnold, p. 430
Setae of propodeal dorsum diverging anterolaterad; mid- and hindtibiae red (only part ofmidtibia in some specimens); pygidial plate unsculptured and shiny between punctures. pentheri Cameron, p. 482
155.Pygidial plate downcurving apically (as in Fig. 80d); mesopleural integument fully concealedby vestiture; gaster all red. ruber Pulawski, sp. nov., p. 543Pygidial plate not downcurving apically; mesopleural integument not fully concealed by vesti-ture; at least gastral apex black156
156. Gaster all black 409
Gaster red basally 157
157. Clypeal bevel as broad as clypeal middle section, dense clypeal punctation not reaching lipbase (Fig. 235a); clypeus blackminiatulus Arnold, p. 418
Clypeal bevel narrower than clypeal middle section, dense clypeal punctation reaching lip basealong lateral quarter or so of lamella's width (Fig. 9a); and/or clypeal bevel yellowish red . .158
158.Pygidial plate in most specimens dull, evenly microsculptured between punctures, at leastbasally; foretarsal rake black or dark brown (except basal spines light in some specimens). rotundus Pulawski, sp. nov., p. 540Pygidial plate shiny, unsculptured or nearly so between punctures; foretarsal rake pale to mod-erately dark.159
159.Clypeal middle section longer: distance between lip margin and antennal socket about as longas the distance between lip corners (Fig. 148a). Namibia . frigidus Pulawski, sp. nov., p. 285Clypeal middle section shorter: distance between lip margin and antennal socket equal to about0.7 of distance between lip corners160
160.Clypeal bevel shorter than basomedian area (Fig. 9a); dorsal length of flagellomere I 2.2-2.6\times apical width; width of postocellar area $0.9-1.0 \times$ length. Kenya to South Africa.. aethiopicus Arnold, p. 83Clypeal bevel longer than basomedian area in most specimens (Fig. 400a), but shorter in some;dorsal length of flagellomere I 2.8-3.2 \times apical width; width of postocellar area $1.2-1.3 \times$length. Namibia. usakos Pulawski, sp. nov., p. 644
161.Terga without silvery, apical fasciae; setae of postocellar impression appressed or nearly so.North Africa and Middle East to Tanzania162
Terga I-III to I-V each with silvery or golden apical fascia (fasciae inconspicuous or absent insome atlanteus in which setae of postocellar impression are erect or nearly so, slightly shorterthan midocellar diameter)163162. Setae of propodeal dorsum oriented posterad except basally; femora all or largely black;propodeal side all or partly ridged in most specimens, unridged in some

Setae of propodeal dorsum oriented anterad or anterolaterad on triangular, median area that extends nearly to dorsum's hindmargin (Fig. 7a); femora red in most specimens, black in some; propodeal side uniformly microsculptured
aemulus Kohl, p. 81
163. Gaster and tibiae all black except foretibia brown or reddish (at least on inner surface); clypeal lip without lateral notch or sinuosity (Fig. 93a); wing membrane infumate. Egypt, Israel chephren de Beaumont, p. 197
Gaster and/or tibiae red; clypeal lip in many species with lateral incision or sinuosity; wing membrane at most slightly infumate . 164
164.Apical depression of tergum V asetose (Fig. 192c) except setose mesally in sycorax, many dissimulatus, some incertus, and some taita 165 Apical depression of tergum V setose throughout (asetose mesally in some specimens) . 177
165.Apical rake spine of forebasitarsus about as long as foretarsomere II which is about $2.2 \times$ as long as wide (Fig. 64c). North Africa to Jordan. brevipecten de Beaumont, p. 157 Apical rake spine of forebasitarsus markedly longer than foretarsomere II whose length is less than twice width except $2.0-2.2 \times$ width in excavatus

166
166.Free margin of clypeal lobe prominently arcuate to obtusely pointed, not emarginate mesally
and not incised laterally (Fig. 412a); gaster black; inner mandibular margin with insignificant
tooth and widely open cleft (Fig. 412a); forebasitarsus with $10-12$ rake spines; setae of
propodeal dorsum suberect, most of them inclined posterad....... waltoni Arnold, p. 658 Free margin of clypeal lobe slightly arcuate, emarginate mesally (except entire in some camptopygus), incised or sinuous laterally (except entire in some camptopygus and some dolosus); at least gastral segments I and II red; inner mandibular margin with usual, well-defined tooth and narrow cleft; forebasitarsus with 6-10 rake spines; setal orientation on propodeum different. 167
167. All setae of propodeal dorsum, in fresh specimens, suberect and pointing anterad or anterolaterad (Fig. 124a) . dolosus Arnold, p. 254 Apicomedian portion of propodeal dorsum with setae pointing posterad or posteromesad

168
168.Pygidial plate with apex slightly curving ventrad (Fig. 80d); setae of propodeal dorsum partly concealing integument (Fig. 80b). Namibia. camptopygus Pulawski, sp. nov., p. 183 Pygidial plate flat apically; setae of propodeal dorsum not concealing integument except partly concealing in taita . 169
169. Setae of postocellar impression suberect to erect, slightly shorter than midocellar diameter; tergal fasciae absent or broadly interrupted mesally (present on tergum I and II, or II only, or I-III). Morocco to Tunisia . atlanteus de Beaumont, p. 133 Setae of postocellar area appressed or nearly so; terga I-III or I-IV fasciate apically, fasciae well defined 170
170.Scutal punctures well defined, many punctures on disk 2-3 to many diameters apart. Zimbabwe, Namibia, Botswana, South Africa caliban Arnold, p. 175 Scutal punctures ill defined, less than to slightly more than one diameter apart 171
171.Foretibial outer surface and midtibial dorsal surface narrowly asetose; forecoxa with small apicomedian process (Figs. 376d, e). Southern Africa . sycorax Arnold, p. 615 Tibiae setose throughout (foretibial outer surface partly asetose in exceptional incertus, a Northern Hemisphere species); forecoxa without apicomedian process. 172
172.Tergum V with microscopic punctures that average many diameters apart; setae about $1.5 \times$ midocellar diameter long on each side of oral fossa next to occipital carina. Algeria

Tergum V closely punctate except sparsely in some palopterus from Saudi Arabia; setae no longer than one midocellar diameter on each side of oral fossa next to occipital carina . . 173
173. Clypeal lip at most slightly sinuous laterally. 174

Clypeal lip with well-defined lateral incision (Fig. 192a). 175
174.Setae with golden tinge on upper frons, golden on thoracic dorsum; apical depression of tergum V in many specimens setose mesally. Kenya, Tanzania . taita Pulawski, sp. nov., p. 617 Setae all silvery or with golden tinge on scutum; apical depression of tergum V asetose. North Africa, Israel, Arabian Peninsula . palopterus (Dahlbom), p. 470
175.Pygidial plate somewhat broader (Fig. 192c) in most specimens. In Africa south to southern Sahara. incertus (Radoszkowski), p. 352 Pygidial plate narrower. Two species morphologically identical in female sex 176
176. Western Africa (Mauritania to Niger and Togo) excavatus Pulawski, sp. nov., p. 275 Southern Africa (Zimbabwe, Botswana, Namibia, South Africa)
\qquad
177.Mandibular notch unusually large, longer than distance that separates it from orbit (Fig. 73c) buyssoni Morice, p. 173 Mandibular notch the usual size . 178
178.Frons conspicuously prominent (Fig. 311c, e); trimmal carina of mandible without tooth (Fig. 311a); clypeal free margin concave between lip and orbit; flagellomeres III-X reddish brown. Lower Egypt . ramses Pulawski, p. 529
Frons nonprominent; clypeal free margin not concave between lip and orbit; trimmal carina of mandible with subbasal tooth; flagellum black 179
179.Femora and at least hindtibia black. Namibia and western South Africa to Kenya and Uganda . georgii Arnold, p. 309
\qquad
180.Clypeal lip emarginate laterally (Fig. 238); propodeal side in many specimens ridged behind spiracle . mocsaryi Kohl, p. 422 Clypeal lip straight or shallowly concave laterally; propodeal side not ridged 181
181.Pygidial plate slightly convex both transversely and longitudinally, shiny, unsculptured between punctures, with lateral carina lower than average for the genus (Figs. 245c, d); free margin of clypeal lip arcuate, without lateral incision, at most with a rudimentary median notch (Fig. 245a) mycerinus de Beaumont, p. 432 Pygidial plate flat, with well-defined lateral carina, integument aciculate to markedly microsculptured except unsculptured between punctures in some cheops; free margin of clypeal lip in most specimens sinuous or incised laterally . 182
182.Scutal punctures well defined, many punctures on disk 2-3 diameters apart; setae of propodeal dorsum oriented anterad (as in Fig. 124a). Island of Socotra

Scutal punctures ill defined, less than to slightly more than one diameter apart; setae of propodeal dorsum variously oriented but not as above
183.Clypeal free margin shallowly concave between lip corner and orbit (Fig. 91a); trimmal carina of mandible with low, somewhat rounded teeth (Fig. 91a); posterior face of head, in dorsal half, with semi-erect setae, some oriented dorsad (Fig. 91c); longest setae of lower gena 1.5-2.0× midocellar diameter (Fig. 91c); propodeal side setose throughout. North Africa south to Senegal and Somalia . cheops de Beaumont, p. 194 Clypeal free margin more deeply concave between lip corner and orbit (Figs. 77a, 270c); trimmal carina of mandible with usual, well-defined teeth (Figs. 77a, 270a); posterior face of head,
in dorsal half, with appressed setae except setae semi-erect in Ethiopian, Kenyan, and West African populations of calidus; propodeal side glabrous anteriorly except all setose in desert populations of panzeri and in West African populations of calidus 184
184. Southern Africa, Ethiopia and Kenya, West Africa; longest setae of lower gena visibly exceeding midocellar diameter in specimens from Ethiopia, Kenya, and West Africa (Fig. 77f)....
. calidus Pulawski, sp. nov., p. 178
Africa south to central Sudan and central Mali, Europe, Asia east to Sri Lanka and Kazakhstan; setae of lower gena shorter to slightly longer than midocellar diameter
panzeri (Vander Linden), p. 473

$\mathrm{J}^{7} \mathrm{O}^{7}$
Unknown and not included: fasciatus (Egypt), glaber Kohl (Abd el Kuri Island), gracilicornis (Algeria), iaphetes (Kenya), tembe (South Africa), and venator (Zambia).

1. Episternal sulcus absent, mesopleural integument easily visible (Fig. 65d)
brevipennis Mercet, p. 159
Episternal sulcus present, concealed by vestiture in some species 2
2. Sterna II-VI covered almost margin to margin with conspicuous, uniform, suberect setae that fully conceal integument (Figs. 347b-d); most thoracic setae sinuous; forebasitarsus with at least three rake spines, outer apical spine of tarsomere II no longer than tarsomere III, mid- and hindtarsomeres V with central cluster of small spines on venter (Fig. 347a), and gaster red. Angola to South Africa. scopa Pulawski, sp. nov., p. 575 Sterna II-VI without such setae or, if setae similar, then thoracic setae, rake spines, spines of apical tarsomeres, and color of gaster not in above combination . 3
3. Forefemur entire. 4

Forefemur emarginate basally . 12
4. Labrum flat; foretarsus without rake (basitarsus without preapical spines, apical spine of tarsomere II less than this tarsomere width); sternum VII with dense, long setae that extend beyond sternum's hindmargin as conspicuous fringe (Fig. 416b); apical emargination of sternum VIII unusually shallow (Fig. 416c); mesopleuron with well-defined punctures and shiny interspaces. zambius Pulawski, sp. nov., p. 663 Labrum convex (as in Fig. 270e); foretarsus with rake (basitarsus with several preapical spines, apical spine of tarsomere II at least slightly longer than this tarsomere width); sternum VII with short setae that do not form apical fringe; apical emargination of sternum VIII deeper; mesopleuron varying 5
5. Postocellar area unusually wide (Fig. 161b), width at least twice length; sterna without setal fringes.
Postocellar area narrower, width no more than $1.5 \times$ length; at least sterna V and VI (except laterally) each with erect, subbasal fringe of agglutinated setae (Figs. 276a-f), although fringes are visible only when sterna are fully extended 10
6. Setae of postocellar area erect; propodeal side glabrous adjacent to metapleural sulcus; scutal hindcorner not expanded .7 Setae of postocellar area appressed; propodeal side setose throughout; scutal hindcorner roundly expanded (Fig. 219a)9
7. Dorsal volsellar process long, narrow (Fig. 250); outer apical spine of foretarsomere II about as long as tarsomeres III and IV combined niloticus Pulawski, p. 439 Dorsal volsellar process low, rounded (Figs. 161e, 187); outer apical spine of foretarsomere II
shorter 8
8. In most specimens setae not concealing integument between midocellus and antennal socket; apex of penis valve narrow (Fig. 161f) . geniculatus (Spinola), p. 306 Setae concealing integument between midocellus and antennal socket; apex of penis valve rounded in Egyptian specimens (Fig. 187) horus de Beaumont, p. 343
9. Apical margin of sternum VIII with rounded median projection (Fig. 219b) or evenly emarginate; volsella: Fig. 219c; mesothoracic venter of many specimens sparsely punctate anterad of each midcoxa (punctures several to many diameters apart); foretarsal rake in many specimens longer: apical spine of foretarsomere II about as long as tarsomeres III and IV combined luxuriosus Morice, p. 393
Apical margin of sternum VIII with median projection that is shallowly emarginate mesally (Fig. 193a); volsella: Fig. 193b; mesothoracic venter densely punctate (punctures less than to insignificantly more than one diameter apart); foretarsal rake shorter: apical spine of foretarsomere II varying from slightly shorter to slightly longer than tarsomere III
inextricabilis Pulawski, p. 356
10. Setae sinuous on gena and thorax (except on mesothoracic venter), markedly longer than midocellar diameter on scutum, erect on basal declivity of tergum I; hindfemoral venter asetose except basally; sternum III and IV subbasally each with setal fringe (fringes visible only when sterna are fully extended) . gastrotrichus Pulawski, sp. nov., p. 304 Setae straight on gena and thorax, about as long as midocellar diameter on scutum, appressed on tergum I; hindfemoral venter setose; sterna III and IV without subbasal fringes 11
11. Distance between corners of clypeal lip smaller than distance between corner and orbit (Fig. 275b); bevel about as long as basomedian area; trimmal carina with well-defined tooth (Fig. 275b); hindfemoral venter with inner (= posterior) margin sharp in distal half; apicolateral prong of sternum VIII, in most specimens, incised on inner side (Fig. 275c); volsella: Fig. 277a . pentheri Cameron, p. 482
Distance between corners of clypeal lip greater than distance between corner and orbit (Fig. 321b); bevel absent or reduced to narrow zone along center of lip base; trimmal carina with low, obtuse tooth (Fig. 321b); hindfemoral venter with inner (= posterior) margin obtuse; apicolateral prong of sternum VIII not incised; volsella: Fig. 321c.
rotundus Pulawski, sp. nov., p. 540
12. Setae of sternum III markedly longer and denser on apical depression than anterolaterally; sternum I with apical depression bisected by longitudinal carina (Fig. 132a) 13
Apical depression of sternum III glabrous or setae not longer or insignificantly longer and not denser than those on sternum's anterolateral portion (longer posteriorly than anteriorly in modestus in which sternum I has no longitudinal carina) . 21
13. Apical depressions of sterna II and III each with conspicuous fringe of agglutinated setae that extend beyond sternal hindmargin (Figs. 344c-e). Southern Africa 14 Sternum II without setal fringe, setae of apical depression markedly shorter that those on apical depression of sternum III15
14. Setae of postocellar area appressed; labrum convex apically, slightly protruding beyond clypeal free margin (Fig. 217d); galea in lateral view longer than wide; mesopleuron with well-defined punctures; base of forefemoral notch without tuft of setae; forebasitarsus without preapical rake spines; cubital and anal ends of hindwing vein cu-a equidistant from wing base
. luctuosus Arnold, p. 390
Setae of postocellar area erect; labrum flat, not protruding or minimally protruding beyond clypeal free margin; galea in profile shorter than wide; mesopleuron with ill-defined punctures;
base of forefemoral notch with tuft of setae (Fig. 344a); forebasitarsus with 3-5 rake spines (Fig. 344b); anal end of hindwing vein cu-a in most specimens further away from wing base than cubital end (as in Fig. 102a) . schoenlandi Cameron, p. 572
15. Apical depressions of sterna III-V with dense (as if agglutinated) setae (Figs. 171c-e). Northern Hemisphere . 16 Apical depressions of sterna IV and V with less dense setae, not appearing agglutinated (Figs. 101, 133b, 360e), also sternum III in many specimens 18
16. Mesopleural punctures compressed against each other or nearly so; frontal setae silvery grandissimus Gussakovskij, p. 319
Many mesopleural punctures more than one diameter apart; frontal setae golden except silvery in smallest specimens17
17. Outer margin of forebasitarsus with 4-6 rake spines; outer apical spine of foretarsomere II longer than tarsomere III; sternum I largely glabrous osiris de Beaumont, p. 465 Outer margin of forebasitarsus with at most one preapical rake spine that is close to apical one; outer apical spine of foretarsomere II as long as tarsomere III or shorter; sternum I all setose sordidus (Dahlbom), p. 594
18. Head, thorax, and forecoxa without sinuous setae (setae straight or angled apically) 19 Setae sinuous on gena, mesopleuron anteroventrally, propodeal dorsum, and forecoxa . . 20
19. Forefemoral notch with basal tuft of erect setae (Palearctic specimens) or tuft absent (Afrotropical specimens), bottom not compressed; gaster black or red basally
.. costae (De Stefani Perez), p. 218 Forefemoral notch without basal tuft of erect setae, with bottom compressed into narrow crest (Fig. 133a); gaster black erythropus (Spinola), p. 265
20. Outer margin of forebasitarsus without preapical spines or, exceptionally, with one or two such spines next to apex; scutum not punctatorugose; forefemoral notch of usual size; setae of apical depression of sternum III in many specimens dense, as if agglutinated
. sericeus (F. Smith), p. 579
Outer margin of forebasitarsus with 3-5 preapical rake spines and/or scutum punctatorugose (at least anteriorly); forefemoral notch in some specimens unusually small; setae of apical depression of sternum III not agglutinated
detritus Arnold, p. 240
21. Scutum coarsely punctatorugose or areolate (Fig. 342c), hindcoxal dorsum not angulate basally; setae of postocellar area sinuous, longer than midocellar diameter; gaster red basally except all black in some Syrian specimens of schmiedeknechti 22 Scutum punctate, punctatorugose near margins in some mediterraneus which has hindcoxal dorsum conspicuously angulate basally (as in Fig. 262a), areolate in some vulneratus in which setae of postocellar area are straight, either appressed or erect, about as long as midocellar diameter; gaster black (red apically in some mediterraneus and some vulneratus)23
22. Free margin of clypeal lobe evenly arcuate (Fig. 342b); inner hindtibial spur with widely spaced rays (Fig. 343b); gastral terga without silvery, apical fasciae
schmiedeknechti Kohl, p. 568
Free margin of clypeal lobe with obtuse, median projection, concave between projection and corner (Fig. 289b); inner hindtibial spur with usual, closely spaced rays; terga I-III silvery fasciate apically. prosopigastroides Bischoff, p. 502
23. Sterna III-V largely impunctate and asetose except for apicomedian tuft or apicomedian fascia of erect setae (Figs. 293c-e, 373c, d) in addition to usual stiff setae at base of apical depression (fascia in some specimens rudimentary, difficult to see); setae curved or sinuous on each side of hypostoma; labrum flat. Southern Africa

Sterna III-V setose or, if largely impunctate and asetose, without apicomedian tuft of fascia of erect setae, integument punctate or impunctate; setae adjacent to hypostoma straight to sinuous; labrum flat to markedly convex
24. Forefemoral notch microscopically setose (Fig. 203a); erect apicomedian setae of sterna III-V emerging from single transverse line (Figs. 203d, e); foretarsomere I with 0-3 preapical rake spines; outer apical spine of foretarsomere II shorter than tarsomere III (Fig. 203b)
kalaharicus Arnold, p. 369
Forefemoral notch glabrous; erect apicomedian setae of sterna III-V emerging from small, longitudinally elongate area (Figs. 373c, d); foretarsomere I with three or four preapical rake spines; outer apical spine of foretarsomere II longer than tarsomere III (Fig. 373b)
subfimbriatus Arnold, p. 610
25. Hindwing vein cu-a oblique, with anal end further away from wing base than cubital end (as in Fig. 102a) and sterna IV-VI impunctate (including apical depressions) or with a few, sparse punctures, practically glabrous except densely punctate and setose anterolaterally 26 Hindwing vein cu-a vertical (anal and cubital ends equidistant from wing base) and/or sterna setose throughout 28
26. Frons, postocellar area, mesothorax, and tergum I with appressed setae; gaster red at least basally. Libya to Syria and Oman isis de Beaumont, p. 362
Head, postocellar area, mesothorax, and basal declivity of tergum I with erect setae (Fig. 16); gaster black. 27
27. Postocellar area narrow (Fig. 14b), width $0.7-1.3 \times$ length; scutal punctures no more than one diameter apart (Figs. 15a, b) . albocinctus (Lucas), p. 92 Postocellar area wide (Fig. 70b), width 1.7-2.0 \times length; discal punctures of scutum several to many diameters apart (Figs. 71a, b). bruneiceps Arnold, p. 171
28. Maxillary stipes with sinuous, suberect setae; labrum flat, not protruding from beneath clypeus; galea membranous; setae erect and sinuous adjacent to entire occipital carina; punctures of sterna II-VI several to many diameters apart mesally and contrastingly dense laterally. Egypt, Turkmenistan. . crocodilus Pulawski, p. 230
Setae of maxillary stipes minute, straight, appressed; other characters not in above combina-

29. Sterna IV-VI impunctate mesally from base to apex or with a few, sparse punctures, practically glabrous; width of postocellar area $0.5-1.3 \times$ length; outer margin of forebasitarsus with at least four rake spines; outer apical spine of foretarsomere II longer than tarsomere III, and at least terga I-III silvery fasciate apically . 30
Sterna IV-VI densely punctate and setose (apical depression contrastingly unsculptured and asetose in asmara, crassipes, ebeninus, fulgidus, mesembrius, vanrhynsi, and most punctatiformis); if largely impunctate and asetose, then either width of postocellar area more than twice length (some erythrurus), or outer margin of foretarsomere I with 0-2 spines and outer apical spine of foretarsomere II shorter than foretarsomere III (plicosus, tanqua, theseus, some mashona, some oberon), or terga nonfasciate (some crassipes and punctatiformis)
30. Setae of tergum I conspicuous, largely concealing integument; apical portion of forewing longer (Fig. 408a); frons bulging at about midheight (Figs. 111e, 406e) 31
Setae of tergum I not conspicuous, integument easily visible; apical portion of forewing shorter (as in Figs. 40a, 309a, b); frons uniformly convex . 32
31. Forefemoral notch deep, covered with erect setae, margined posteriorly (Fig. 406f); frontal bulge lower (Fig. 406e); foretibia uniformly, densely setose. vestitus Kohl, p. 650 Forefemoral notch shallow, glabrous, not margined (Fig. 111e); frontal bulge higher (Fig.

111d); foretibia with only a few setae along outer edge, practically glabrous
deserticola de Beaumont, p. 234
32. Clypeal lip without median projection, its free margin evenly arcuate (Figs. 118b, 409b); galea sclerotized. 33
Clypeal lip either with median projection that varies from minute (Fig. 27b) to conspicuous (Fig. 200b) or markedly sinuate (Fig. 225b), free margin concave on each side of projection; galea membranous 34
33. Mesopleuron either with well-defined punctures or areolate; forefemoral notch of average size; trimmal carina of mandible deeply emarginate distad of tooth (Fig. 409b); clypeal lobe wider, lip corners closer to respective orbit than to one another (Fig. 409b); tibiae all red
. vulneratus R. Turner, p. 654
Mesopleuron with ill-defined punctures, appearing evenly, finely sculptured; forefemoral notch unusually large (Fig. 118c); trimmal carina of mandible not emarginate distad of tooth (Fig. 118b); clypeal lobe narrower, lip corners closer to each other than to orbit (Fig. 118b); tibiae black except foretibial inner surface reddish. Turkey and Cyprus to Tajikistan, Arabian Peninsula
dignus Kohl, p. 246
34. Mesopleuron with well-defined punctures, vestiture not concealing integument; sternum VIII markedly tridentate apically in some populations. Subsaharan Africa
... . . argenticeps Arnold, p. 115
Mesopleuron at most with ill-defined punctures, vestiture concealing or not concealing integument; sternum VIII evenly emarginate apically. 35
35. Forefemoral notch shallower, about $0.2 \times$ femoral diameter in posterior view 36

Forefemoral notch deeper, about $0.3 \times$ femoral diameter or more in posterior view (Figs. 109e, 113d). 38
36. Free margin of clypeal lip markedly sinuate (Fig. 225b) mauretanus Pulawski, p. 402 Free margin of clypeal lip not sinuate (Figs. 27b, 200b). 37
37. Middle projection of clypeal free margin inconspicuous to roundly prominent (Fig. 27b), bevel absent; mesopleural vestiture concealing integument in fresh specimens
. argentatus Gussakovskij, p. 112
Middle projection of clypeal free margin conspicuous (Fig. 200b); bevel present to rudimentary; mesopleural vestiture not concealing integument julliani Kohl, p. 364
38. Bottom of forefemoral notch with minute but conspicuous, erect setae (Fig. 113d); mesopleural vestiture not concealing integument; gaster in vast majority of specimens black
desertorum F. Morawitz, p. 237
Bottom of forefemoral notch asetose or with inconspicuous setae; mesopleural vestiture concealing integument in fresh specimens; gaster at least partly red39
39. Forefemur markedly curved in dorsal view (Fig. 109d), its notch without platform (Fig. 109e). Sinai and Israel to Turkmenistan curvipes Pulawski, sp. nov., p. 232 Forefemur slightly curved in dorsal view (Fig. 191c), its notch with well-defined platform (Fig. 191d). Southern Sahara .incanus de Beaumont, p. 349
40. Scutum longitudinally ridged at least in posterior half (Figs. 315e, 316c); supraantennal swelling, in vast majority of specimens, densely punctate like adjacent frons (Fig. 316a) rhacodes Pulawski, sp. nov., p. 534
Scutum not ridged except ridged next to hindmargin in some tryssus; supraantennal swelling punctate or impunctate. 41
41. Supraantennal swelling punctate and setose, not concealed by vestiture (as in Fig. 316a); labrum convex near free margin, with usual row of apical setae; propodeal side mostly ridged
(unridged in smallest asinus); gaster red at least basally . 42
Supraantennal swelling fully concealed by vestiture or impunctate and glabrous except punctate in spectrum (in which the gaster is all black and propodeal side unridged), some ulonyovu (in which labrum is flat and propodeal side unridged), in some harpax (in which apical setae of labrum are short, thickened, Fig. 178c, and gaster of many specimens is black), and in many tryssus (in which labrum is flat and gaster all black)

45
42. Sternum I with median carina that is markedly prominent near apex, higher than midocellar diameter (Fig. 88c); femora and tibiae in most specimens black
carinatus Pulawski, sp. nov., p. 191
Sternum I without carina; at least tibiae red
43. Scutum uniformly, closely punctate, punctures less than one diameter apart, about as large as those on postocellar area; forefemur densely punctate and setose; apical depressions of sterna III-VI with suberect setae (setae appressed in smallest specimens). . . . asinus Arnold, p. 124 Scutum unevenly punctate (at least a few discal punctures more than one diameter apart), punctures at least slightly larger than those on postocellar area; forefemoral posteroventral surface impunctate at least in apical third (impunctate zone narrow or wide); sternal setae appressed or suberect.
44. Free margin of clypeal lip obtusely pointed, straight or concave between midpoint and corner (Fig. 265b); apical depressions of sterna III-VI with suberect setae onager Pulawski, sp. nov., p. 463
Free margin of clypeal lip arcuate (Fig. 336b); setal sterna appressed or nearly so.
. scaber Pulawski, sp. nov., p. 562
45. Posteroventral fore- and/or midfemoral surface impunctate or with punctures that are many diameters apart, these surfaces thus appearing almost glabrous (Fig. 308d); vertex width at most $1.5 \times$ length; galea at most as long as scape; sterna uniformly setose throughout. . . . 46
Fore- and midfemora densely punctate, uniformly setose (punctures about one diameter apart, inconspicuous in some species), but several diameters apart in omoi (in which vertex width is $2.5-3.0 \times$ length), in African populations of longipalpis (in which galea is twice as long as scape), and apically so in some vanrhynsi (in which apical depressions of sterna II-VI are glabrous). 63
46. Apical spine of foretarsomere II longer than this tarsomere's width; forebasitarsus with 3-7 rake spines 47
Apical spine of foretarsomere II not longer than this tarsomere's width; forebasitarsus with 1-3 rake spines 53
47. Basal declivity of tergum I with erect setae that are markedly longer than midocellar diameter

Tergum I with appressed setae that are shorter than midocellar diameter 49
48. Propodeal dorsum longitudinally ridged, dull; free margin of clypeal lobe obtusely pointed (Fig. 153b); galea practically unsculptured in about basal two thirds, contrastingly densely micropunctate in apical third, with punctures practically contiguous (Fig. 153c); gaster red basally; terga not fasciate . fulgidus Arnold, p. 297
Propodeal dorsum punctate (Fig. 303c), with shiny, unsculptured interspaces; free margin of clypeal lobe evenly arcuate (Fig. 303b); galea with a few, minute punctures; gaster black; terga I-III or I-IV silvery fasciate apically. punctiger Pulawski, sp. nov., p. 520
49. Gena adjacent to orbit unsculptured or at most with a few, sparse punctures; mesopleuron with well-defined punctures, interspaces unsculptured, shiny; clypeal lip mesally angulate or with tooth-like projection (Fig. 209f); propodeal dorsum setose throughout
limatus Arnold, p. 380
Gena minutely, densely punctate (interspaces about equal to punctures); mesopleuron with illdefined punctures, interspaces microsculptured, dull; free margin of clypeal lip arcuate, sinuate, or emarginate mesally; propodeal dorsum glabrous apicomesally (glabrous area evanescent in some marshalli)50
50. Midfemur uniformly closely punctate except punctures sparse apicoventrally; femora (except basally) and tibiae red; sternal setae appressed clypeatus Arnold, p. 204 Midfemoral venter with a few, sparse punctures (except punctures close basally); femora and tibiae black or sternal setae inclined
51. Clypeus (Fig. 301b): distance between lip corners $0.9-1.0 \times$ distance between corner and orbit; width of postocellar area 1.1-1.5 \times length; dorsal length of flagellomere I 1.3-1.4 \times apical width; sternal setae appressed; gaster, femora, and tibiae black, frontal setae silvery . punctatus (F. Smith), p. 518
Clypeus (Fig. 221b): distance between corners $0.6-0.7 \times$ distance between corner and orbit; width of postocellar area $0.9-1.1 \times$ length; dorsal length of flagellomere I $2.4-2.8 \times$ apical width; sterna IV-VI with inclined setae; at least foretibia red; frontal vesture golden . . . 52
52. Gaster all black or terga I-III reddish near center; mesopleural setae black, erect (Fig. 221c); wings dark with violet shimmer. marshalli R. Turner, p. 395 Gaster red basally; mesopleural setae light, appressed or nearly so (suberect in many specimens from Ethiopia); wings varying from uniformly dark to bicolored (yellowish basally, with infumate apical band)
. quadricolor (Gerstaecker), p. 524
53. Clypeal lip pointed (sharply to obtusely), without lateral corner (with vestigial corner in some rufopictus), its free margin thus forming single curved line with remaining clypeal margin (Figs. 62b, 230b, 323b) 54
Clypeal lip not pointed, at most obtusely protruding mesally (concave on each side on midpoint), with lateral corner. 56
54. Scutal punctures, near center, several diameters apart; propodeal dorsum ridged or coriaceous, with apicomedian glabrous area; propodeal side ridged; punctures of sterna IV-VI (except laterally) averaging several diameters apart; setae erect, sinuous on postocellar area and scutum; tibiae black . mesembrius Pulawski, sp. nov., p. 412 Scutal punctures about 1-2 diameters apart; propodeal dorsum evenly microareolate, setose throughout; propodeal side not ridged; sternal punctures about one diameter apart; setae appressed, straight on postocellar area and scutum; tibiae red
55. Punctures of sterna IV-VI inconspicuously larger and sparser than those of sternum II; gaster black . braunsi Arnold, p. 154
Punctures of sterna IV-VI larger and sparser than those of sternum II basally; gaster in most specimens red basally . rufopictus Arnold, p. 544
56. Thoracic setae dark brown; clypeal lobe broader, distance between its corners $0.9 \times$ distance between adjacent corner and orbit (Fig. 84b); femora black; length $9.4-13.1 \mathrm{~mm}$. capensis (de Saussure), p. 187
Thoracic setae silvery or with golden tinge; clypeal lobe narrower and/or femora red (except in gessianus); length $7.4-9.5 \mathrm{~mm}$. 57
57. Free margin of clypeal lobe either evenly arcuate (Figs. 206d, 248b, 327b) or nearly straight between midpoint and corner, minimally concave near corner in saevus (in which forewing membrane is yellow and costal and subcostal veins are reddish brown)
58. Propodeal side ridged. . khoikhoi Pulawski, sp. nov., p. 375Propodeal side punctate59
59. Mesopleuron between punctures minimally microsculptured, shiny; gaster in most specimensred basally. namaqua Pulawski, sp. nov., p. 437
Mesopleuron between punctures markedly microsculptured, dull; gaster black. 60
60. Forewing membrane yellow, costal and subcostal veins reddish brown
Forewing membrane infumate, costal and subcostal veins dark browngessianus Pulawski, sp. nov. (exceptional specimens), p. 312
61. Setae of postocellar area erect, about one midocellar diameter long; sterna III-VII withsuberect setae that are about one midocellar diameter long (in addition to usual, longer setaethat delimit each apical depression); forefemoral notch extending far onto posterior surface, itsbottom with narrow (almost crest-like) platformibi Pulawski, sp. nov., p. 347
Setae of postocellar area appressed; sternal setae appressed except usual erect setae at base ofeach apical depression; forefemoral notch not extending onto posterior surface, without narrowplatform62
62. Gaster and femora black; propodeal side punctate near center, evenly microsculptured alongmetapleural sulcus. karoo Pulawski, sp. nov., p. 374
Gaster red except black apex, femora varying from all black to mostly red; propodeal sideridged, ridges evanescent in some specimens tanqua Pulawski, sp. nov., p. 62063. Hindcoxal dorsum with inner margin markedly expanded basally into a tooth (Fig. 262a), butexpansion low in some octodentatus which has unique, thickened hindtibial spur (Figs. 262b,c); tergum I with appressed setae; gaster and legs black.64
Hindcoxal dorsum not expanded to slightly expanded (somewhat intermediate in erectus inwhich setae of tergum I are erect); hindtibial spur not thickened; gaster and legs variously col-ored.67
64. Outer margin of foretarsomere I with 4-6 spines; hindtibial spurs thickened (Figs. 262b, c);punctures well defined and relatively large on sterna I and II, gradually decreasing in size onfollowing sterna. octodentatus Arnold, p. 458Outer margin of foretarsomere I without preapical spines; hindtibial spurs not thickened; ster-nal punctures about equal in size64
65. Propodeum carinate between dorsum and side, side punctate; forefemoral notch markedlyexpanded dorsad on anterior femoral face, with bottom compressed into glabrous, longitudinalcrest (Figs. 284a-c); tooth of trimmal carina of mandible unusually large (Fig. 283b)
plicosus (A. Costa), p. 495Propodeum not carinate between dorsum and side, side ridged; forefemoral notch not expand-ed dorsad, its bottom not compressed into crest; tooth of trimmal carina of mandible absent(Fig. 104b) or of average size (Fig. 226b)66
66. Setae sinuous on postocellar area (Fig. 226b), markedly longer than midocellar diameter onscutum; trimmal carina of mandible with well-developed tooth (Fig. 226b); dorsal length of fla-gellomere I 1.6-2.0 \times apical widthmediterraneus Kohl, p. 404
Setae straight on postocellar area, about as long as midocellar diameter on scutum; trimmalcarina of mandible without tooth (Fig. 104b); dorsal length of flagellomere I about equal to api-cal width . coxalis Pulawski, sp. nov., p. 225
67. Basal declivity of tergum I (as in Fig. 16) and outer side of scape with erect setae; labrum flat;gaster and legs black68
Setae of tergum I appressed except erect in most hadronyx (Namibia) in which labrum is
markedly convex, scapal setae are appressed, and gaster and legs are at least partly red . . 69
68. Free margin of clypeal lip obtusely to acutely pointed (Fig. 286f); outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III; sternum VIII evenly emarginate apically; Mali, Algeria, Egypt, and Pakistan.
. priesneri de Beaumont, p. 499
Free margin of clypeal lip straight (Fig. 128a); outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III; sternum VIII tridentate apically; northeastern South Africa erectus Pulawski, sp. nov., p. 261
69. Clypeal lip without corner (e.g., Figs. 26b, 295b) or with ill-defined corner (somewhat prominent in certain ulonyovu), lip free margin rounded at least mesally to sharply pointed (bevel, in agnus, pseudofasciatus, and nitidissimus, with minuscule tubercle adjacent to clypeal margin that may resemble lip corner)
Clypeal lip with corner (corner obtuse in mycerinus and sulcidorsum), lip free margin arcuate, sinuate, or truncate, obtusely pointed in gessianus and mycerinus 83
70. Propodeal dorsum glabrous apicomesally (Fig. 418c); forebasitarsus with at least two preapical rake spines; tibiae red; labrum convex apically .71
Propodeal dorsum setose throughout; forebasitarsus without preapical rake spines except spines present in anubis, pseudofasciatus, some nitidus, and some titania (in which labrum is flat and tibiae vary from black to red)
71. Gaster black; outer apical spine of foretarsomere II longer than tarsomere III
. psilonotus Pulawski, sp. nov., p. 508
Gaster red at least basally; outer apical spine of foretarsomere II at least slightly shorter than tarsomere III ziziphi Pulawski, sp. nov., p. 665
72. Mesopleural punctures well defined (partly concealed by vestiture in anubis), interspaces shiny; midfemoral venter with suberect setae (as in Figs. 97c, d); setae of postocellar area erect, as long as midocellar diameter or longer
Mesopleural punctures ill defined and/or midfemoral venter with appressed setae; setae of postocellar area erect to appressed, as long as midocellar diameter or shorter. 80
73. Forebasitarsus with two preapical rake spines; outer apical spine of foretarsomere II longer than foretarsomere III; costal and subcostal veins of forewing yellowish brown; hindtibia partly reddish anubis Pulawski, p. 110
Forebasitarsus without preapical spines except in nitidus and some titania; outer apical spine of foretarsomere II shorter than foretarsomere III (equal to in exceptional nitidus); subcostal vein of forewing darker than costal vein; tibiae black . 74
74. Basal flagellomeres shortened: ventral length of I slightly less than apical width, III markedly shorter than IV (Fig. 254c). nitidissimus de Beaumont, p. 446 Basal flagellomeres not shortened or slightly shortened: ventral length of I at least slightly more than apical width, III about as long as IV 75
75. Flagellomeres III-X each with longitudinal sulcus that separates two differently setose areas (as in Figs. 98c-f), but sulcus rudimentary in some specimens; sternum VIII tridentate apically, but middle tooth evanescent in some specimens diversilabris Arnold, p. 251 Flagellum without sulcus; sternum VIII evenly emarginate apically 76
76. Clypeal bevel delimited laterally by obtuse carina that emerges from lip and that is almost parallel to clypeal margin. Southern Africa . 77
Clypeal bevel delimited laterally by tubercle (round or oblong) or not delimited. Northern Hemisphere. 79
77. Setae of hindfemoral venter suberect basally (Fig. 215f); length of flagellomere IV $2.0 \times$ api-
cal width; tarsi longer (Fig. 215h), length of hindtarsomere IV about $1.6-1.8 \times$ apical width; apical portion of galea (distad of crease) densely punctate, in profile somewhat shorter than wide
longipes Pulawski, sp. nov., p. 388
Setae of hindfemoral venter appressed; length of flagellomere IV 1.6-1.8 \times apical width; tarsi shorter, length of hindtarsomere IV 1.3-1.5 \times apical width; galea: see next couplet 78
78. Apical portion of galea (distad of crease) sparsely punctate, almost like basal portion, in profile slightly longer than wide (Fig. 393); oblique carina that emerges from clypeal midpoint not ending in small tubercle (Fig. 392d). titania Arnold, p. 634 Apical portion of galea (distad of crease) densely punctate (markedly denser than basal portion), in profile somewhat shorter than wide; oblique carina that emerges from clypeal midpoint ending in small tubercle (Fig. 182d). hermia Arnold, p. 338
79. Setae straight or angled apically on postocellar area and thorax . . . nitidus (Spinola), p. 449 Setae sinuous on at least postocellar area and mesopleuron anteriorly.
. agnus Pulawski, p. 90
80. Forebasitarsus with rake; outer apical spine of foretarsomere II longer than tarsomere III; clypeal bevel with lateral tubercle next to free margin, lip free margin obtusely pointed mesally, slightly concave on each side of midpoint (Fig. 293d)
. pseudofasciatus Pulawski, sp. nov., p. 506
Forebasitarsus without rake; outer apical spine of foretarsomere II shorter than foretarsomere III; clypeal bevel without tubercle, lip free margin not concave on each side of midpoint . 81
81. Propodeal side ridged; setae of propodeal dorsum pointing anterad; galea shorter than wide. . fulvitarsis (A. Costa), p. 299
Propodeal side not ridged; setae of propodeal dorsum pointing posterad; galea about as long as or longer than wide82
82. Gaster black; free margin of clypeal lip more pointed (Fig. 412b); inner mandibular margin without tooth (Fig. 412b); apical tarsomeres without ventral spines; sternum VIII evenly emarginate apically . waltoni Arnold, p. 658 Gaster red basally; free margin of clypeal lip more rounded (Fig. 396b); inner mandibular margin with tooth (Fig. 396b); apical tarsomeres each with one or two small, preapical spines on venter; sternum VIII apically tridentate or at least convex mesally ulonyovu Pulawski, sp. nov., p. 639
83. Labrum convex, protruding beyond clypeal free margin (Fig. 270e), but practically flat and not protruding in some claripes and some diabolicus (in which propodeal dorsum is glabrous apicomesally); supraantennal swelling not unusually expanded
Labrum flat, not protruding beyond clypeal free margin or protruding only minimally, protruding in pusulosus in which supraantennal swelling is unusually expanded (Figs. 305d, f); propodeal dorsum all setose. 134
84. Setae of postocellar area erect, markedly longer than midocellar diameter. Namib Desert . 85 Setae of postocellar area appressed or nearly so (erect on postocellar impression in notogoniaeformis), at most slightly longer than midocellar diameter
85. Gaster black (apical depressions of segments translucent); width of postocellar area 1.2-1.4× length; setae of tergum I appressed or nearly so, no longer than midocellar diameter. .tenuicornis Bischoff, p. 626
Gaster red basally; width of postocellar area $1.8-1.9 \times$ length; setae of tergum I (except posteriorly) mostly erect, markedly longer than midocellar diameter (but short, inconspicuous in some specimens)
. hadronyx Pulawski, sp. nov., p. 326
86. Setae of at least lower gena partly to all sinuous and at least slightly longer than midocellar
diameter 87
Genal setae straight, shorter to longer than midocellar diameter (slightly sinuous in many southern African dolosus) 90
87. Propodeal side ridged; sterna IV-VI each with subbasal, erect fringe of agglutinated setae(fringes visible only when segments are fully extended) . . ulothrix Pulawski, sp. nov., p. 642Propodeal side not ridged; sterna without fringes of agglutinated setae. 88
88. Propodeal side glabrous anteriorly; inner hindtibial spur with usual, closely spaced rays.. bostryx Pulawski, sp. nov., p. 150Propodeal side setose throughout; inner hindtibial spur (except in many pulcher) with sparse-ly spaced rays (Fig. 233d), at least mesally. 89
89. Longest setae of lower gena slightly more than one midocellar diameter long, those on propodeal dorsum straight in most specimens, of tergum I straight, not concealing integument, fully appressed; hindfemoral venter with inner (= posterior) margin well defined in distal half; dorsal volsellar process low, broad (Fig. 298c). pulcher Pulawski, p. 512 Longest setae of lower gena about twice midocellar diameter long, those on propodeal dorsum sinuous, of tergum I somewhat sinuous, largely concealing integument, in most specimens not fully appressed; hindfemoral venter with inner (= posterior) margin ill defined; dorsal volsellar process narrow, elongate (Fig. 232d). micans (Radoszkowski), p. 414
90. Propodeal dorsum all setose, with setae diverging obliquely anterad from midline (except in montivagus); propodeal side ridged at least basally; upper metapleural pit oblong; sterna V and VI except usakos each with subbasal fringe of dense, as if agglutinated setae (Figs. 276a-f), although fringes visible only when sterna are fully extended.91
Propodeal dorsum with different setal pattern; side ridged or not ridged; upper metapleural pitround; sterna without fringes99
91. Carina emerging from clypeal lip corner well defined, extending well above lip, carinae parallel; midfemoral venter in many specimens with erect setae, at least in distal half (Fig. 389d). Namib Desert. thysanomerus Pulawski, sp. nov., p. 631 Carina emerging from lip corner absent, ill defined, or well defined; if well defined and extending well above lip, then carinae markedly diverging; midfemoral venter without erect setae
92. Dense clypeal punctation reaching lip base laterally (Fig. 9b); clypeal bevel yellowish red; sterna V and VI each with basal fringe of agglutinated setae aethiopicus Arnold, p. 83 Dense clypeal punctation not reaching lip base or reaching it only at lip corner except more so in some usakos (in which sterna V and VI have no fringes) and some miniatulus (in which clypeal bevel is black and sterna IV-VI each has a basal fringe of agglutinated setae). . . . 93
93. Carina emerging from clypeal lip corner well defined, extending well above lip; setae of propodeal dorsum equal to $0.8-1.0$ of midocellar diameter; sternum IV without basal fringe of agglutinated setae, sterna V and VI each with such fringe (Figs. 276a-d); apicolateral prong of sternum VIII, in most specimens, incised on inner margin (Fig. 275c)
pentheri Cameron, p. 482
Carina emerging from clypeal lip corner not extending well above lip except extending in frigidus (in which sterna IV-VI each has basal fringe of agglutinated setae); apicolateral prong of sternum VIII not incised on inner margin94
94. Clypeus longer: distance between antennal socket and clypeal free margin 1.2-1.3 \times distance between lip corners; mandible elongate (Fig. 148b). Southwestern Namib Desert frigidus Pulawski, sp. nov., p. 285
Clypeus shorter: distance between antennal socket and clypeal free margin $0.7-1.0 \times$ distance
between lip corner except $1.2 \times$ in montivagus; mandible not elongate 95
95. Clypeal lip with well-defined lateral margin (Fig. 243b); most setae of propodeal dorsum diverging laterad or posterolaterad (Fig. 243c); mid- and hindtibiae black or midtibia with reddish zones; sternum IV without basal fringe of agglutinated setae, fringes present on sterna V and VI. Lesotho . montivagus Arnold, p. 430 Clypeal lip with ill-defined lateral margin; setae of propodeal dorsum diverging anterolaterad; all tibiae red in many specimens; sterna IV-VI each with basal fringe of agglutinated setae except fringes absent in usakos . 96
96. Gaster all black . melanius Pulawski, sp. nov., p. 409 At least gastral segments I and II red . 97
97. Clypeus black, lip corner somewhat ill defined (Fig. 235b); femora black except red apex . . miniatulus Arnold, p. 418
Middle clypeal section yellowish red distally, lip corner well defined; femora largely red . 98
98. Gaster all red or preapical segments brown (at least sternum VIII red); sterna IV-VI each with basal, low fringe of agglutinated setae; forefemoral notch microscopically setose ruber Pulawski, sp. nov., p. 543
Gastral segments II or III red, remainder black; sterna without fringes; forefemoral notch asetose
usakos Pulawski, sp. nov., p. 644
99. Propodeal dorsum with asetose apicomedian area (Figs. 6b, 56c, 68c, d, 95c) that is at least two midocellar diameters long and one midocellar diameter wide, adjacent setae oriented posterad

Propodeal dorsum setose throughout or with minimal glabrous area apicomesally, setae variously oriented. 108
100.Foretarsomere I without preapical spines on outer margin or with one or two such spines that are shorter than tarsomere's apical width; outer apical spine of foretarsomere II shorter than tarsomere III 101
Foretarsomere I with at least three preapical rake spines on outer margin that are longer than tarsomere's apical width; outer apical spine of foretarsomere II longer than tarsomere III 102
101.Gastral segments I and II or I-III red; tibiae red; setae of postocellar impression appressed; wing membrane yellowish, slightly infumate (almost hyaline) in some specimens. Zaire to South Africa . brinckerae R. Turner, p. 168 Gaster and tibiae black; setae of postocellar impression erect, about as long as $0.5 \times$ midocellar diameter (best seen in oblique ventral view); wing membrane infumate. Morocco to Libya notogoniaeformis Nadig, p. 452
102. Gaster red basally and black apically, terga not fasciate; scutum shiny, with well-defined punctures, many of which are more than one diameter apart; sterna III-IV with conspicuous, subappressed setae. sabulosus Pulawski, sp. nov., p. 549 Gaster all black or all or partly red; if red basally, then terga I-III or I-IV fasciate apically and either scutum dull, with punctures nearly contiguous (rhodesianus) or sterna III-VI with appressed, inconspicuous setae (bemba) . 103
103.Gaster and legs all or largely red; thoracic setae all golden rhodesianus Bischoff, p. 537

Gaster and/or legs black; thoracic setae silvery or golden . 104
104. Most basomedian setae of propodeal dorsum oriented obliquely anterad, adlateral and apical setae oriented obliquely posterad (Figs. 46b, 56c) . 105 Basomedian setae of propodeal dorsum oriented posterad or glabrous area extends to propodeal foremargin 106
105.Thoracic setae and tergal fasciae golden in fresh specimens; femora largely and all tibiae red, gaster all black aureorufoniger Pulawski, sp. nov., p. 135 Thoracic setae at most with golden tinge, tergal fasciae silvery; femora and tibiae varying from black to red, gastral segments I-II or III red (possibly gaster all black in some specimens, as it is in some females) . emba Pulawski, sp. nov., p. 145
106.Gastral terga not fasciate. diabolicus Arnold, p. 243
Gastral terga I-III or I-V each with silvery or golden apical fascia (only terga I and II fasciate in some claripes) 107
107.Episcrobal area with setae appressed and shorter than midocellar diameter; costal and subcostal veins of forewing reddish brown (nearly identical in color); apical sterna with appressed setae . lacertosus Arnold, p. 378
Episcrobal area with setae erect or nearly so, at least as long as midocellar diameter; costal and subcostal veins of forewing varying from reddish to nearly black; setae of apical sterna varying from suberect to appressed. claripes Arnold, p. 199
108. Outer apical spine of foretarsomere II as long as tarsomere III or shorter except slightly longer in some Asian longipalpis (in which dorsal volsellar process is low); outer margin of forebasitarsus in many specimens without preapical spines, but with up to four in some; forefemoral notch of average size or smaller 109
Outer apical spine of foretarsomere II longer than tarsomere III but as long as tarsomere III in some excavatus (in which forefemoral notch is unusually long, Figs. 138c, d) and in some palopterus (in which dorsal volsellar process is elevated); outer margin of forebasitarsus with 2-6 preapical rake spines, without preapical spines in some excavatus 116
109.Dorsal length of flagellomere I 1.1-1.3 \times apical width; middle clypeal lobe wide: distance between corners greater than clypeal midlength; dorsal volsellar process rounded apically (Fig. 329c) . sahelensis Pulawski, sp. nov., p. 553
Dorsal length of flagellomere I $1.9 \times$ apical width or more, but $1.6-2.6$ in incertus in which dorsal volsellar process is pointed apically (Fig. 192e); middle clypeal lobe varying: distance between corners smaller to greater than clypeal midlength. 110
110.Dorsal volsellar process sharply pointed (Fig. 192e) incertus (Radoszkowski), p. 352 Dorsal volsellar process rounded apically . 111
111. Galea with a few, ill-defined punctures; terga I-III silvery fasciate apically (fasciae ill defined in some specimens) . brevipecten de Beaumont, p. 157 Galea closely punctate except sparsely near anterior margin . 112
112. Terga I-III silvery fasciate apically . 113

Tergal fasciae ill defined or absent . 114
113. Gastral segments I-III red; wing membrane yellowish. mocsaryi Kohl, p. 422

Gaster all black or tergum II reddish basomedially; wing membrane infumate. Egypt, Israel. . chephren de Beaumont, p. 197
114.Dorsal volsellar process low (Figs. 214d, e); in many specimens apical depression of sterna II-VI asetose; in African (but not Asian) specimens clypeal lip corners visibly closer to respective orbit than to each other, galea markedly elongate (Fig. 214a), exceeding the palpi, and forefemoral venter asetose between notch and apex. longipalpis de Beaumont, p. 385 Dorsal volsellar process narrow, long; sterna setose throughout; clypeal lip corners closer to each other or minimally closer to respective orbit; galea not exceeding palpi; forefemoral venter setose 115
115. Setae of propodeal dorsum oriented posterad (except basally); wing membrane markedly infumate; propodeal side ridged in some specimens
gracilicornis Mercet, p. 315

Setae of propodeal dorsum oriented anterad except lateral setae oriented posterad (Fig. 7a), lateral setae joining apicomesally in Arabian specimens; wing membrane yellowish; propodeal side not ridged
aemulus Kohl, p. 81
116. Mandibular notch unusually large, longer than distance that separates it from orbit (Fig. 73d)
 Mandibular notch the usual size. 117
117.Frons unusually prominent (Figs. 311d, e). Egypt ramses Pulawski, p. 529 Frons not unusually prominent. 118
118. Setae erect, about as long as midocellar diameter, on postocellar impression and lower gena. Morocco, Tunisia . atlanteus de Beaumont, p. 133
Setae of postocellar area appressed or nearly so and shorter than midocellar diameter, nearly erect and about as long as midocellar diameter in calidus in which setae of lower genae are longer than midocellar diameter. 119
119.Forefemoral notch impunctate and glabrous or with sparse, microscopic punctures and setae (Fig. 163); tibiae black (at least hindtibia) in many specimens. Kenya to Namibia and South Africa . georgii Arnold, p. 309 Forefemoral notch densely, microscopically punctate and setose (asetose in some Egyptian palopterus); tibiae red (all or partly) in African specimens but all black in many mocsaryi from Algeria and Morocco, also femora red in many specimens . 120
120.Dorsal volsellar process not differentiated or lower than wide (nearly as high as wide in many southern African dissimulatus), with lateral margins mostly ill defined or diverging toward base (Figs. 120c, d, 124b, 140, 246a, b, d, e, 271, 376f) . 121
Dorsal volsellar process as high as wide or higher, slightly lower in some palopterus (which occurs north of equator), its lateral margins parallel to concave, diverging toward base in some palopterus.
121.Setae of propodeal dorsum all oriented anterad or anterolaterad (Fig. 124a); those adjacent to oral fossa (next to occipital carina) slightly longer than midocellar diameter; forefemoral notch densely, microscopically punctate and setose (Figs. 123f, g) dolosus Arnold, p. 254 Setae of propodeal dorsum variously oriented but not as above, those adjacent to oral fossa shorter than midocellar diameter except in some Saharan panzeri; forefemoral notch different 122
122.Forefemoral notch characteristically microareolate (Figs. 138e, f), appearing uniformly mat under lower magnifications, unusually large (Figs. 138c, d), deeper and longer than average for the genus, but shallow in smallest specimens in which forebasitarsus has three rake spines or less . excavatus Pulawski, sp. nov., p. 275 Forefemoral notch of usual size, not microareolate; forebasitarsus with 4-7 rake spines . 123
123.Free margin of clypeal lip obtusely pointed, not emarginate (Fig. 245b).
mycerinus de Beaumont, p. 432
Free margin of clypeal lobe not pointed, with median emargination (emargination vestigial in some panzeri) 124
124.Foretibial outer surface glabrous or sparsely setose. Zimbabwe sycorax Arnold, p. 615 Foretibia evenly, densely setose. 125
125.North of equator; dorsal volsellar process rounded apically or nearly so, differentiated from apical volsellar portion (Fig. 271) panzeri (Vander Linden), p. 473 South of equator; dorsal volsellar process either obliquely truncate apically or not differentiated from apical volsellar portion, but nearly rounded apically in some specimens (Figs. 120c, d) . dissimulatus Pulawski, sp. nov., p. 248
126. Trimmal carina of mandible obtuse distad of tooth but contrastingly sharp preapically; clypeal
lobe broad, lip corners closer to orbit than to each other (Figs. 81a, 378b). South of equator 127
Trimmal carina of mandible sharp between tooth and apex; clypeal lip corners closer to each other than to orbit or equidistant in some species (but closer to orbit in cheops, most palopterus, and many ptah). North of equator . 128
127.Hindfemoral venter with inner (= posterior) margin obtuse; galea with ill-defined punctures, interspaces aciculate, dull; apical margin of sternum VIII tridentate (middle tooth in some specimens round, broad projection); gaster black (apex red in some specimens). Namibia . camptopygus Pulawski, sp. nov., p. 183
Hindfemoral venter with inner (= posterior) margin sharp (carina-like) in distal half; galea with well-defined punctures, interspaces unsculptured, shiny; apical margin of tergum VIII without median tooth; gaster red basally. Kenya, Tanzania, Namibia . taita Pulawski, sp. nov., p. 617
128. Setae of propodeal dorsum along midline oriented all anterad, remaining setae oriented anterolaterad or laterad (as in Fig. 124a); clypeal lip corner somewhat prominent (Fig. 359b). Island of Socotra. . socotrae Pulawski, sp. nov., p. 592 At least some setae of propodeal dorsum oriented posterad; clypeal lip corner nonprominent. Continental Africa
129.Setae not longer than midocellar diameter adjacent to oral fossa next to occipital carina. . . .

Setae longer than midocellar diameter adjacent to oral fossa next to occipital carina (Figs. 77e, f, 91c) . 133
130.Scutal punctures well defined, two to several diameters apart on at least part of disk; forefemoral notch densely, microscopically ridged, appearing dull under lower magnifications (Figs. 75a, b). Southern Africa caliban Arnold, p. 175
Scutal punctures ill defined, about one diameter apart; forefemoral notch not wrinkled, not appearing dull. North of equator 131
131.Bottom of forefemoral notch broad, nearly as wide as long, with microscopic appressed setae or asetose; hindfemoral venter with inner (= posterior) margin obtuse; dorsal volsellar process either longer than wide and forming widely obtuse angle with volsella's apical portion or about as long as high (Figs. 269c, d) . palopterus (Dahlbom), p. 470 Bottom of forefemoral notch narrow, markedly longer than wide, with microscopic erect setae; hindfemoral venter with inner (= posterior) margin well defined in distal half; dorsal volsellar process longer than wide, not forming widely obtuse angle with volsella's apical portion (Figs. 238c, d, 296c)................ 132
132. Galea aciculate, with a few, ill-defined punctures; propodeal side unridged
 Galea densely punctate (except anteriorly); propodeal side in many specimens partly to all ridged . mocsaryi Kohl, p. 422
133.Hindfemoral venter with inner (= posterior) margin obtuse; clypeus with free margin of lateral section unusually shallowly emarginate (Fig. 91b); oblique carina emerging from lip corner not extending onto bevel, bevel shorter than basomedian area to nearly reduced; propodeal side setose throughout . cheops de Beaumont, p. 194 Hindfemoral venter with inner (= posterior) margin sharp; free margin of clypeal lateral section deeply emarginate, emargination size average for the genus (Figs. 77c, d); oblique carina emerging from lip corner extends beyond lip; bevel shorter than basomedian area but well defined; propodeal side anteriorly glabrous (southern and eastern Africa) or setose throughout
(most West African specimens) calidus Pulawski, sp. nov., p. 178
134.Flagellomere III unusually long, its dorsal length $1.9-2.0 \times$ that of flagellomere II and about$1.2-1.3 \times$ that of flagellomere IV; scutal setae oriented posterad along midline in anterior thirdto half, adjacent setae oriented laterad, forming characteristic, rosette-like pattern (Figs. 330c,d). Kenya, Tanzania . samburu Pulawski, sp. nov., p. 555Flagellomere III no longer or insignificantly longer than either flagellomere II or IV; scutumwithout rosette-like setal pattern135
135. Outer apical spine of foretarsomere II longer than tarsomere III (as long as tarsomere II in somespeciosissimus in which sternum II is sparsely setose along midline); propodeal dorsum rugoseor ridged136
Outer apical spine of foretarsomere II shorter than tarsomere III, but only slightly so in somefugax, and equal in length in some gagates (in which propodeal dorsum is unsculptured or aci-culate except for sparse, microscopic punctures); sternum II uniformly setose 145
136.Propodeal setae sinuous (except setae of propodeal side straight anteriorly) 137
Propodeal setae straight 138
137.Mesothoracic venter with anterior (oblique) portion longer than posterior (horizontal) part (Fig. 130); dorsal length of flagellomere I 1.5-2.2 \times apical width, ventral length conspicuouslygreater than apical width; forefemoral notch obtusely angulate basallyerythrophorus Dalla Torre, p. 262Mesothoracic venter with anterior (oblique) portion shorter than posterior (horizontal) part;dorsal length of flagellomere I 1.0-1.4× apical width, ventral length in most specimens aboutequal to apical width; forefemoral notch in some specimens acutely angulate basally
gujaraticus Nurse, p. 323
138.Setae of propodeal dorsum oriented anterad; terga I-IV silvery fasciate apically 139
Setae of propodeal dorsum inclined posterad; tergal fasciae in many specimens evanescent or absent 142
139.Mesopleuron dull, finely rugose; sternum II (except in specimens from Pakistan) sparselypunctate and setose on broad, median zone; venter of trochanters II and III unsculptured exceptfor a few, sparse punctures . speciosissimus Morice, p. 597Mesopleuron shiny, with well-defined punctures; sternum II uniformly, densely punctate andsetose; midtrochanteral venters densely punctate (midtrochanteral punctures sparse, inconspic-uous in yarrowi)140
140.Clypeus (Fig. 415b): bevel well defined, clearly separated from basomedian area, about as longas latter; lip corner rounded, free margin of lateral section not concave; forewing veins uni-formly yellowish brown; tibiae in most specimens reddish basally and apically. North Africa. yarrowi de Beaumont, p. 661
Clypeus: bevel inconspicuous or unsharply delimited from basomedian area; lip corner sharp,free margin of lateral section concave; at least subcostal vein of forewing brown (darker thancostal vein)141
141.Clypeal bevel markedly shorter than basomedian area (Fig. 181b), sparse clypeal punctationnot extending to frontoclypeal suture. Egypt to Niger . helveticus aegyptiacus Morice, p. 335Clypeal bevel indistinctly delimited from basomedian area, sparse punctation extending toclypeal base or nearly so (Fig. 43d). Southern Africa. aterrimus Arnold, p. 130
142.Frontal setae golden; tibiae all or partly reddish. ebeninus Arnold, p. 258
Frontal setae silvery; tibiae black 143
143.Setae straight on postocellar area, lower gena, and thorax (at most angled apically), appressedor nearly so on midfemoral venter; mesopleuron dull, with minute, inconspicuous punctures
vanrhynsi Arnold, p. 646Setae sinuous on thorax, erect on midfemoral venter; mesopleuron variously punctured . 144144. Width of postocellar area 1.1-1.6 \times length; basal declivity of tergum I and hindfemoral venter,in many but not all specimens, with erect setae.punctatiformis Arnold, p. 514Width of postocellar area $0.8-1.0 \times$ length; tergum I with appressed setae; setae of hindfemoralventer nearly appressed, shorter than midocellar diameter crassipes Arnold, p. 227
145.Supraantennal swelling conspicuously expanded (Figs. 305d, f); mesopleuron punctatorugose;width of postocellar area $1.6 \times$ length; tibiae black. Morocco, Libya, Syria, Turkey.
Supraantennal swelling not expanded except expanded in bipustulosus, mashona, and ovamboin which width of postocellar area is $1.0-1.2 \times$ length, mesopleuron is punctate, and tibiae arered (only partly so in ovambo) . 146
146.Supraantennal swelling conspicuously expanded, higher than antennal socket rim, not fusedwith latter (separated by constriction), with lateral sides almost perpendicular to frons plain(Figs. 58c-e); socket rim markedly higher dorsally than ventrally (Fig. 58e)
bipustulosus Arnold, p. 147
Supraantennal swelling not expanded except expanded in mashona (in which swelling is fusedwith antennal socket rim) and slightly so in ovambo (in which swelling sides are oblique) . .
147
147.Scutum deeply impressed anteromesally (Fig. 375c); scutal flange gradually expanding in pos-terior half, roundly prominent apically (Fig. 375c); mesopleural flange conspicuously expand-ed, yellowish brown, overhanging subalar fossa (Fig. 375d); metapleural flange unusuallylarge. Northwest Africa . sulcidorsum de Beaumont, p. 613Scutum, scutal flange, mesopleural and metapleural flange the usual shape148
148. Ventral length of flagellomere I less than half that of II (Fig. 33d), in most specimens less than apical width; setae of midfemoral venter appressed . argentifrons Arnold, p. 120 Ventral length of flagellomere I more than half that of II; ventral length of flagellomere I and midfemoral setae varying (see next couplet) 149
149. Ventral length of flagellomere I slightly less than apical width (Fig. 55c); free margin of clypeallip not markedly arcuate (Figs. 54b, 136b); mesopleuron microsculptured and dull betweenpunctures; setae of midfemoral venter shorter than midocellar diameter; length of midtar-somere II at most $2.0 \times$ apical width; gaster all black.150
Ventral length of flagellomere I more than apical width except in some saturnus (in whichmesopleuron is unsculptured and shiny between punctures), equal to width in some gessianus(in which free margin of clypeal lip is markedly arcuate, Fig. 165) and in some ovambo (inwhich supraantennal swelling are slightly but visibly enlarged), about equal to width in ery-thrurus (in which gaster is red apically) and in many oberon (in which gaster is red at leastbasally); length of midtarsomere II more than 2.0 apical width except in many oberon . . 152
150.Clypeal lobe broader: distance between lip corners $1.3 \times$ clypeal midline; galea shorter thanwide in profile, lateral surface not concave; forebasitarsus with two or three preapical rakespines; propodeal side unridged eurystoma Pulawski, sp. nov., p. 273Clypeal lobe narrower: distance between lip corners about equal to clypeal midline; galea inprofile longer than wide, lateral surface concave in most specimens; forebasitarsus at most withone preapical spine; propodeal side ridged or unridged151
151.Propodeal side ridged (ridges evanescent in some specimens). barkeri Arnold, p. 142
Propodeal side unridged brachypus Pulawski, sp. nov., p. 152
152.Setae sinuous on lower gena and thorax; propodeal side unridged. 153

Setae straight except sinuous in agnus and congoensis (in which propodeal side is ridged) . . 154

153. Width of postocellar area $0.7-0.8 \times$ length; propodeal dorsum unsculptured or aciculate except for sparse, microscopic punctures; gaster red; midfemoral venter with appressed setae; venter of apical tarsomeres without spines . gagates Arnold, p. 302
Width of postocellar area 1.1-1.3 \times length; propodeal dorsum microscopically rugose to ridged (Fig. 313c); gaster black; midfemoral venter with conspicuous, suberect setae; venter of apical tarsomeres with one or several small spines rapax Pulawski, sp. nov., p. 531
154.Mesopleuron rugose; distance between clypeal lip corners greater than clypeal midlength; apex of sternum VIII not tridentate rugosipleuris Pulawski, sp. nov., p. 547
Mesopleuron punctate or evenly microsculptured (punctures compressed against each other in some tryssus in which distance between clypeal lip corners is smaller than clypeal midlength and apex of sternum VIII is conspicuously tridentate) 155
155.Apical tarsomeres with lateral margin obtusely expanded (Figs. 48e, 184e), widest near midlength 156
Apical tarsomeres with lateral margin not expanded, widest near apex 157
156.Gaster and femora red; free margin of clypeal lip arcuate (Fig. 48b); setae of postocellar area appressed; lateral margin of apical tarsomeres with minute spines near midlength (Figs. 48e, f) . auropilosus R. Turner, p. 136 Gaster and femora black; free margin of clypeal lip pointed (Fig. 184b); setae of postocellar area erect; lateral margin of apical tarsomeres without spines (Fig. 184f).
157.Free margin of labrum with thick, short setae (Fig. 178c); setae appressed on postocellar area; galea at least slightly longer than wide in profile; tibiae red except in many harpax; venter of apical tarsomeres with two or more preapical spines (except one in some aburi). 158 Setae of labrum free margin thinner, varying in length, but similar in oberon (in which setae are erect on postocellar area, about one midocellar diameter long) and in spectrum (in which tibiae are black and apical tarsomeres have one preapical spine on venter); length of galea varying. 160
158.Clypeal lobe densely, uniformly punctate between dorsal margin and lip base; thoracic setae conspicuously golden, wings yellow basally, brown with violet shimmer distally . mzingeli Pulawski, sp. nov., p. 435
Clypeal punctures becoming sparser adjacent to lip except in some harpax in which thoracic setae are silvery and wings are uniformly infumate (slightly to conspicuously) 159
154. Venter of apical tarsomeres with at least two small, preapical spines (Fig. 179d). Israel, Syria, Senegal, Kenya to Angola and South Africa . harpax Arnold, p. 329
Venter of apical tarsomeres with one or two preapical spines. Ivory Coast to Ghana aburi Pulawski, sp. nov., p. 79
160.Gaster red basally 161
Gaster all black or black with red apex . 163
161.Propodeal dorsum rugose, with setae diverging obliquely anterad from midline; scutal punctures coarse; midtrochanteral venter impunctate; frontal setae silvery, fore- and midfemora and fore- and midtibiae black, wing membrane slightly infumate.
. asmara Pulawski, sp. nov., p. 128
Propodeal dorsum evenly microareolate or (some mashona) minutely ridged, with setae inclined posterad at least posteromesally; scutal punctures fine; midtrochanteral venter finely, closely punctate; frontal setae golden except in some mashona, femora and tibiae red except

162.Supraantennal swelling markedly enlarged and fused with antennal socket rim (Fig. 224c); rim conspicuously higher dorsally than ventrally; dorsal length of flagellomere I $1.5-1.7 \times$ apical width mashona Arnold, p. 399
Supraantennal swelling not enlarged or slightly enlarged, not fused with antennal socket rim; rim higher dorsally than ventrally but not unusually so; dorsal length of flagellomere I 1.2-1.3 \times apical width oberon Arnold, p. 454
155. Sterna III-VI mesally with large punctures that are several diameters apart; clypeal lobe flat, without bevel, lip unusually narrow, distance between corners $0.6-0.7 \times$ distance between corner and orbit (Fig. 388b); gastral apex red (at least tergum VII and sterna V-VIII)
theseus Arnold, p. 629
At least sterna III-V closely punctate; clypeal lobe either convex, with bevel, or lip corners further apart (only slightly so in suavis); gaster all black except red apically in erythrurus, stevensoni, and some silvestris 164
164.Setae of postocellar area erect and tibiae black. 165

Setae of postocellar area appressed to erect; if erect, then tibiae at least partly red. 177
165.Clypeal lobe unusually narrow, distance between lip corners smaller than clypeal midlength (Fig. 395b); mesopleural punctures well defined, in many specimens coarse and compressed against each other; sternum VIII conspicuously tridentate apically (Fig. 395c).
tryssus Pulawski, sp. nov., p. 638
Clypeal lobe broader, distance between lip corners equal to clypeal midlength or greater; mesopleuron rugose, punctate (punctures in most specimens one diameter apart or more), or evenly microsculptured; sternum VIII not tridentate except in consocius

166
166. Setae of propodeal dorsum erect or inclined posterad (oriented obliquely anterad on large baso-
median area in suavis) . 167 Setae of propodeal dorsum diverging obliquely anterad from midline. 168
167.Clypeal lobe narrower, distance between lip corners about 0.9 of distance between corner and adjacent orbit (Fig. 367b); scutal setae appressed; tergum VII posteriorly with obtuse lateral carina, thus with rudimentary pygidial plate . suavis Arnold, p. 604 Clypeal lobe broader, distance between lip corners $1.4-1.5 \times$ distance between corner and adjacent orbit (Fig. 357b); scutal setae suberect; tergum VII without lateral carina
silvestris Pulawski, sp. nov., p. 589
168.Tergum VIII tridentate apically (Fig. 98g), but middle tooth rudimentary in small specimens; flagellomeres III-XI in most specimens with shallow longitudinal sulcus that delimits two differently setose areas (Figs. 98c-f).169
Tergum VIII not tridentate; flagellomeres evenly setose, without longitudinal sulcus. 170
169.Mesopleural setae straight or angles apically. Africa, part of Eurasia . consocius Kohl, p. 207Most mesopleural setae sinuous. Zaire . congoensis Arnold, p. 205
170. Clypeal lip almost reduced laterally, expanded mesally into rounded or almost rectangular plate (Fig. 332b); venter of apical tarsomeres with one or two thin preapical spines (spines rudimentary in smallest specimens); notaulus in many specimens wider and deeper than admedian line (Fig. 334a) . saturnus Arnold, p. 557
Clypeal lip about as wide mesally as laterally; apical tarsomeres without ventral spines; notaulus ill defined, no more conspicuous than admedian line. 171
171.Forefemoral notch large, extending far onto anterior surface (Fig. 18c), with proximal margin somewhat produced (obtusely to sharply), ventrally compressed into obtuse, longitudinal crest

Forefemoral notch smaller (except in nitidior), with proximal margin not produced, with venter not compressed into longitudinal crest 172
172.Setae of postocellar area sinuous (Fig. 24b); clypeal middle section convex from base to lip .. 107 Setae of postocellar area straight; clypeal middle section flat or slightly convex apically (slightly convex to slightly concave in nitidior and tarsinus) . 173
173.Forefemoral notch covered with microscopic setae that are markedly denser than on adjacent surface (Fig. 381c). Africa north of equator, parts of Eurasia.
tarsinus (Lepeletier de Saint Fargeau), p. 622
Forefemoral notch either glabrous or setose, but then setae not denser than on adjacent surface
174
174.Sternal punctures well defined; forefemoral notch large, extending far onto anterior surface (Figs. 252a-c), its bottom glabrous; mandible in many specimens yellowish reddish mesally. Africa north of equator, parts of Eurasia. nitidior de Beaumont, p. 441 Sternal punctures ill defined; forefemoral notch smaller, its bottom setose; mandible darker 175
175.Clypeal middle section narrower (Fig. 212b): distance between lip corners about $1.2 \times$ clypeal midline; width of postocellar area about 1.3-1.4 \times length. Cape Verde Islands, Madeira . . lindbergi de Beaumont, p. 382 Clypeal middle section wider (Figs. 149b, d): distance between lip corners about $1.4 \times$ clypeal midline; width of postocellar area at least $1.9 \times$ length 176
176.Clypeus without bevel, all densely punctate (Figs. 149b, d); dorsal length of flagellomere IV $1.8-2.8 \times$ width (Fig. 149f); width of postocellar area 1.9-2.2 \times length; volsella setose almost to apex (Fig. 151). Continental Africa, Madagascar, parts of Eurasia
fugax (Radoszkowski), p. 287
Clypeus with short bevel and sparse punctation extending to frontoclypeal suture or nearly so (Fig. 43d); dorsal length of flagellomere IV 1.5-1.6 \times width; width of postocellar area 2.4-2.8 \times length; volsella asetose apically (Fig. 43e). Southern Africa. aterrimus Arnold, p. 130
177.Mesopleuron shiny, unsculptured between punctures; setae of propodeal dorsum oriented obliquely anterad (directed posterad at very apex in some stevensoni) 178 Mesopleuron dull, microsculptured between punctures; setae of propodeal dorsum oriented posterad (basomedian setae oriented anterad in most modestus)
178. Flagellomeres III-IX dorsally with longitudinal sulcus that separates two differently setose areas (as in Figs. 98c-f); width of postocellar area 2.5-3.0 apical width; ventral length of flagellomere I greater than apical width . . omoi Guiglia, p. 461 Flagellomeres without longitudinal sulcus; either width of postocellar area about equal to length or ventral length of flagellomere I about equal to apical width 179
179. Width of postocellar area $2.2-2.8 \times$ length (Fig. 135b); basal flagellomeres reddish; ventral length of flagellomere I about equal to apical width; midtarsomere IV minimally longer than wide. erythrurus Pulawski, sp. nov., p. 271 Width of postocellar area $0.9-1.1 \times$ length; flagellum black; ventral length of flagellomere I greater than apical width; length of midtarsomere IV equal to apical width or slightly less . stevensoni Arnold, p. 602
180.Clypeal lobe almost flat, bevel not differentiated; setae of postocellar area erect, slightly longer than midocellar diameter; midtarsomere IV slightly wider than long; propodeal side ridged agilis (F. Smith), p. 88

Clypeal lobe convex, bevel well defined to ill defined; if ill defined, then setae of postocellar area appressed; midtarsomere IV longer than wide or (paulus, spectrum) about as long as wide; propodeal side varying
181.Sterna IV-VI (at least posteriorly) with erect or suberect setae (Fig. 240c) whose length varies from about one to about two midocellar diameters; punctures of apical sterna conspicuously larger than those of basal sterna . modestus Arnold, p. 426 Sternal setae appressed or nearly so; punctures of apical sterna nearly equal in size to larger (but not conspicuously so) than those of basal sterna 182
182. Mesopleural punctures markedly sparser near center than above scrobe; clypeal lobe slightly longer, its midlength about $1.2 \times$ distance between lip corners; lip free margin more pointed (Fig. 165d); apical margin of sternum VIII evenly emarginate.
gessianus Pulawski, sp. nov., p. 312
Mesopleural punctures about evenly spaced near center and above scrobe; clypeal lobe slightly shorter, its midlength about equal to distance between lip corner or smaller; lip free margin more rounded mesally (Figs. 237b, 267b, 273b, 364b); apical margin of sternum VIII in many specimens tridentate

183
183.Supraantennal swelling punctate, dull (as in Fig. 316a); tibiae black.
. spectrum Pulawski, sp. nov., p. 600 Supraantennal swelling impunctate, shiny; tibiae all or partly red (only parts of foretibia red in some ovambo) . 184
184.Mesopleural punctures well defined, interspaces microsculptured but shiny; supraantennal swelling slightly larger than average for the genus ovambo Pulawski, sp. nov., p. 467 Mesopleural punctures ill defined; supraantennal swelling the usual size 185
185. Free margin of clypeal lip roundly prominent to obtusely pointed mesally, concave between midpoint and corner (Fig. 273b); mandibular inner margin evenly curved distad of tooth (Fig. 273b); galea with sparse, nearly evenly distributed punctures; width of postocellar area 0.9-1.1 \times length . paulus Pulawski, sp. nov., p. 480
Free margin of clypeal lip not prominent mesally, evenly arcuate (Fig. 237b); mandibular inner margin widely, shallowly emarginate distad of tooth (Fig. 237b); galea with well-defined, densely punctate posterior area, contrasting with sparsely punctate main portion (Fig. 237c); width of postocellar area $0.4-0.5 \times$ length
mkomazi Pulawski, sp. nov., p. 420

Descriptions of Species

Species are arranged alphabetically. Repetitive characters have been omitted. Unless indicated otherwise, the following states apply:

- labrum flat, not protruding or barely protruding beyond clypeal free margin, not emarginate mesally in female;
- galea sclerotized (not membranous), wider than long in lateral view;
- frons with a glabrous, shiny swelling above each antennal socket (swelling not expanded);
- axilla simple, not carinate or unusually convex;
- episternal sulcus present, incomplete;
- mesothoracic venter densely punctate (punctures averaging about one diameter apart);
- metapleural flange not expanded;
- upper metapleural pit round;
- propodeum without carina between dorsum and side, posterior face ridged;
- propodeal posterior surface with median sulcus that extends to its dorsal margin or nearly so;
- hindwing: crossvein cu-a vertical or anal end closer to wing base than cubital end, jugal lobe not expanded;
- apical tarsomeres without spines on venter and lateral margins;
- claws not elongate, evenly curved, inner and outer claws in each pair equal in size;
- setae straight (not sinuous or angled apically);
- tergum I without erect setae;
- sternum I without longitudinal carina;
- female flagellum round in cross section, without specialized sensory areas;
- female scutum and scutellum not flattened;
- female forefemoral venter minutely, closely punctate;
- female foretibia densely, uniformly punctate throughout (or at most punctures insignificantly sparser on the outer surface);
- female midtrochanteral venter: punctures about one diameter apart;
- female midfemoral venter evenly curved from base to apex, with appressed setae;
- female tarsomeres IV: length greater than width; apicoventral margin emarginate;
- female tarsomeres V without spines on venter or lateral margins;
- female pygidial plate with well-defined marginal carina;
- male flagellomere I: dorsal length equal to $0.8-1.0$ of II, ventral length greater than apical width;
- male flagellomere III: dorsal length equal to about 0.9 of IV;
- male forefemoral notch of medium size;
- male tergum VII with punctures about one diameter apart or less;
- male sterna densely, evenly punctate and setose, without setal fringe; and
- male sternum VIII evenly emarginate apically.

Tachysphex aburi Pulawski, sp. nov.

Figures 5-6.
Derivation of name.- Aburi, a locality in Ghana where the holotype was collected; a noun in apposition.

Recognition.- The female of aburi has a mesally depressed scutellum, the depression contrasting with the surrounding surface by its finer and denser punctures (Fig. 5c), the dorsoapical emargination of mid- and hindtarsomeres IV is about rectangular, and the apical tarsomeres and claws are not unusually elongate (Fig. 5d). The scutellum is similar in many harpax, in which the dorsoapical emarginations of mid- and hindtarsomeres IV are rounded proximally (Fig. 179a) rather than angulate and in the vast majority of specimens the apical tarsomeres and claws are elongate, the length of the arolium being equal to about one third of a claw (Figs. 179b, c).

Figure 5. Tachysphex aburi Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - female scutellum, d - venter of female apical hindtarsomere; e - volsella; f - penis valve.

The male of aburi closely resembles harpax in having most setae of the labrum free margin stout and short (as in Fig. 178c), punctures of the clypeal lobe becoming sparser toward the lip, and setae appressed on the postocellar area and scutum. They differ only minimally: the venter of each apical tarsomere has one or two small preapical spines in aburi, but 2-10 such spines in harpax. Their geographic distributions help in identification: aburi occurs in West Africa (Ivory Coast to Ghana), whereas harpax ranges from Israel, Syria, and Nigeria to Kenya and South Africa. Subsidiary recognition characters of aburi are: trimmal carina of mandible with tooth and cleft; tibiae red; propodeal side finely rugose to partly ridged; and setae of propodeal dorsum oriented obliquely posterad and joining apicomesally except basomedian setae pointing toward the head.

Description.- Labrum slightly protruding from below clypeus, most setae emerging from its free margin unusually stout and short (as in Fig. 178c). Scutal punctures fine, averaging no more than one diameter apart. Mesopleuron dull, evenly microsculptured. Propodeal dorsum finely rugose to partly ridged (median ridges longitudinal, other irregular); side ridged but ridges evanescent in many males. Hindcoxal dorsum with inner margin carinate basally.

Setae straight, appressed on postocellar area, scutum, and midfemoral venter; on propodeal dorsum oriented anterolaterad on triangular, basomedian zone, remaining setae pointing posterolaterad to posterad. Setal length about one midocellar diameter on each side of oral fossa next to occipital carina.

Head and thorax black, mandible reddish mesally; pronotal lobe yellowish posteriorly in male. Frontal setae silvery in female; all cephalic and thoracic setae golden in male. Wing membrane slightly infumate; forewing costal vein brown, subcostal vein dark brown to black. Legs black in female (tarsal apex brown); male femora black except red apically, tibiae and tarsi red or tarsal apex dark brown. Gaster black or (some males) terga I and II red mesally. Terga I-III or I-IV silvery fasciate apically in both sexes.

ㅇ.- Labrum broadly emarginate mesally. Clypeus (Fig. 5a): bevel longer than basomedian area; lip slightly arcuate, with two lateral incisions on each side. Width of postocellar area 0.8-0.9 \times length. Dorsal length of flagellomere I $1.6 \times$ apical width. Scutellum largely depressed mesally, with punctures finer and denser than on surrounding area (Fig. 5c). Forefemoral venter microsculptured, dull, with dense, minute punctures. Dorsal foretibial surface with one preapical spine, outer surface with two spines. Forebasitarsus with nine or 10 rake spines. Tarsomeres IV with dorsoapical emargination nearly rectangular; apical width of hindtarsomere IV about equal to length, apicoventral margin almost straight. Apical tarsomeres not angular basally; with short, erect setae but no spines on venter; with $1-3$ small spines near midlength of each lateral margin; and apicoventral margin slightly convex (Fig. 5d). Apical depression of tergum V impunctate, glabrous. Length $9.0-9.8 \mathrm{~mm}$.
0^{7}. - Mandible: trimmal carina with tooth and cleft or with two teeth separated by cleft. Clypeus (Fig. 5b): bevel longer than basomedian area; lip free margin sinuate, with welldefined corner that is prominent in some specimens; distance between corners $1.0-1.1 \times$ distance between corner and orbit. Width of posto-

Figure 6. Collecting localities of Tachysphex aburi, aemulus, and agilis.
cellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I 1.2-1.3 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Venters of tarsomeres V each with one or two preapical spines. Sternum VIII tridentate apically. Length $7.0-8.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 5e, f.

Geographic distribution (Fig. 6).- Ivory Coast to Ghana.
Records.- Holotype: + , GHANA: Aburi ca 35 km N Accra, 26 Jan 1991, WJP (CAS). Paratypes: GHANA: same locality as holotype, WJP, $26 \mathrm{Jan}\left(4 \stackrel{+}{2}, 3 \boldsymbol{\circ}^{\circ}\right)$ and 10 Feb 1991 ($1 \mathrm{o}^{\circ}$). IVORY COAST: 50 km

Tachysphex aemulus Kohl

Figures 6-8.
Tachysphex aemulus Kohl, 1906:216, ${ }^{\circ}$, \boldsymbol{o}°. Lectotype: $\overbrace{}^{\circ}$, Yemen: Abd el Kuri Island (NHMW), here designated, examined. - Bohart and Menke, 1976:272 (listed); Dollfuss, 1989:13 (type material in NHMW).
Tachysphex liriformis tenax Pulawski, 1971:311, \&, $\overbrace{}^{\circ}$. Holotype: \circ, Israel: Jerusalem (originally H. BytinskiSalz collection, now Tel Aviv University), examined before 1971. New synonym.- de Beaumont, Bytinski-Salz, and Pulawski, 1973:11 (Israel); Bohart and Menke, 1976:274 (listed); Guichard, 1980:227 (Oman).

ReCOGNITION.- Tachysphex aemulus has a convex labrum that conspicuously protrudes beyond the clypeal free margin, elongate galea (length equal to 1.0-1.1 of scape), nonfasciate terga (at most terga I-III with evanescent, inconspicuous fasciae), postocellar area and tergum I with appressed, inconspicuous setae, and wing membrane yellowish. In the male, the forebasitarsus has no preapical spines on the outer margin (most specimens) or has only one such spine near midlength, the outer apical spine of foretarsomere II is shorter than this tarsomere's width, the clypeal lobe is narrow (distance between lip corners about 0.7 of distance between corner and orbit), and the dorsal volsellar process is narrow, broadening toward the apex (Fig. 8b).

The species closely resembles gracilicornis, chephren, liriformis Pulawski (Israel to Tajikistan, not included in this revision), and notogoniaeformis. In aemulus, however, the propodeal dorsum has a characteristic setal pattern: the setae are longer than midocellar diameter and oriented anterad or anterolaterad on a large, triangular area (Fig. 8a), and in addition the propodeal side is not ridged, the gaster and tibiae are red (gastral tip brown in many males), and so are the femora of most specimens. In the other four species, the dorsal propodeal setae are either oriented posterad (except basally), about half as long as the midocellar diameter, or (chephren) oriented anterad on a narrow, median zone (the propodeal dorsum is asetose apicomesally in liriformis and notogoniaeformis); the propodeal side of many specimens is all or partly ridged; the gaster is all black in chephren (tergum II reddish basally in some specimens), notogoniaeformis, and most liriformis; the femora are black (all or partly red in some liriformis); and the tibiae are black in chephren, notogoniaeformis, the females of gracilicornis and liriformis (all or largely so), and in most males of these latter two species. In notogoniaeformis, the dorsal volsellar process is markedly broader than in aemulus (compare Figs. 8b and 258c).

JUSTIFICATION OF NEW Synonymy.- Tachysphex aemulus agrees with liriformis tenax in all characters and is obviously conspecific. These two names are therefore synonyms.

Status of Tachysphex liriformis.- In 1971, I described Tachysphex liriformis with two subspecies: liviformis liriformis and liriformis tenax because the two phenotypes were allopatric (nearly overlapping in Israel) and because variation in their characters (mainly color) suggested full intergradation. A newly discovered difference in the propodeal setation, inconspicuous at first but constant, demonstrates that they are discrete species.

Figure 7. Tachysphex aemulus Kohl: a - female clypeus and mandible ($\times 27$); b - male clypeus and mandible ($\times 50$); c - male foretarsus ($\times 27$).

Similar unassigned specimen.— One of the two syntypes from Cape Ras Fartak, Abd el Kuri Island, is identical morphologically to the other specimens examined in all pertinent characters (including the shape of the volsella), but differs in having an all black gaster, femora, and tibiae (foretibial inner surface reddish) and conspicuous setal fasciae on terga I-III; also, the setal triangle on the propodeal dorsum with setae oriented anterad is narrower. This specimen may be an aberrant aemulus or another species, but neither possibility can be ascertained without additional material.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea with punctures less than one diameter apart except several diameters apart near apex, as long as $1.0-1.1$ of scape. Scutum dull, microsculptured, with minute, inconspicuous punctures that average less than one diameter apart. Mesopleuron, propodeal dorsum, and propodeal side evenly microareolate. Hindcoxal dorsum with inner margin carinate basally.

Setal length about $0.3 \times$ basal mandibular width on each side of oral fossa next to occipital carina; setae appressed on postocellar area and scutum; oriented anterolaterad on propodeal dorsum except oriented posterad laterally (lateral setae join apicomesally in Arabian and Jordanian specimens).

Head and thorax black, mandible yellowish red except black apically, clypeal bevel red in some females. Frontal setae silvery in female, golden in male. Wing membrane yellowish; both costal and subcostal veins of forewing reddish. Femora mostly red, but black in some Israeli specimens; tibiae and tarsi red. Gaster red except up to three apical segments dark in some males. Terga not fasciate or terga I-III each with ill-defined, golden fascia apically.

ㅇ.- Clypeus (Fig. 7a): bevel slightly shorter to slightly longer than basomedian area; lip free margin arcuate, emarginate mesally, shallowly concave laterally. Width of postocellar area 0.5-0.6 \times length. Dorsal length of flagellomere I 3.2-3.4 \times apical width. Foretibial outer surface with two spines. Forebasitarsus with 6-8 rake spines. Tergum V uniformly micropunctate and setose throughout or apical depression glabrous apicomesally. Pygidial plate with minute punctures that

Figure 8. Tachysphex aemulus Kohl: a - propodeal dorsum showing orientation of setae; b - volsella; c - penis valve.
are several diameters apart; interspaces mostly microsculptured, dull, but unsculptured, shiny in some Israeli specimens. Length $9.5-13.8 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 7b): bevel shorter to longer than basomedian area, delimited laterally by oblique carina emerging from lip corner; lip free margin arcuate, in many specimens shallowly emarginate mesally; corner varying from well defined to ill defined; distance between corners $0.7 \times$ distance between corner and orbit. Width of postocellar area $0.6-0.7 \times$ length. Dorsal length of flagellomere I $2.5-2.7 \times$ apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines in most specimens, but with one such spine near midlength in some (Fig. 7c); outer apical spine of foretarsomere II shorter than this tarsomere's width. Hindfemoral venter with inner (= posterior) margin sharp in distal half. Length $6.4-11.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 8b, c.

Geographic distribution (Fig. 6).- Israel, Jordan, Arabian Peninsula to Ethiopia, Kenya, and Tanzania.

Records.- ETHIOPIA: Sidamo: 26 km N Moyale ($5 \stackrel{\circ}{\circ}, 14 \delta^{\circ} ; 1 \delta^{\circ}$, AAU), 35 km N Moyale ($1+\uparrow$), 120 km N Moyale ($1 \mathrm{o}^{\circ}$). ISRAEL: (from Pulawski, 1971, when the number of specimens examined is not indicated): En Gedi on Dead Sea, Jerusalem ($1+2 \delta^{\circ}$, paratypes of tenax), Jiftlik in Jordan Valley 22 km E Nablus, Masada, Tiberias. JORDAN: Dhat Ras at $31^{\circ} 00.0^{\prime} \mathrm{N} 35^{\circ} 46.0^{\prime} \mathrm{E}$ ($3 \mathrm{~d}^{\circ}$, RMNH). KENYA: Coast
Province: Taita Discovery Centre: Galla Hill area (20°). Eastern Province: near Ewaso Ng' iro River oppo-
 Nairobi (5 o°), Marich Pass Field Studies Centre (1 \circ), Olorgesailie ($\begin{aligned} & \text { o }\end{aligned}$). OMAN: Dhofar (in Quara Mountains, or Jabal Qara): Ain al Rizat, also spelled Ain Arzat (Pulawski, 1971), Ayun pools (Guichard, 1980). SAUDI ARABIA: Fayfa ($1 \stackrel{\circ}{\circ}, \mathrm{KMG}$), Wadi Majarish below Taif ($1 \mathrm{o}^{\boldsymbol{*}}, \mathrm{KMG}$). SOMALIA: Bio Dia [probably Biyo Dai at $9^{\circ} 55^{\prime}$ N $44^{\circ} 20^{\prime}$ E] (1) , BMNH), Bulhar ($1 \circ^{\circ}$, BMNH). SUDAN: Darfur: Karanga in Gebel Murra ($1 \circ$ \& BMNH). TANZANIA: Tanga Region: 73 km NW Korogwe ($1 \circ+17 \sigma^{\circ} ; 2 \sigma^{\circ}$, UCD; $2 \sigma^{\circ}$, UDS), 2 km NE Mkomazi ($4 \delta^{\circ}$), Pangani River Camp 86 km NW Korogwe ($1 \mathrm{o}^{\circ}$). YEMEN: Abd el Kuri Island between Socotra and Somalia: no specific locality ($1 \stackrel{\circ}{ }$, $2 \boldsymbol{\sigma}^{\circ}$, NHMW, lectotype and paralectotypes of aemulus), Abd el Kuri Island: Jebel Saleh ($1 \circ^{\circ}$, BMNH), Cape Ras Fartak ($1 \sigma^{\circ}$, NHMW, paralectotype of aemulus).

Tachysphex aethiopicus Arnold

Figures 9-11.
Tachysphex panzeri var. aethiopicus Arnold, 1923:167, ${ }^{\circ}$, ${ }^{7}$. Lectotype: \boldsymbol{o}°, Zimbabwe: Sawmills (SAM), here designated, examined.- Arnold, 1930:4 (in checklist of Afrotropical Sphecidae); nec Arnold, 1951:157 (= ?); Hancock, Chahwanda, and Mhlanga, 1995:40 (syntype in Bulawayo Museum).- As

Tachysphex aethiopicus: Pulawski in Bohart and Menke, 1976:272 (new status); Gess, 1981:19 (South Africa; nesting in friable soils); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).

ReCOGNITION.- Tachysphex aethiopicus has a convex labrum (markedly protruding beyond the clypeal free margin), galea about as long as the scape, upper metapleural pit oblong, propodeal side ridged (ridges present only anteriorly in some specimens), setae straight on the head and thorax (appressed on the postocellar area), diverging obliquely anterad from the midline on the propodeal dorsum, and male sterna V and VI each with a subbasal, erect fringe of agglutinated setae (fringes visible only when the sterna are fully extended).

The female of aethiopicus has foretarsomeres I-III slightly broadened apicolaterally, with the lateral margin expanding over the bases of the rake spines (Figs. 9c, e). Tachysphex melanius, miniatulus, rotundus, ruber, and usakos are similar, but aethiopicus has the following combination: clypeal lip emarginate mesally (barely emarginate in rotundus, not emarginate in ruber), foretarsal rake pale to moderately dark (black or dark brown in rotundus), gaster red basally and black apically (all black in melanius, all red in ruber), and the pygidial plate shiny, unsculptured between the punctures, not downcurved apically (dull, uniformly microsculptured in rotundus, at least apically so, downcurved apically in ruber). In addition, the clypeus is partly yellow in the vast majority of specimens (all black in melanius, miniatulus, and rotundus). Females of aethiopicus and usakos can be distinguished only with some difficulty. In aethiopicus (widely distributed in sub-Saharan Africa), the clypeal bevel is shorter than the basomedian area, the width of postocellar area is $0.9-1.0 \times$ length, the dorsal length of flagellomere I is $2.2-2.6 \times$ apical width, and the scutum is dull, with punctures compressed against each other. In usakos (Namibia), the clypeal bevel is mostly longer than the basomedian area, but shorter in some specimens, the width of the postocellar area is $1.2-1.3 \times$ length, the dorsal length of flagellomere I is $2.8-3.2 \times$ apical width, and the scutal punctures on disk average one diameter or more apart (interspaces mostly shiny). Most but not all females of aethiopicus can be recognized by the dense clypeal punctation that extends to the lip base laterally.

The male has foretarsomere II somewhat expanded apicolaterally over the bases of the rake spines (Figs. 9d, f), and subsidiary recognition characters are: clypeal lobe broad (distance between corners 1.1-1.3 \times distance between corner and orbit); dense clypeal punctation extending to lip base (except mesally in most specimens); clypeal bevel dull, with microsculptured interspaces (as in rotundus); clypeal lip emarginate mesally (not emarginate in ruber); and forefemur emarginate, the emargination asetose (forefemur entire in rotundus, with bottom of emargination setose in ruber).

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea aciculate, sparsely punctate, as long as 0.9 of scape. Scutal punctures minute, appressed against each other (scutal surface dull). Mesopleural punctures minute, about one diameter apart. Propodeal dorsum uniformly microsculptured, side ridged (ridges fine in some specimens, present only anteriorly in others); upper metapleural pit oblong. Hindcoxal dorsum with inner margin carinate basally, but carina evanescent.

Setae appressed on postocellar area, about one midocellar diameter long on each side of oral fossa next to occipital carina; appressed on scutum (no longer than one midocellar diameter); on propodeal dorsum diverging obliquely anterad from midline, but pointing laterad on sides; practically appressed on midfemoral venter.

Head and thorax black, but the following yellowish red: mandible (except apically), clypeal bevel and lip, labrum, and pronotal lobe, except clypeal bevel and pronotal lobe all black in some specimens from South Africa. Frontal setae golden in both sexes (except silvery ventrolaterally), silvery in ventral half in males from Zanzibar. Wing membrane slightly infumate, costal vein of

Figure 9. Tachysphex aethiopicus Arnold: a - female clypeus ($\times 27$); b - male clypeus $(\times 63)$; c - apex of female foretarsomere I and foretarsomere II, dorsal view $(\times 90)$; d - apex of male foretarsomere I and foretarsomere II, dorsal view ($\times 180$); e - apex of female foretarsomere I and foretarsomere II, ventral view $(\times 90)$; $\mathrm{f}-$ apex of male foretarsomere I and foretarsomere II, ventral view ($\times 180$).
forewing light brown, subcostal vein dark brown. Femora red, black dorsally except near apex (dorsum black only basally in some specimens). Tibiae and tarsi red. Gastral segments I-III red and remainder black in most specimens, but tergum III largely black in some; gaster nearly all black in one male from Bathurst and single male from Colchester, South Africa, and all black in males from

60 km N Cape Town and Hondeklipbaai area. Terga I-IV or I-V in female, I-V or I-VI in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 9a): bevel shorter than basomedian area; dense clypeal punctation, in most specimens, reaching lip base laterally; lip emarginate mesally, not sinuous laterally. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I $2.4-2.6 \times$ apical width. Foretibial outer surface with two spines. Foretarsomeres I-III slightly expanded apicolaterally over bases of rake spines (Figs. 9c, e). Forebasitarsus with 6-8 (mostly 6) rake spines. Apical depression of tergum V microsculptured, setose in fresh specimens. Pygidial plate: apical margin truncate or shallowly concave; punctures minute, averaging many diameters apart, interspaces unsculptured or alutaceous. Length $8.7-9.1 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 9b): bevel microsculptured, dull, about as long as basomedian area; dense clypeal punctation extending to lip base (only laterally so in most specimens); lip free margin straight or minimally concave, emarginate mesally in most specimens (not emarginate in a male from Tiwi Beaches, Kenya), with well-defined corner; distance between corners $1.1-1.3 \times$ distance between corner and orbit. Width of postocellar area $0.9-1.1 \times$ length. Dorsal length of flagellomere I 1.4-1.5 \times apical width, equal to about 0.7 of that of flagellomere II. Forefemoral notch microsculptured, glabrous. Outer margin of forebasitarsus with four (occasionally five) rake spines. Foretarsomere II slightly expanded apicolaterally over bases of rake spines (Figs. 9d, f), its outer apical spine longer than tarsomere III. Sterna V and VI (except laterally) each with subbasal, erect fringe of agglutinated setae (fringes visible only when segments are fully extended). Sternum VIII broadly, shallowly emarginate apically. Length $6.4-8.5 \mathrm{~mm}$. Volsella and penis valve (Fig. 10).

Variation.- In most females, the clypeal lobe is characteristically broad (distance between lip corners equal to $1.4 \times$ clypeal midlength). In a female from Kenton-on-Sea, South Africa, the clypeus is longer, with the same index equal to 1.5 . Although these ratios

Figure 10. Tachysphex aethiopicus Arnold: volsella and penis valve. differ by mere 7%, the difference in shape is immediately noticeable when specimens are compared.

Prey.- One female from Fanies Island, South Africa (AMG), is pinned with her prey, an acridid nymph (det. F. W. Gess).

Geograpahic distribution (Fig. 11).- Africa south of the equator, also Somalia.
Records.- ANGOLA: Cabinda ($1 \stackrel{\circ}{ }$, MCZ). BOTSWANA: Lake Ngami 12 mi NE Sehitwa ($1 \mathrm{o}^{\circ}$, BMNH), Linyanti Marsh ($1 \sigma^{\circ}$, BALDOCK). CONGO: no specific locality ($3 \circ$, MNHN). KENYA: Coast

 Watamu $20-30 \mathrm{~km}$ S Malindi ($1 \sigma^{*}$, MSNT), Wundanyi ($5 \sigma^{\circ}$, OÖLM). MALAWI: Chiromo ($1 \sigma^{\circ}$, BMNH), Monkey Bay ($1 \stackrel{\circ}{ }$, ZMAN), Mpepwe ($1 \stackrel{\circ}{\circ}$, ZMAN), Nkhotakota ($1 \stackrel{\circ}{\circ}$, USU). MOZAMBIQUE: Chigubo at $22^{\circ} 50^{\prime} \mathrm{S} 33^{\circ} 31^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{USNM}\right.$), Inhaca (2 ㅇ, ZMAN), Maputo ($1+$, ZMAN). NAMIBIA: Okahandja District: Okahandja ($1 \Omega^{7}$, BMNH). Rundu District: Rundu (2 q, OHL). SOMALIA: Afgoi (19 , RMNH). SOUTH AFRICA: Eastern Cape Province: Alexandria Forest ($1 \mathrm{o}^{\boldsymbol{*}}, \mathrm{AMG}$), 10 km SE Alexandria (2 o ; 44 \&, $17 \sigma^{\circ}$, OÖLM), Algoa Bay (6 \& , $3 \sigma^{\circ}$, TMP), Andries Vosloo Kudu Reserve 32 km NE Grahamstown at $33^{\circ} 05^{\prime} \mathrm{S} 26^{\circ} 47^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right)$, Bathurst ($4 \stackrel{+}{\circ}, 10 \mathrm{o}^{\circ}$, AMG), Belmont Valley 10 km E Grahamstown at $33^{\circ} 19^{\prime} \mathrm{S}$
$26^{\circ} 38^{\prime} \mathrm{E}$ ($1+$ ㅇ, AMG), Colchester at $33^{\circ} 42^{\prime} \mathrm{S} 25^{\circ} 50^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$), East London ($1 \quad \circ$, ZMAN), Fort Beaufort (1 ㅇ, 2 ơ *, AMG), Gamtoos River mouth ($3 \sigma^{\circ}$, SAM), Hankey (1 Grahamstown: Hilton Farm (9 ํ, 2 ه̛, AMG; 2 ㅇ, $2 \sigma^{7}$, PMA), Howison's Poort 6 km WSW Grahamstown ($1 \stackrel{\circ}{+}, 1 \circ^{*}$, AMG), Jeffreys Bay (3 ơ, SAM), Kasouga ($1 \stackrel{+}{ }$, 1 ơ, AMG), Kenton-on-Sea (1 $\circ ; 2 \sigma^{*}$, AMG), Pearston (1,+ PPRI), Plettenberg Bay (5 \circ, 7 ơ 7, AMG), Port Alfred ($1+\frac{+}{}$, AMG), Port Alfred: Salt Vlei ($1 \rightarrow$, AMG), Port Elizabeth: Cape Recife (1 \circ, AMG), Port Elizabeth: Walmer (1 \circ,
 BMNH; 1 ơ, CU), Rietrivier mouth near Port Alfred (8 ㅇ, 10 ơ, AMG), Tsitsikama Mts. ($1 ~+~_{+}$, BALDOCK), Van Stadens River Mouth at $33^{\circ} 58^{\prime}$ S $25^{\circ} 13^{\prime} \mathrm{E}$ (1 ㅇ, SAM). Free State: Bothaville (1 ơ, AMG). Gauteng: Bryanston ($2 \sigma^{*}$, AMG), Pretoria ($1 \sigma^{\boldsymbol{\gamma}}$, AEI; $1 \underset{\sim}{\circ}$, AMG), Pretoria: Botanical Garden

Figure 11. Collecting localities of Tachysphex aethiopicus and agnus. Pretoria: Lynnwood at $25^{\circ} 48^{\prime} \mathrm{S} 28^{\circ} 22^{\prime} \mathrm{E}$ (1 o°), Pretoria North ($1+$, AMG; $1 \quad \circ$, PPRI), 20 km W Pretoria at Hennops River ($1 \delta^{*}$, PPRI), Tswaing ($1 \sigma^{*}$), Vereeniging ($1 \sigma^{\star}$, AMG), Wapadrand 8 km E Pretoria at $25^{\circ} 48^{\prime} \mathrm{S} 28^{\circ} 22^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\star}\right)$. Kwazulu-Natal: Durban:

 PPRI), Kosi Bay at $26^{\circ} 58^{\prime} \mathrm{S} 32^{\circ} 48^{\prime} \mathrm{E}\left(1+\right.$, 3 o $^{\circ}$, PPRI), Kuleni Farm near Hluhluve at $27^{\circ} 54^{\prime} \mathrm{S} 32^{\circ} 22^{\prime} \mathrm{E}\left(20^{\circ}\right.$, PPRI), Lake Santa Lucia: Charters Creek ($1 \sigma^{*}$, ZMAN), Mbazwana ($3 \mathrm{o}^{*}$, OÖLM), Mtunzini $1-1.5 \mathrm{~km}$ E Umlalazi Nature Reserve (2 오, 1 o $^{\circ}$, PMA), Ndumu Game Reserve at $26^{\circ} 54^{\prime} \mathrm{S} 32^{\circ} 15^{\prime} \mathrm{E}$ (2 o $^{\circ}$, PPRI), Port
 $32^{\circ} 43^{\prime}$ E (10°, PPRI), Sileza Forest Reserve ($1 \sigma^{*}$, CSE), Stanger ($1 \sigma^{\circ}$, AMG), St. Lucia Bay (10°, RMNH), St. Lucia Estuary ($1 \delta^{\nrightarrow}$, AEI), Tembe Elephant Park ($1 ~+9$, OOLM), Umlalazi Nature Reserve ($1 \quad \circ$, PMA), Weenen ($10^{\pi}, \mathrm{BMNH}$). Mpumalanga: Crocodile Bridge in Kruger National Park (2 ơ, PPRI), Skukuza in Kruger National Park ($1 \stackrel{1}{ }$ o $^{*}, ~ P M A$). Northern Cape Province: 25 km E Hondeklipbaai (10^{\star}, OÖLM), Olifantshoek ($1 \delta^{\circ}, \mathrm{AMG}$), Twee Rivieren in Kalahari Gemsbok National Park at $26^{\circ} 25^{\prime} \mathrm{S} 20^{\circ} 37^{\prime} \mathrm{E}$ (1 ㅇ, PPRI). Northern Province: Afguns (1 ㅇ, AMG), Buffelspoort (2 \boldsymbol{o}^{\star}), Buffelspoort Dam (1 우, AMG), D’Nyala Nature

 Mogol Nature Reserve (2 ㅇ, 6 o *, PPRI), Mogoto Nature Reserve near Zebediela (1 ㅇ, PPRI), 30 km E

 Rustenburg: Meyjes' Farm ($1 \circ^{*}$, AMG). Western Cape Province: Ashton ($1 \sigma^{\circ}$, OÖLM), 60 km N Cape Town

 Morogoro Region: 3 km S Mikumi (6 ㅇ, 3 ơ $^{7} ; 2$ ㅇ, DSU), Morogoro (1 ㅇ, KU; 3 ㅇ, MCZ), 48 road km W
 Korogwe at $5^{\circ} 14.2^{\prime} \mathrm{S} 38^{\circ} 24.7^{\prime} \mathrm{E}$ ($2 \mathrm{o}^{\star}$). Zanzibar Region: Unguja (= Island of Zanzibar): airport (4 $+4 \mathrm{o}^{\star}$, MSNT), Fuoni ($1 \delta^{\top}$, MSNT), near Mazi Moja ($1+$, BMNH), Mazizini ($1 \circ^{\top}$, RMNH), Zanzibar City ($1+$,
 km W Livingstone ($1 \sigma^{\circ}$, OÖLM), Victoria Falls ($1 \sigma^{\top}$). ZIMBABWE: Bubye River 80 km NE Beit Bridge (10
 20 km ESE Kariba (4 우, 2 o *), Kami Ruins (2 o *), Lupane (1 오, OÖLM), Mavuradonha Wilderness area 15 km E Muzarabani ($2 \sigma^{*}$, OÖLM), 7 km WSW Nyamandhlovu at Kami River (1 δ^{*}), 11 km NE Nyamandhlovu
 totypes, $1 \sigma^{\boldsymbol{*}}$ lectotype of aethiopicus, SAM; $1 \circ$, TMP), Sawmills at Umguza River ($1 \sigma^{\boldsymbol{*}}$), Victoria Falls (6 ㅇ, 27 o $^{7} ; 8$ ơ 7, NHMZ).

Tachysphex agilis (F. Smith)

Figures 6, 12.
Tachytes agilis F. Smith, 1856:301, ơ. Holotype or syntypes: đ̛, South Africa: Kwazulu-Natal: Port Natal, now Durban (BMNH), examined.- Radoszkowski, 1881:210 (Angola, probably in error); Dalla Torre, 1897:686 (in catalog of world Hymenoptera).-As Tachysphex agilis: R. Turner, 1917d:43 (new combination); Arnold, 1923a:175 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:272 (listed).

RECOGNITION.- The female of agilis is characterized by the tarsal shape and proportions: tarsomeres IV wider than long, with dorsoapical emargination widely obtuse, almost straight; apicoventral margin of tarsomeres III and IV projecting or at least convex mesally; tarsomeres V angulate basoventrally, each with a central cluster of small spines on the venter and the apicoventral margin produced into a lobe; and on each leg one claw smaller than the other. Other species share these characteristics, but only agilis, silvestris, and suavis have sparse foretarsal rakes, with only 5-7 rake spines on the forebasitarsus (of which only apical two and exceptionally three have their sockets confluent); also, the mesopleural punctures are minute, ill defined. Tachysphex agilis differs from the other two species in having largely red tibiae (for other differences with suavis see the latter species, p. 604).

The male has an all black gaster (sternum VIII red), at least the hindtibia red, a preapical cluster of minute spines on the venter of apical tarsomeres, propodeal side ridged, and setae straight on the head and thorax. A number of species share these characteristics, but agilis differs in having a flat clypeal middle section (basomedian area and bevel not differentiated) and the setae erect or suberect on the scutum anteriorly and all erect or oriented posterad on the propodeal dorsum (rather than oriented anterad). It also has a moderately long flagellomere I (ventral length more than apical width, while less than apical width in argentifrons) and simple apical tarsomeres (lateral margin obtusely expanded in hippolyta).

Description.- Mandible: outer ridge somewhat swollen and expanded over notch. Scutal punctures averaging about 2-3 diameters on disk; interspaces microsculptured but somewhat shiny. Mesopleuron microsculptured, dull, with minute, ill-defined punctures that are many diameters apart. Propodeal dorsum irregularly ridged longitudinally to irregularly rugose (ridges evanescent in smallest males); side ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae suberect, angled apically, on each side of oral fossa next to occipital carina (setal length about $0.4 \times$ basal mandibular width); erect on postocellar area, erect or suberect on scutum anteriorly, and about as long as midocellar diameter; erect or oriented posterad on propodeal dorsum.

Head and thorax black, mandible reddish preapically. Frontal setae silvery in both sexes. Wing membrane slightly infumate; costal and subcostal veins of forewing brown. Femora black in female and some males, other males with midfemur all black or red apically and hindfemur all red or black in basal half. Female foretibia black (reddish on inner surface), midtibia red except black in basal third or so, hindtibia red; male tibiae red or fore- and midtibia black except red apically. Tarsi red. Gaster black, male sternum VIII red. Terga I-III silvery fasciate apically.

우.- Labrum emarginate mesally. Clypeus (Fig. 12a): middle section not differentiated into bevel and basomedian area, with punctures fine basally and large apically, with microsculptured, dull interspaces; lip free margin arcuate, shallowly emarginate mesally, with two lateral incisions on each side. Width of postocellar area $1.1 \times$ length. Dorsal length of flagellomere I $1.9 \times$ apical width. Scutum and scutellum flattened. Dorsal foretibial surface without spines, outer surface with

Figure 12. Tachysphex agilis (F. Smith): a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.
one erect seta near midlength. Forebasitarsus with six rake spines; two apical spines with sockets confluent; foretarsomere II with three rake spines (two apical ones, with sockets nearly confluent, one near midlength). Outer margin of foretarsomere IV about 0.5 length of inner margin. Tarsomeres III and IV with apicoventral margin arcuate. Tarsomeres IV wider than long, with dorsoapical margin very broadly emarginate (almost straight). Tarsomeres V angulate basoventrally, venter with central cluster of small spines; each lateral margin with row of minute spines subbasally; apicoventral margin produced into lobe. Outer claw in each pair shorter and thinner than inner claw (opposite on foretarsus). Apical depression of tergum V impunctate, glabrous. Pygidial plate with punctures that average several diameters apart; interspaces almost unsculptured. Length 8.8 mm .
8^{7}. - Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 12b): middle section flat, bevel and basomedian area not differentiated; lip free margin arcuate or sinuate, with well-defined corner; distance between corners $1.0-1.2 \times$ distance between corner and orbit. Width of postocellar area 1.1-1.2 \times length. Dorsal length of flagellomere I 1.4-1.5 \times apical width. Forefemoral notch with bottom microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Venters of tarsomeres V each with preapical cluster of minute spines. Length $6.4-7.6 \mathrm{~mm}$. Volsella and penis valve: Figs. 12c, d.

Geographic distribution (Fig. 8).- Eastern South Africa from Durban to Kruger National Park. Radoszkowski's (1881) record from Angola is almost certainly a misidentification.

Collecting Period.- 7-13 November, 12-31 December, 14-20 January.

RECORDS.- SOUTH AFRICA: Kwazulu-Natal: Durban ($1 \begin{gathered}\text { or }, ~ B M N H, ~ h o l o t y p e ~ o r ~ o n l y ~ s u r v i v i n g ~\end{gathered}$ syntype of agilis), Lake Sibai (1 \& , AMG), St. Lucia Estuary ($2 \sigma^{\circ} ; 3 \sigma^{\circ}$, AEI; $1 \sigma^{\circ}$, PMA), Tembe Elephant Park ($1 \delta^{\circ} ; 1 \delta^{\top}$, OÖLM). Mpumalanga: Skukuza in Kruger National Park ($1 \delta^{\top}$). Northern Province: Guernsey Farm 15 km E Klaserie ($1 \mathrm{o}^{\circ}$, PMA), Guernsey Farm 15 km NW Klaserie ($1 \mathrm{ơ}^{\circ}$, PMA).

Tachysphex agnus Pulawski

Figures 11, 13.
Tachysphex agnus Pulawski, 1971:152, ㅇ, ه̛. Holotype: \uparrow, Tunisia: Djerba (RMNH), examined before 1971. — de Beaumont, Bytinski-Salz, and Pulawski, 1973:8 (Israel); Bohart and Menke, 1976:272 (listed); Dollfuss, 1989:13 (paratype in NHMW).

Recognition.- Tachysphex agnus is an all black species that occurs north of the equator and has well-defined mesopleural punctures, setae erect on the postocellar area, nearly so on the scutum anteriorly, suberect on midfemoral venter (longest setae about equal to one midocellar diameter), and inclined obliquely anterad on the propodeal dorsum. Additionally, it has a flat, nonemarginate labrum, galea in profile shorter than wide, punctatorugose frons, and unspecialized tarsi (length of midtarsomere II more than twice length, tarsomeres IV longer than wide apically, tarsomeres V without spines on the venters or lateral margins). In the female, the free margin of the clypeal lip is neither projecting mesally nor incised laterally, and the middle clypeal section is convex, with the bevel slightly shorter to slightly longer than basomedian area. In the male, the clypeal lip is pointed, without corners, and the forebasitarsus has no preapical rake spines. Unlike similar species (nitidior, nitidissimus, nitidus, tarsinus), the setae of agnus are sinuous at least on the postocellar area and on the mesopleuron anteriorly, and in many specimens also on the lower gena (adjacent to hypostomal carina) and midfemoral venter.

Similar unassigned specimens.- A pair of specimens from United Arab Emirates (KMG) closely resembles agnus, but the costal vein of the forewing is pale yellowish, and the foretarsal rake is conspicuously developed in the male.

Description.- Scutal punctures well defined, about one diameter apart. Mesopleural punctures well defined, less than one diameter apart or some punctures beneath scrobe up to 2-3 diameters apart. Propodeal dorsum rugose and with longitudinal, irregular ridges; side ridged. Hindcoxal dorsum with inner margin carinate.

Setae sinuous on postocellar area and mesopleuron (at least anteriorly), in most specimens also adjacent to hypostomal carina and on midfemoral venter, in some also on scutum anteriorly, inclined obliquely anterad on propodeal dorsum. Setal length expressed as a fraction of basal mandibular width: $0.5-0.6$ on postocellar area, $0.4-0.5$ on each side of hypostomal carina next to occipital carina; longest setae of midfemoral venter about one midocellar diameter long.

Head, thorax, gaster, and legs black, mandible reddish at about two thirds of length (almost black in most specimens). Frontal setae silvery in both sexes. Wing membrane slightly infumate; costal vein of forewing brown, subcostal vein black. Terga I-III (I-IV in males from Socotra) silvery fasciate apically.

ㅇ.- Clypeus (Fig. 13a): bevel shorter to longer than basomedian area; lip free margin arcuate, without median notch or lateral incision. Width of postocellar area 1.4-2.1 \times length, but 1.3 in those from Saudi Arabia and 1.0-1.2 \times in those from Socotra. Dorsal length of flagellomere I $2.2-2.5 \times$ apical width. Dorsal foretibial surface with one spine, outer surface with two spines. Forebasitarsus with 6-8 rake spines. Apical depression of tergum V impunctate, glabrous. Pygidial plate with punctures that average several to many diameters apart, interspaces varying from unsculptured to aciculate. Length $8.5-10.0 \mathrm{~mm}$.

Figure 13. Tachysphex agnus Pulawski: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d-penis valve.
σ^{7}.- Mandible: trimmal carina without tooth or cleft. Clypeus (Fig. 13b): bevel shorter than basomedian area; lip free margin pointed, without corner (but bevel with oblong tubercle adjacent to margin); distance between tubercles $0.9-1.1 \times$ distance between tubercle and orbit. Width of postocellar area $1.5-1.8 \times$ length. Dorsal length of flagellomere I $1.2-1.4 \times$ apical width. Forefemoral notch with bottom microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III, about as long as inner spine. Length $6.4-7.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 13c, d.

Geographic distribution (Fig. 11).- Southern Spain, Morocco to Tunisia, Sinai Peninsula, Israel, Turkey, Arabian Peninsula, Island of Socotra.

Records.- ALGERIA: Oran (Pulawski, 1971). EGYPT: Sina (= Sinai): Nuweiba at $29^{\circ} 03^{\prime} \mathrm{N}$ $34^{\circ} 33^{\prime} \mathrm{E}(1$ \&, CSE). ISRAEL (Pulawski, 1971, or as indicated): Beersheba, 5 km W Elat (1 \&, CSE), 135 km N Elat Iddan (1 \&, CSE), Har Badad in Arava Valley (19 , CSE), Iddan in Arava Valley (14 9 , CSE), Mazad Aqrabbim 45 km SE Beersheba ($1 \mathrm{o}^{\circ}, \mathrm{CSE}$), Mikve Israel, Moshaav Hazeva in Arava Valley (1 o , $1 \mathrm{o}^{\circ}, \mathrm{CSE}$), Nakhal Zin at El Akrabim (1 ơ, CSE), Shizaf Nature Reserve in Arava Valley. MOROCCO: Massa near Agadir (1 \circ), 40 km W Ouarzazate and 5 km S Amerzgane ($1 \mathrm{o}^{\prime}$, CSE). SAUDI ARABIA: Ad Diryah [also spelled Ad Diriyah, $24^{\circ} 44^{\prime} \mathrm{N} 46^{\circ} 35^{\prime} \mathrm{E}$ ((1 ㅇ, KMG), El Riyadh: Al Hair (1 ㅇ, KMG). SPAIN: Almería: 3 km W Benahadux at $36^{\circ} 55.1^{\prime} \mathrm{N} 2^{\circ} 28.6^{\prime} \mathrm{W}\left(1+\circ ; 1 \circ\right.$, CSE). TUNISIA: 6 km W Beni Kheddache at $35^{\circ} 15^{\prime} \mathrm{N}$ $10^{\circ} 08^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{CSE}\right)$, Bou Chebka at $35^{\circ} 11^{\prime} \mathrm{N} 8^{\circ} 26^{\prime} \mathrm{E}(1+\mathrm{P}, \mathrm{CSE})$, Djerba Island $\left(2 \circ+1 \mathrm{o}^{\circ}\right.$, paratypes of Tachysphex agnus), Gafsa (2 o $^{\circ}$), 10 km SE Foum Tataouine at $32^{\circ} 51^{\prime} \mathrm{N} 10^{\circ} 30^{\prime} \mathrm{E}(2 \circ$, CSE), 30 km N Foum

 $33^{\circ} 55^{\prime} \mathrm{N} 8^{\circ} 08^{\prime} \mathrm{E}(2$ ㅇ). TURKEY: Ankara: above Hasanoglan ($1+$, paratype of Tachysphex agnus).

YEMEN: Socotra: Hadibo Plain ($1 \stackrel{\circ}{+} ; 1$ ㅇ, BMNH), Hadibo road to Nogad at $12^{\circ} 26^{\prime} \mathrm{N} 54^{\circ} 09^{\prime} \mathrm{E}(1 \stackrel{\circ}{\circ}$, CSE), Hamadara ($1+$, BMNH), Kishin ($1 \sigma^{\prime} ; 1 \sigma^{\prime}, \mathrm{BMNH}$), Socotra: coastal road at $12^{\circ} 38^{\prime} \mathrm{N} 54^{\circ} 09^{\prime} \mathrm{E}$ (1 ㅇ) , Wadi Zeewef in Homhil Plain at $12^{\circ} 35^{\prime} \mathrm{N} 54^{\circ} 18^{\prime} \mathrm{E}(1 \stackrel{\circ}{+}, \mathrm{CSE})$.

Tachysphex albocinctus (Lucas)

Figures 14-17.
Tachytes albocinctus Lucas, 1849:250, 우 (as albo cincta, incorrect original division and termination, spelled albocincta on line 20 and plate 14). Holotype or syntypes: 우, Algeria: La Calle, now El Kala (MNHN), examined by de Beaumont, 1940:172.- F. Smith, 1856:300 (listed); Magretti, 1884:588 (Eritrea); Kohl, 1885:399 (listed); Dalla Torre, 1897:687 (in catalog of world Hymenoptera); Bingham, 1898:104 (Yemen).- As Tachysphex albocinctus: Kohl, 1885:393 (tentative new combination, original description copied); de Beaumont, 1940:172 (new combination, in revision of Egyptian Tachysphex), 1947a:182 (in revision of Egyptian Tachysphex), 1950a:405 (Algeria), 1955:181 (Morocco), 1956a:197 (Libya); Suárez, 1959:57 (Spain); de Beaumont, 1960b:238 (Libya), 1962b:25 (Spain); Ceballos, 1964:90 (in supplement to catalog of Spanish Sphecidae); Diniz, 1964:5 (Portugal); de Beaumont, 1965:65 (Greece: Crete), 1966:212 (Egypt); Pulawski, 1971:427 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:13 (Israel); Erlandsson, 1974:70 (Spain); Bohart and Menke, 1976:272 (listed); Kazenas, 1978:114, 127 (in key to Sphecidae of Kazakhstan and Central Asia); Gess, 1981:19 (South Africa, nest and prey); Gayubo, 1984b:362 (Portugal); Gayubo and Tormos, 1984:15 (Spain), 1986:12 (Spain); Asís, Gayubo, and Tormos, 1987:15 (larva); Tormos and Jiménez, 1987b:316 (Spain); Asís and Jiménez, 1988:271 (Spain); Gayubo and Mingo, 1988:77 (Spain); Asís, Gayubo, and Tormos, 1989:234 (male behavior, nest, prey); Gayubo, Asís, and Tormos, 1990:17 (Spain); Torregrosa, Gayubo, Tormos, and Asís, 1993:18 (Spain); Krombein and Pulawski, 1994:13 (summary of life history), 100 (in revision of Sri Lankan Tachysphex); Kazenas, 2001:28 (in checklist of Sphecidae of Kazakhstan and Central Asia), 156 (review of known biology); Schmidt and Bitsch in Bitsch et al., 2001:238 (in Sphecid Fauna of Western Europe); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).
Tachytes ruficrus Dufour, 1854:378, sex not indicated. Holotype or syntypes: Algeria: Pontéba, now Oumm ed Drou (MNHN), not examined. Synonymized with Tachysphex albocinctus by de Beaumont, 1940:172, who studied type material.- As Tachysphex ruficrus: Kohl, 1885a:397 (tentative new combination, original description copied); Kohl in Dalla Torre, 1897:685 (new combination, in catalog of world Hymenoptera).
Tachysphex syriacus Kohl, 1888:146, ơ. Holotype or syntypes: $\overbrace{}^{\star}$, Syria: no specific locality (NHMW), examined. Synonymized with Tachysphex albocinctus by de Beaumont, 1940:172.— Dalla Torre, 1897:685 (in catalog of world Hymenoptera); Morice, 1911:100 (Algeria, description of +9); Arnold, 1923:152 (in revision of southern African Tachysphex); Bristowe, 1925:280 (Somalia, nest and prey); Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Nadig, 1933:79 (Morocco; comparison with heliopolites); Arnold, 1935:498 (Botswana); Guiglia, 1943b:76 and 1950:252 (Ethiopia); Dollfuss, 1989:13 (type material in NHMW).
Tachysphex peculator Nurse, 1909:515, ơ. Lectotype: ${ }^{*}$, India: Gujarat: Deesa (BMNH), designated by Pulawski in Krombein and Pulawski, 1994:100, examined. Synonymized with Tachysphex syriacus by R. Turner, 1917c:198, synonymy confirmed by Pulawski in Krombein and Pulawski, 1994:100.- As Tachysphex albocinctus peculator: Pulawski, 1971:431 (new status); Bohart and Menke, 1976:272 (listed).
 designated, examined. Synonymized with Tachysphex albocinctus by de Beaumont, 1940:172.- Ferton, 1912:360 (nesting habits and prey), 402 (review of structural and behavioral characters), 1923:124 (nest, prey).
Tachysphex argyrius Gussakovskij, 1933:280, $\stackrel{+}{ }$, $\sigma^{*}\left(\sigma^{*}=\right.$ Tachysphex grandissimus). Lectotype: \circ, Iran: mountains south of Bampur (ZIN), designated by Pulawski, 1971:432, examined before 1971. Synonymized with Tachysphex albocinctus peculator by Pulawski, 1971:431.— Gussakovskij, 1952:237 (description of σ^{7}).—As Tachysphex albocinctus argyrius: Myartseva, 1972a:78 (Turkmenistan).
Tachysphex dusmeti Giner Marí, 1934:142, ㅇ, $\overbrace{}^{\circ}$. Syntypes: Spain: Valencia: Dehesa and Bétera (MNCN), not
examined. Synonymized with Tachysphex albocinctus by de Beaumont, 1950b:18, who studied type mate-rial.- Giner Marí, 1943a:139 (in Sphecid Fauna of Spain), 1945:360 (Morocco, as Tachytes); de Beaumont, 1947a:184 and 1950a:405 (Algeria), corrected to Tachysphex nubilipennis by de Beaumont, 1950b:18; de Andrade, 1949:15 (Portugal).
Tachysphex nubilipennis de Beaumont, 1950b:18, ㅇ, ở. Lectotype: ơ $^{\pi}$, Egypt: Siwa oasis: El Arig (BMNH), here designated, examined. New synonym.- de Beaumont, 1955a:181 (Morocco); Pulawski, 1971:434 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:275 (listed).
As Tachysphex heliopolites: Morice, 1897:306 (${ }^{\boldsymbol{*}}$ only), corrected to Tachysphex albocinctus by de Beaumont, 1940:172.
As Tachytes etruscus: Bischoff, 1933:5 (Morocco), corrected to Tachysphex albocinctus by Pulawski, 1962:407.

RECOGNITION.- Tachysphex albocinctus has erect, conspicuous setae on the basal declivity of tergum I (Fig. 16), and in the hindwing crossvein cu-a in is markedly inclined (the anal end further away from the wing base than the cubital end). This combination is also found in bruneiceps and many detritus. Unlike bruneiceps, the postocellar area of albocinctus is narrow (width $0.6-1.0 \times$ length in female and $0.7-1.3 \times$ in male, rather than $1.7-2.0 \times$), and scutal punctures (Figs. 15a, b) average about 1 diameter apart on the disk rather than 2-3 to many (Figs. 71a, b). Unlike detritus, albocinctus lacks a longitudinal carina on sternum I, its forebasitarsus is expanded apically (Figs. $14 \mathrm{c}, \mathrm{d}$) except not expanded in occasional males, the female pygidial plate is broad, uniformly granulose except for superficial, sparse punctures (Figs. 15e, f), and male sterna are largely glabrous (at least sternum III of detritus has dense, erect setae).

Relationship to Tachysphex laticauda.— Tachysphex laticauda Gussakovskij, 1933, a species that ranges from Israel and Syria to Iran, Tajikistan, and Kazakhstan, is almost identical morphologically to albocinctus. It differs in having a red gaster (apical segments darkened in some specimens) and partly or all red legs (femora and tibiae black in occasional males). It could well be another color form of albocinctus, but the male clypeus is slightly longer (see Pulawski, 1971, Figs. 400 and 406). A female from Silifke area, Turkey, with largely red legs and partly red sternum II, appears to be intermediate in color. Although the geographic range of laticauda overlaps that of albocinctus, I am not aware of mixed populations. Additional material is needed to evaluate the status of laticauda.

Justification of new synonymy.- De Beaumont (1950b) named nubilipennis those North African males in which the wings are markedly infumate, thoracic setae dark, the terga have no silvery fasciae, and the shortest interocular distance is equal to 0.75 of flagellomere I; in addition, sternal punctures in some but not all specimens are somewhat larger and sparser than average for albocinctus. Such individuals are found in Morocco (Ksar es Souk), Algeria (Tadjemount), Tunisia (15 km W Nefta), Libya (Tripoli, Bardin, Gat, and Jalu), and Lower Egypt (Wadi Rayyan in Fayum Province, El Arig and Siwa in Siwa oasis). However, males of albocinctus from Marsa Matruh area, Egypt, differ from nubilipennis only in having less infumate wings (but more so than in most Egyptian and other specimens), finer and denser punctures of sternum II, and the shortest interocular distance is 0.9 of flagellomere I or more; also, some have silvery tergal fasciae. I regard this population as intermediate between nubilipennis and the average albocinctus and, as full intergradation is practically certain, I consider nubilipennis to be merely a variant of albocinctus. The penis valve in the lectotype and two other specimens is exactly as in albocinctus, not as illustrated by Pulawski (1971, here redrawn as Fig. 14g) who used a slightly aberrant specimen from Ksar es Souk, Morocco, as a model. See Variation below for more details.

Description.- Punctures of postocellar area varying from about one to several diameters apart. Scutal punctures averaging about one diameter apart in some specimens and tightly com-

Figure 14. Tachysphex albocinctus (Lucas): a - female head, frontal view; b - male head, frontal view: $\mathrm{c}-$ female clypeus; d - male clypeus; e - volsella; f - penis valve; g - penis valve of an aberrant Moroccan specimens illustrated as nubilipennis by Pulawski (1971).

Figure 15. Tachysphex albocinctus (Lucas): a - scutal disk surface, lateral oblique view ($\times 300$), part of setae removed to show punctures and distances between them; b-same, higher magnification $(\times 3000)$; $\mathrm{c}-$ apex of female foretarsomere I and foretarsomere II ($\times 108$); d - apex of male foretarsomere I and foretarsomere II $(\times 135)$; e - female pygidial plate $(\times 48)$; $\mathrm{f}-$ portion of female pygidial plate in lateral view showing granulate sculpture $(\times 240)$.
pressed against each other in others (Figs. 15a, b). Mesopleuron finely, somewhat irregularly rugose. Propodeal dorsum microscopically, irregularly rugose, side dull, evenly microsculptured, in many specimens also finely, irregularly rugose (except anteriorly); posterior surface, in dorsal third or so, with wide median impression. Hindwing crossvein cu-a oblique (anal end further away from wing base than cubital end). Forebasitarsus expanded apically (Figs. 15c, d) except not expanded in occasional males. Hindcoxal dorsum with inner margin not carinate or carinate basally. Apical tarsomeres with several ventral bristles (including one preapical), but no spines on venter or lateral margin. Sternum I shallowly depressed apically.

Setae: sinuous on frons, scapal venter, postocellar area, gena, scutum (at least anteriorly), mesopleuron, and propodeum (including posterior surface); suberect to erect on frons, postocellar area, gena, scapal venter, and basal declivity of tergum I (Fig. 16); appressed on hindfemoral venter in vast majority of specimens but erect, rudimentary in some; varying on propodeal dorsum: inclined slightly anterad, erect, or inclined posterad. Setal length expressed as a fraction of basal mandibular width: on postocellar area about 0.5 in female and 0.8 in male, $0.8-1.0$ on each side of oral fossa next to occipital carina, and up to 0.8 on tergum I. Mesopleural setae largely concealing integument in female.

Figure 16. Tachysphex albocinctus (Lucas): gastral segment I in profile showing erect setae.

Head, thorax, and gaster black. Frontal setae silvery in most females, golden in some, black in large males, silvery in small ones (some setae silvery and others black in intermediate specimens). Color of thorax, legs, wings and tergal fasciae: see Variation below.

ㅇ.- Clypeus (Fig. 14c): bevel convex, about $0.25-0.5 \times$ length of basomedian area; lip free margin arcuate, with two lateral incisions (Figs. 14a, c) on each side except not incised in specimens from Siwa oasis, Egypt, and those from Iran and Transcaspia. Length of flagellomere I $2.2-3.1 \times$ apical width. Width of postocellar area $0.6-1.0 \times$ length (Fig. 14a). Dorsal foretibial surface with two or three spines, outer surface with three spines. Forebasitarsus with 8-13 rake spines. Apical depression of tergum V impunctate, glabrous. Pygidial plate broad, uniformly granulose except for superficial, sparse punctures (Figs. 15e, f). Length 11.0-15.0 mm.
$\delta^{\boldsymbol{\pi}}$.- Inner mandibular margin with tooth and cleft. Clypeus (Fig. 14d): bevel convex, about $0.25-0.5 \times$ length of basomedian area; lip free margin arcuate, with obtusely angulate, nonprominent corner; distance between corners $1.5-1.6 \times$ distance between corner and orbit. Width of postocellar area $0.7-1.3 \times$ length (Fig. 14b). Dorsal length of flagellomere I $2.0-2.5 \times$ apical width. Forefemoral notch shallow, with microscopic, erect setae. Outer margin of forebasitarsus with 7-9 rake spines; outer apical spine of foretarsomeres I and II longer than following article. Punctures of tergum VII averaging several diameters apart (except apically and laterally). Sternum II densely micropunctate and pubescent throughout or apical depression largely glabrous, sterna IV-VI largely glabrous. Length $8.0-12.0 \mathrm{~mm}$. Volsella and penis valve: Figs. $14 \mathrm{e}-\mathrm{g}$.

Variation.- Scutal setae: subappressed posteriorly in most specimens, but erect in males from Ivory Coast, Ghana, Namibia, and in some from Tanzania and some from Egypt (Marsa

Matruh area and Siwa oasis）；also erect in females from Marsa Matruh area，Egypt．
Color of legs：in most specimens，the legs are black except the tarsal apex or all tarsi are red－ dish，also tibiae in some specimens．All legs except coxae and forefemur are red in a female from Kayar，Senegal，and another from Silifke area，Turkey，and all legs except coxae are red in females from Dakar，Senegal（1 ㅇ），Sokodé area，Togo（2 甲），Tamale area，Ghana（1 \＆），Torodi area，Niger $(2$ ）$)$ ，and Kano area（ $1 \quad$ ㅇ）and Maiduguri（ $1 \quad$ 早），Nigeria．All legs including coxae are red in females from Banjul，Gambia（ 1 ）），Ouagadougou，Burkina Faso（1 ㅇ），Karal－Douguia，Chad（1 ¢），Kano area（1 \uparrow ），Ibadan，Nigeria（1 \circ ），and Lodwar，Kenya（ 4 ㅇ）．

Color of female gaster：all black in most specimens，but pygidial plate reddish in females from Banjul，Gambia（1 ㅇ），Ouagadougou，Burkina Faso（1 \circ ），Karal－Douguia，Chad（1 \uparrow ），Maiduguri， Nigeria（1 \＆）；and red in females from Dakar，Senegal（1 \＆），Sokodé area，Togo（2 ㅇ），Doka， Sudan（1 \uparrow ），and Lodwar，Kenya（ 4 甲 ）．Most of segment I and base of tergum II are red in female from Nefta area，Tunisia，and sternum II is partly red in female from Silifke area，Turkey．

Color of female frontal setae：setae silvery in most specimens，but golden in those from Banjul， Gambia（1 \ddagger ），Ouagadougou，Burkina Faso（1 $\%$ ），Torodi area，Niger（2 $\%$ ），campement des Eléphants area，Cameroon（3 \ddagger ），Karal－Douguia，Chad（1 \uparrow ），Maiduguri，Nigeria（1 \ddagger ），Sokodé area，Togo（2 \uparrow ），Lodwar，Kenya（ 4 ㅇ），Mabokweni area，Tanzania（ 1 ㅇ），Mkomazi area，Tanzania （ 1 ¢ ），and Silifke area，Turkey（ $1 \quad \circ$ ）．

Color of female thoracic setae：setae silvery in most specimens，but conspicuously golden in those from Banjul，Gambia，Ouagadougou，Burkina Faso，Torodi area，Niger，campement des Eléphants area，Cameroon，Karal－Douguia，Chad，Maiduguri，Nigeria，Isiolo area，Kenya（1 \＆）， Lodwar，Kenya，and Silifke area，Turkey；and brown in one + from Springbok area，South Africa．

Color of wings：wing membrane mostly hyaline（yellowish basally），but somewhat darkened basally in males from Marsa Matruh area，Egypt，and conspicuously infumate except apically in some（same localities as for males with nonfasciate gaster，see below）．

Color of female tergal fasciae：fasciae mostly silvery，but brownish in specimens from the Ivory Coast；Togo；Torodi area，Niger；Kano area，Nigeria；Shaba Province，Zaire；and conspicuously golden in those from Banjul，Gambia；Ouagadougou，Burkina Faso；and Lodwar，Kenya．

Number of tergal fasciae：terga I－III or I－IV silvery fasciate apically in most specimens，but only terga I－II in a male from Albufeira，Portugal，and only tergum I in a male from Saqqara，Egypt． Most males from Marsa Matruh area，Egypt，have no tergal fasciae，but some have one or two． Males from the following localities have no tergal fasciae：Morocco：Ksar es Souk；Algeria： Tadjemount；Tunisia：Nefta area；Libya：Tripoli，Bardin，Gat，Jalu；and Egypt：El Arig in Siwa oasis．

Nesting habits and male behavior．－Ferton $(1912,1923)$ observed habits of albocinctus in Algeria，Bristowe（1925）in Somalia，Gess（1981）in South Africa，and Asís，Gayubo，and Tormos （1989）in Spain．Their data are summarized below．Asís，Gayubo，and Tormos（1987）described the mature larva．

Tachysphex albocinctus nests in friable，mainly sandy soils，in flat or gently sloping sites．The nest has an oblique burrow that is $10-15 \mathrm{~cm}$ long（straight or angulate near the midlength）and $1-3$ horizontal cells placed $3.5-8 \mathrm{~cm}$ below the surface．During nest excavation，sand accumulates in a spoil heap behind the entrance，but the female flattens it using her tarsal rake and walking toward the nest while the sand is projected behind her．Having completed the nest，she performs orienta－ tion flights and goes hunting．The nest is temporarily closed during the provisioning period except when the wasp is inside．When provisioning is completed，she fills the burrow with sand and，unlike other Sphecidae，builds a characteristic mound over it．Prey consists of mantids， $13-41 \mathrm{~mm}$ long， both males and females and usually nymphs，such as Mantis religiosa Linnaeus（Spain）， Calidomantis Rehn（Somalia），and Tarachodes Burmeister（Somalia）．The female malaxates the
mantid after stinging it and drinks the fluids that pour from the prey's mouth. The prey is flown to the nest under the wasp's body, headfirst and dorsum up. It is held by its antennae with the wasp's mandibles, her midlegs supporting the prey behind its head and the hindlegs at the level of prey's forelegs. The female lands at the nest entrance and opens it without dropping the prey, but releases it when most of the prey's body has been brought inside. The female then turns around, seizes the prey with her mandibles, and drags it in. One to seven mantids are deposited per cell, all head in. Since the prey length is greater than the cell's length, their legs and occasionally abdomens extend into the burrow (the prey's body is curved in such cases). Individual prey may lay venter up, venter down, or on the side. The egg is deposited by one of its ends on one of the last prey, perhaps the last one, and placed transversely on the mantid's throat next to its forecoxae. Asís, Gayubo, and Tormos (1989), whose records are the most detailed, noted cases of theft among neighboring females when one of them released the prey to introduce it into the nest. Prey theft occurred only when the females were in the provisioning phase (digging females paid no attention to prey).

Males spend most of their time perching on the ground or small objects (such as pebbles or dead branches), located in the nesting areas of females, with their antennae stretched forward. From time to time they make short flights and return to the same or a nearby perch. Other insects and especially conspecific males are chased away. During the hottest parts of the day, some males excavate short burrows ($1.5-2.3 \mathrm{~cm}$ long), which they enter and close behind them.

GEOGRAPHIC DISTRIBUTION (Fig. 17).Africa, southern Iberian Peninsula, Crete, southwestern Asia (Israel, Jordan, Syria, Yemen) to Transcaspia (Tajikistan, Turkmenistan, and Uzbekistan), and northwestern India.

Records (localities not followed by numbers of specimen studied or bibliographic reference are all from Pulawski, 1971, including those for nubilipennis).- ALGERIA: El Kala (8 ㅇ,4 \boldsymbol{o}^{7}, MNHN, including lectotype $+\frac{+}{}$ and 3 paralectotype of of mantiraptor), Laghouat (1 f), Maison Carrée near Alger (1 \&), Oumm ed Drou (Dufour, 1854, as Pontéba), Selfana (or Zelfana), Tadjemount. ANGOLA: Curoca River 7 mi NE Porto Alexandre ($1 \circ, 2 \sigma^{\circ}$, BMNH), Giraul River 10 mi NE Namibe ($3 \sigma^{\circ}$, BMNH). BENIN: Cotonou ($1 \circ$, ZMAN), 15 km SE Savé (2 ㅇ, OÖLM). BOTSWANA: 25 mi W Gweta at $20^{\circ} 17^{\prime} \mathrm{S} 24^{\circ} 54^{\prime} \mathrm{E}$ (2 ㅇ, BMNH), 18 mi NE Kalkfontein (1 ㅇ, $1 \delta^{\circ}$,

Figure 17. Collecting localities of Tachysphex albocinc- tus.

 ZMAN). BURUNDI: Bururi ($1 \stackrel{+}{\circ}$, MRAC). CAMEROON: Nord: 15 km W Campement des Eléphants and
 Karanis ($3 \delta^{\sigma^{*}}$), Kom Osheim ($12 \delta^{\circ}$), Lake Qarun, 10 km E Qarun ($1 \delta^{\left.\delta^{\prime}, ~ C S E\right), ~ W a d i ~ R a y y a n ~ a t ~} 29^{\circ} 02^{\prime} 57^{\prime \prime} \mathrm{N}$ $30^{\circ} 18^{\prime} 11^{\prime \prime} \mathrm{E}$ (1 ơ, AMNH). Al Iskanderiyah (= Alexandria): Amrye. Al Jizah (= Ghiza): Abu Rawash, Dahshur (9 δ^{\star}), Ghiza ($1 \circ$, $5 \delta^{*}$), Saqqara ($1 \delta^{*}$). Al Qahirah (= Cairo): Gebel Asfar, Maadi ($1 \delta^{*}$). Al-Uksur (= Luxor): 3 km W Luxor ($5 \sigma^{\star}$). Al-Wadi al-Jadid: Dakhla oasis: El Gedida (1 ㅇ), Tineida (1 ㅇ, $1 \delta^{\star}$); Kharga oasis: El Kharga (2 σ^{\star}). As Suways (=Suez): Fayed (1 σ^{\star}). Aswan: Aswan (2 σ^{\star}), near Kom Ombo temple
 $23 \sigma^{*}$), 25-35 km W Marsa Matruh (2 아), 64 km W Marsa Matruh (3 우), Siwa oasis: El Arig (1 of BMNH,
lectotype of nubilipennis; $1 \overbrace{}^{\top}$, LAUSANNE, paralectotype of nubilipennis) and Siwa ($1 \stackrel{\circ}{ }$, paralectotype of nubilipennis, BMNH). ERITREA: Khor Gergabb ($2 \sigma^{\text {h }}$, GENOVA, det. Tachytes albocinctus by P. Magretti).
ETHIOPIA: Gamo Gofa: Caschei (Guiglia, 1950), 49 road km SE Sodo ($1 \mathrm{o}^{\star}$). Harerge: Moullou in s. Harerge (2 ơ, MNHN), Awash River (Arnold, 1951; spelled Hawash). Sidamo: 26 km N Moyale ($1+10$ of ; $2 \sigma^{7}$, AAU), 35 km N Moyale (1 甲) . GAMBIA: Abuko ($1 \mathrm{o}^{7}, \mathrm{KMG}$), Bamba Forest about 4 km NNW Brikama Road junction ($1 \sigma^{*}$, ZMLU), Banjul ($1 \circ$, ZMAN), 6 km N Kartung ($3 \sigma^{\circ}$, ZMLU). GHANA: Kawampe
 BMNH). GREECE: Aegean Islands: Rhodes: Faliraki at $36^{\circ} 20^{\prime} \mathrm{N} 28^{\circ} 13^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\prime \prime}, \mathrm{MSNT}\right)$, Samos (1 9,1 o $^{\prime}$, SCHL). Kriti (= Crete): Canea. INDIA: Gujarat: Deesa (2 or *, BMNH, lectotype and paralectotype of peculator). IRAN: Baluchestan va Sistan: Gurmuk S Bampur. ISRAEL: 8 km NNE Ashkelon 1 , , 3 ơ, (CSE), Bat Yam 3 km S Yaffa (1 +), Bir Rehme 30 km SSE Beersheba (2 ㅇ), Ein Quit 15 km S Jerusalem, Sede Boker 40 km S Beersheba, Tel Aviv, Wadi Avrat 48 km S Beersheba, Wadi el Kelt ($1 \sigma^{\circ}$, OÖLM). IVORY COAST:
 $3 \sigma^{*}$). KENYA: Coast Province: Karacha Forest 16 km N Kilifi (3 +), Kitani Lodge in Tsavo West National
 $\left(3 \sigma^{*}\right)$, Shimba Hills ($1 \quad+, \mathrm{CNC}$), Shimba Hills at $4^{\circ} 12.3^{\prime} \mathrm{S} 39^{\circ} 25.0^{\prime} \mathrm{E}\left(1 \sigma^{*}\right)$, Taita Discovery Centre (10^{\star}), Taita Discovery Centre: Galla Hill area ($1 \sigma^{*}$), Ukunda ($1 \sigma^{*}, \mathrm{USNM}$), Voi (3 σ^{*}), about 1 km SE Voi (1 아), Voi area ($2 \uparrow 5 \sigma^{\circ}$, OÖLM), 1 mi W Watamu in Kilifi District ($1 \circ$). Eastern Province: near Ewaso Ng'iro River
 $2 \sigma^{*}$, NMK), 120 km S Lodwar ($1 \sigma^{*}$), Magadi road 46 air km SW Nairobi (2 σ^{*}), Magadi road 51 air km SW Nairobi ($1 \delta^{*}$), Marich Pass Field Studies Centre ($1+5$ o *). LIBYA: Cyrenaica: Bardin (as nubilipennis), El Adem, Jalu ($1 \sigma^{*}$, paralectotype of nubilipennis, LAUSANNE), Tmimi. Tripolitania: Gargaresc, Garian, Gat ($1 \quad+$, MILANO, labeled paratype of nubilipennis by de Beaumont), Leptis Magna, Tagiura, Tripoli (as nubilipennis). MALAWI: Cape Maclear ($1 \stackrel{\circ}{ }$, ZMAN), Mlanje ($1 \circ$, BMNH), Zomba ($1 \stackrel{\circ}{\circ}$, BMNH). MALI: 25 km E Hombori ($1 \mathrm{o}^{*}$), 10 km E Mopti ($1 \mathrm{o}^{*}, \mathrm{MS}$), 70 km SW Mopti ($1 \mathrm{o}^{*}$). MAURITANIA: Kaedi (1 ㅇ, FB), Rachid 40 km NW Tijikja (1 ㅇ), Tamouret Naaj ca 30 air km NE Moudjéria (1 ${ }^{*}$). MOROCCO: Agadir,
 CSE), Imiter ($1 \delta^{\star}$), Marrakech: Ksar es Souk (1 δ^{*}), Mehdia near Kenitra, Muley Rechid (Giner Marí, 1945),
 1933, as Tachytes etruscus, corrected by Pulawski, 1963), 40 km from Tazenakht Anezal in Anti-Atlas (1 of, CSE), Tinerhir, Tiznit: Oued Massa. MOZAMBIQUE: Maputo (2 $\circ, 1$ of, CU; 1 ㅇ, ZMAN; 1 ㅇ, UST), 70 km N Maputo ($1 \stackrel{\circ}{+}$, OÖLM), 25 km N Massinga in Inhambane Province ($1 \mathrm{o}^{\circ}$, OÖLM), Pungwe Bay ($1 \sigma^{*}$, TMP). NAMIBIA: Gobabis District: W Gobabis ($1 \sigma^{7}$, BMNH). Grootfontein District: 10 km NE Grootfontein ($1 \mathrm{ơ}^{\star}, \mathrm{OHL}$), 90 km NE Grootfontein ($1 \mathrm{o}^{\star}, \mathrm{JG}$). Karasburg District: Fish River canyon 15 km E Ai-Ais ($1 \sigma^{\top}$, SDNHM), Great Karas Mts. ($1+$, SAM), Karasburg ($1 \sigma^{\top}$, AMG). Karibib District: Ameib Farm 19 mi NW Karibib ($1 \mathrm{o}^{\boldsymbol{*}}, \mathrm{BMNH}$), 15 km W Karibib ($1 \mathrm{o}^{*}$, MS), 88 km E Walvis Bay ($1 \mathrm{o}^{\star}$). Keetmanshoop District: Keetmanshoop (1 o $^{\circ}$, AMG). Lüderitz District: Aus ($2 \sigma^{\circ} ; 2$ of, BMNH). Mariental District: Mariental ($1+1 \delta^{*}$, AMG), 5 km S Mariental ($1+$, AMG), 71 km E Stampriet ($1 \sigma^{7}$, AMG), 20 km
 1 ㅇ, BMNH), 17 km W Okahandja ($2 \sigma^{\circ}$, MS), 20 km W Okahandja ($1 \sigma^{\star}, ~ F S C A$). Outjo District: 31 km SE
 Rehoboth ($1 \sigma^{*}, \mathrm{MS}$), 23 km N Rehoboth ($1 \mathrm{o}^{\star}$). Rundu District: Rundu ($1 \stackrel{\circ}{\circ}$, OHL), $26 \mathrm{~km}\left(1 \mathrm{o}^{\circ}, \mathrm{JG}\right)$ and
 Goanikontes ($1 \sigma^{*}, \mathrm{BMNH}$), Gobabeb at Kuiseb River ($1 \stackrel{\circ}{\circ}$, PPRI), between Kuiseb and Gaub passes ($1+$, AMG), Namib Desert Research Station ($1 \mathrm{o}^{7}, \mathrm{USU}$), Swakop River E Swakopmund: $5 \mathrm{~km}\left(1 \mathrm{o}^{7}, \mathrm{ZMUC}\right), 10$
 $\left.2 \sigma^{*}, \mathrm{JG}\right)$, Swakop River mouth ($2 \delta^{*}, \mathrm{CAS}, \mathrm{NMN} ; 2 \circ, 1 \delta^{\star 7}, \mathrm{ZMUC}$). Tsumeb District: Namutoni ($1 \circ$, TMP), 10 km SE Tsumeb (2 ; ; 1 đ *, MS). Walvis Bay District: Rooibank ($1 \stackrel{\circ}{\circ}$, AMG). Windhoek District: Aris 25

 Windhoek (1 우, MS). NIGER: Agadez Region: 10 km S Agadez at $16^{\circ} 50.7^{\prime} \mathrm{N} 7^{\circ} 58.4^{\prime} \mathrm{E}$ (1 우), 30 km S Agadez at $16^{\circ} 39.0^{\prime} \mathrm{N} 7^{\circ} 56.9^{\prime} \mathrm{E}(1 \quad$ ㅇ $)$. Diffa Region: 3 km N Diffa at $13^{\circ} 21.3^{\prime} \mathrm{N} 12^{\circ} 36.4^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\prime}\right)$, 20 km SW
 Region: 8 km W Guidan-Roumji at $13^{\circ} 38.2^{\prime} \mathrm{N} 6^{\circ} 38.2^{\prime} \mathrm{E}$ (3 o°), Maradi ($1 \mathrm{o}^{\circ}, \mathrm{MNHN}$), 17 km NNW Maradi at $13^{\circ} 38.7^{\prime} \mathrm{N} 7^{\circ} 02.6^{\prime} \mathrm{E}\left(1 \mathrm{~d}^{\circ}\right), 23 \mathrm{~km}$ NNW Maradi at $13^{\circ} 42.3^{\prime} \mathrm{N} 7^{\circ} 01.4^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right)$. Niamey Region: Niamey (1 \& , $1 \mathrm{o}^{\circ}$, KMG). Tillabéri Region: 3 km N Ayorou at $14^{\circ} 45.7^{\prime} \mathrm{N} 0^{\circ} 54.0^{\prime} \mathrm{E}\left(20^{\circ}\right), 5 \mathrm{~km}$ NW Kollo at $13^{\circ} 21.6^{\prime} \mathrm{N}$
 25 km N Niamey at $13^{\circ} 33.2^{\prime} \mathrm{N} 2^{\circ} 23.6^{\prime} \mathrm{E}\left(2 \delta^{\circ}\right), 84 \mathrm{~km}$ ESE Téra at $13^{\circ} 51.2^{\prime} \mathrm{N} 1^{\circ} 32.7^{\circ} \mathrm{E}\left(1 \circ+1 \mathrm{o}^{\circ}\right), 30 \mathrm{~km} \mathrm{SW}$ Torodi at $12^{\circ} 48.8^{\prime} \mathrm{N} 1^{\circ} 42.4^{\prime} \mathrm{E}\left(2\right.$)). Zinder Region: 17 km W Gouré at $13^{\circ} 52.5^{\prime} \mathrm{N} 10^{\circ} 09.3^{\prime} \mathrm{E}\left(2 \mathrm{o}^{\circ}\right), 47 \mathrm{~km} \mathrm{~W}$ Gouré at $13^{\circ} 41.8^{\prime} \mathrm{N} 6^{\circ} 52.1^{\prime} \mathrm{E}\left(18\right.$), 11 km S Tanout at $14^{\circ} 52.6^{\prime} \mathrm{N} 8^{\circ} 52.3^{\prime} \mathrm{E}\left(1 \sigma^{\circ}\right), 45 \mathrm{~km} \mathrm{~S}$ Zinder at $13^{\circ} 27.3^{\prime} \mathrm{N}$
 $7^{\circ} 28^{\prime} \mathrm{N} 4^{\circ} 34^{\prime} \mathrm{E}\left(1\right.$ ㅇ, BMNH), Maiduguri ($1+$, KMG). PAKISTAN: Baluchistan: Pasni Rek ($1 \mathrm{o}^{\boldsymbol{\prime}}$, BMNH). PORTUGAL: (Diniz, 1964, or as indicated): Albufeira (2 on $^{\circ}$), Aljustrel, Caparica ($1 \mathrm{o}^{\circ}$), Évora, Lagoa de Albufeira, Porta de Lagoa (Gayubo, 1984b), Portimão (1 đ̊), Quartereira (Gayubo, 1984b), Seixal, Setúbal,

 (1 아, BMNH), Hargeisa (Bristowe, 1925). SOUTH AFRICA: Eastern Cape Province: Algoa Bay (1 $\%$; 8 品, 20°, TMP), NNW Bedford at $32^{\circ} 33^{\prime} \mathrm{S} 26^{\circ} 00^{\prime} \mathrm{E}\left(20^{\circ}\right)$, Belmont Valley 10 km E Grahamstown at $33^{\circ} 19^{\prime} \mathrm{S}$
 W Steytlerville ($3 \sigma^{7}$, USU), Graaff-Reinet ($2 \sigma^{\circ}$, AMG), Grahamstown ($1 \sigma^{7}$, AMG), 12 and 17 mi NW Grahamstown ($2 \delta^{\circ}$, AMNH), 18 km WNW Grahamstown: Hilton Farm ($1 \delta^{\circ} ; 33$ ㅇ, 24 ơ $^{\circ}$, AMG), Great Brak River ($1+\circ$, SAM), Jeffreys Bay ($1+3$ o $^{\circ}$, SAM), Liebendal at $31^{\circ} 43^{\prime} 25^{\circ} 55^{\prime}$ E (10°, SAM), Middelburg ($7 \delta^{\circ}$, AMG), Olifantsrivier 30 km NNE Uniondale at $33^{\circ} 27^{\prime} \mathrm{S} 23^{\circ} 19^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$), Port Alfred ($3 \mathrm{o}^{\circ}$, AMG),
 Steytlerville: Wolwekraal Farm (20°, USU), 37 km NW Steytlerville at $33^{\circ} 11^{\prime} \mathrm{S} 24^{\circ} 10^{\prime} \mathrm{E}\left(20^{\circ}\right.$, CSE), Van Stadens River mouth at $33^{\circ} 58^{\prime} \mathrm{S} 25^{\circ} 13^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{SAM}\right)$, Vlakwater 27 km NW Grahamstown ($1 \quad \mathrm{q}$, AMG),
 (2 ㅇ, 4 d $^{\text {t }}$), 43 km NE Willowmore: Plessierivier (10°, USU), 37 km NW Willowmore in Grootrivierberg Range ($1 \delta^{\circ}$), 12 km W Willowmore at $33^{\circ} 16^{\prime} \mathrm{S} 23^{\circ} 22^{\prime} \mathrm{E}\left(2 \sigma^{\circ}\right)$. Free State: 30 km N Colesberg at Orange River (1 ㅇ, OÖLM), Gum Tree (1 ค, BMNH), Kroonstad ($2 \delta^{\circ}$, AMG; $1 \delta^{\circ}, \mathrm{AMNH}$), Tussen Die Riviere Game Reserve (1 甲 , 9 o $^{\circ}$). Gauteng: Bryanston at $26^{\circ} 04^{\prime}$ S $28^{\circ} 01^{\prime} \mathrm{E}\left(3 \boldsymbol{o}^{\circ}\right.$, AMG), Pretoria: Botanical Garden (10°). Kwazulu-Natal: 20 km S Emanguzi (2 ơ$^{\circ}$, OÖLM), SW Emanguzi ($1 \sigma^{\pi}$, OÖLM), Fanies Island in Santa Lucia Lake ($1 \mathrm{o}^{*}, \mathrm{AMG}$), Hluhluwe ($1 \mathrm{o}^{\boldsymbol{*}}, \mathrm{ZMAN}$), Mbazwana ($1 \circ$, OÖLM), Mkuze Game Reserve ($1 \mathrm{o}^{\boldsymbol{*}}, \mathrm{AMG}$), Ndumu Game Reserve (4 ㅇ, ZMAN), Lake Santa Lucia N (1 ㅇ, TMP), Lake Santa Lucia at False Bay (1 우 , ZMAN), Tembe Elephant Park (7 오, 2 o $^{\circ}$, OÖLM). Mpumalanga: 40 km SW Komatiepoort (1 ㅇ, 1 of, OÖLM), Pretoriuskop in Kruger National Park ($1 \mathrm{o}^{7}$, PPRI; $1 \mathrm{o}^{\pi}$, USNM). Northern Cape Province: 40 km S Garies ($6 \sigma^{\circ}$, OÖLM), Goodhouse ($2 \sigma^{\circ}$, SAM), 25 km E Hondeklipbaai ($4 \sigma^{\circ}$, OÖLM), Hopetown ($1 \sigma^{\boldsymbol{\pi}}$,
 FSCA), near Richtersveld National Park between Annis and Dabie Rivers at $28^{\circ} 20^{\prime} \mathrm{S} 16^{\circ} 55^{\prime} \mathrm{E}$ ($1+\mathrm{q}, \mathrm{AMG}$),

 Klaserie ($1 \delta^{\pi}$, PMA), 10 km SW Naboomspruit ($1 \mathrm{o}^{7}$, FSCA), Warmbad (1 q , AMG), 5 mi N Warmbad ($1 \mathrm{o}^{7}$, USNM), Wyllies Poort (1 ㅇ, BMNH). North-West Province: 5 km S Brits (1 ค, OÖLM), Kosmos to
 SAM). Western Cape Province: Agulhas ($2 \sigma^{\circ}$, PPRI), Beaufort West: Oukloof (2 ㅇ, 3 o 7, SAM $)$, Cape Town
 USU), Cape Town: Table Mountain at $33^{\circ} 57^{\prime} \mathrm{S} 18^{\circ} 24^{\prime} \mathrm{E}$ (1 \&), 50 km N Cape Town (3 ơ', OÖLM), $60 \mathrm{~km} \mathrm{~N}^{\circ}$ Cape Town ($1 \sigma^{\circ}$, OÖLM), Cederberg at $32^{\circ} 30^{\prime} \mathrm{S} 15^{\circ} 15^{\prime} \mathrm{E}\left(10^{\circ}\right.$, PPRI), 8 km SE Cederberg ($2 \sigma^{\circ} ; 1 \sigma^{\circ}$, PPRI), Ceres (1 ㅇ, 7 o $^{\pi}$, BMNH; 1 ㅇ, 6 o *, SAM), 43 km ENE Ceres (5 o *, AMG), Citrusdal District (1 o $^{\circ}$, SAM), 20 km N Citrusdal (1 ơ, OÖLM), 40 km E Clanwilliam: Sevilla ($1 \circ 7,7$ ơ, USU), 11 km W Clanwilliam: Ysterfontein Farm ($2 \mathrm{o}^{\circ}, \mathrm{USU}$), 18 km S Clanwilliam at $32^{\circ} 17^{\prime} \mathrm{S} 18^{\circ} 56^{\prime} \mathrm{E}$ ($1 \mathrm{~d}^{\circ}$, AMNH), Clanwilliam-Klawer ($1 \mathrm{o}^{\circ}, \mathrm{SAM}$), Dasklippas in Cederberg Mts. NE Porterville (4 ค, $8 \sigma^{\circ}$, OHL), Dikbome Farm on Merweville-

 37 km SW Ladismith at $33^{\circ} 38^{\prime} \mathrm{S} 21^{\circ} 01^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$, AMNH), Laingsburg ($1 \mathrm{o}^{\circ} ; 1 \mathrm{o}$, AMG), 13 km ENE Laingsburg at $33^{\circ} 11^{\prime} \mathrm{S} 20^{\circ} 59^{\prime} \mathrm{E}\left(1 \delta^{\circ}\right)$, Langberg (7 o $^{\circ}$, OÖLM), Matjiesfontein (2 $\circ, 1$ o $^{\circ}, \mathrm{BMNH}$), Merweville
 SAM), Rooinek in Laingsburg District ($\left.2 \stackrel{\circ}{\circ}, 19 \sigma^{*}, ~ S A M\right)$, Silvermine Nature Reserve in Cape Peninsula ($2 \sigma^{*}, \mathrm{BMNH}$), Swartrivier 7 km NW Prince Albert ($2 \sigma^{\circ}$), Swellendam ($1 \sigma^{\circ}$, FSCA), Tierberg Farm 23 km NE Prince Albert ($4 \sigma^{\circ} ; 2 \sigma^{\circ}$, AMG) and $33^{\circ} 10^{\prime} \mathrm{S} 22^{\circ} 15^{\prime} \mathrm{E}\left(1 \sigma^{\circ}\right)$, Touwsrivier ($3 \sigma^{\circ}$, AMG), 18 mi SE Touwsrivier

 and Asís, 1993): Agost, Alicante, El Altet, Elche, Novelda, San Vicente del Raspeig. Almería: El Alquián (3 우, $1 \sigma^{\star}$), Gérgal ($1 \sigma^{*}, \mathrm{CU}$), Laujar (1 ㅇ), Rambla de Tartala, Roquetas de Mar (2 o *), R. Tabernas (Gayubo, Asís, and Tormos, 1990). Badajoz: Medellin (1 o ${ }^{*}$), Merida. Cadiz: San Diego: Guadiaro. Castellón de la Plana: Burriana (Asís and Jiménez, 1988), La Llosa (Asís and Jiménez, 1988), Vallibona (Gayubo and Tormos, 1986). Jaen: Las Correderas. Madrid (Gayubo and Mingo, 1988): Madrid, Ribas de Jarama. Málaga:
 Toledo. Valencia: Bétera, Dehesa de el Saler, Gandía (Gayubo and Tormos, 1984), Perellonet. SUDAN: Doka (1 \& , GENOVA, det. fluctuatus by P. Magretti). TAJIKISTAN: Ayvaj near Djilikul. TANZANIA: Arusha Region: Tarangiri National Park ($1 \sigma^{*}$). Iringa Region: 18 km W Iringa ($1 \sigma^{*}$). Kilimanjaro Region: 18 km S

 $38^{\circ} 01.8^{\prime} \mathrm{E}\left(1 \mathrm{o}, 1 \mathrm{o}^{\star}\right), 10 \mathrm{~km}$ WNW Mabokweni ($2 \circ, 2 \mathrm{o}^{\star}$), 22 km WNW Mabokweni ($1 \mathrm{o}^{\star}$), 2 km NE Mkomazi ($3 \quad$ ㅇ, 12 o *), Pangani River Camp 86 km NW Korogwe ($1 \mathrm{o}^{\star}$). Zanzibar Region: Unguja (= Zanzibar Island): Mazi Moja (1 ơn $^{*}, \mathrm{BMNH}$). TOGO: Sokodé (3 ơ, FSAG), 5 km W Sokodé (2 TUNISIA: 11 km S Jendouba at Mellègue River (2 ㅇ, CSE), E Kebili at $33^{\circ} 45.9^{\prime} \mathrm{N} 9^{\circ} 03.9^{\prime} \mathrm{E}(1 \quad \circ, \mathrm{CSE}$), 3 km SW Matmata ($1 \stackrel{\circ}{+}, \mathrm{CSE}$), 10 km SE Matmata at $33^{\circ} 30^{\prime} \mathrm{N} 10^{\circ} 01^{\prime} \mathrm{E}(1+\circ, \mathrm{CSE}), 15 \mathrm{~km}$ W Nefta at $33^{\circ} 50^{\prime} \mathrm{N}$ $7^{\circ} 43^{\prime} \mathrm{E}\left(1+\frac{+}{}, 1\right.$ o $\left.^{\circ}\right)$, Tabarka at $36^{\circ} 58^{\prime} \mathrm{N} 8^{\circ} 45^{\prime} \mathrm{E}\left(1+\right.$ ㅇ, CSE), 3 km E Tabarka ($1 \circ^{\circ}$), 15 km E Tabarka at $36^{\circ} 58^{\prime} \mathrm{N}$
 Silifke at $36^{\circ} 24.0^{\prime} \mathrm{N} 33^{\circ} 48.3^{\prime} \mathrm{E}(1 \quad$ ㅇ, CSE). TURKMENISTAN: Akhcha-Kuyma near Djebel, Farab (1 우), Germab 55 km W Askhabad, Kerki ($1 \sigma^{*}$), Repetek ($1 \circ^{*}$), Uzun Ada on e. shore of Krasnovodsk Gulf. UGANDA: Ngora ($1+1 \circ^{*}$, CU). UZBEKISTAN: Ravat 60 km S Tashkent. YEMEN (Bingham, 1898): Lalaj, Sheikh Othman, also Al Kowd (4 ㅇ, ZMAN). ZAIRE: Biano in Shaba Province (1 ㅇ, BMNH), Kabalo (1 ㅇ, BMNH), 42 km E Kikwit ($1 \mathrm{o}^{*}$). ZAMBIA: Central Province: Chibombo 97 road km N Lusaka ($2 \mathrm{o}^{*}$), 14 km E Kapiri Mposhi ($1 \delta^{*}$), 25 km SSW Kapiri Mposhi ($1 \delta^{*}$). Eastern Province: 38 km W Kacholola (2 δ^{*}), E side of Luangwa bridge ($3 \uparrow+$ o $^{\top}$), mid-Luangwa Valley (2 ㅇ, BMNH), 6-18 km SW Mfuwe (1 ㅇ) , 32 km E Petauke ($1 \sigma^{\circ}$). Northern Province: near Mpulungu ($1 \sigma^{\circ}$). Southern Province: 18 km NE Pemba ($1 \mathrm{o}^{*}$,
 Bulawayo (2 \boldsymbol{o}^{*}), Hobo Ken in Umtali District (2 \circ, TMP), Kami Ruins (1 \boldsymbol{o}^{*}), Leighwoods 52 km SW Bulawayo (1 f) , Lion and Cheetah Park 24 km W Harare ($1 \mathrm{o}^{\star}$), Matetsi in Hwange District (4 ㅇ, $1 \mathrm{o}^{\star}$, AMG),

Tachysphex ambiguus Arnold

Figures 18-19.
 ed, examined.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Schouteden, 1930:91 (Zaire); Bohart and Menke, 1976:272 (listed).

Recognition.- Tachysphex ambiguus, an all black species, has a flat labrum, galea shorter than wide in lateral view, hindwing crossvein cu-a vertical, and apical tarsomeres without ventral
or lateral spines. It is further characterized by well-defined mesothoracic punctures and shiny interspaces; postocellar area wider than long; setae erect on postocellar area and on scutum anteriorly, suberect on midfemoral venter, and oriented anterolaterad on the propodeal dorsum. The female has a distinctive clypeus (Fig. 18a): the impunctate, obliquely oriented bevel meets the basomedian area at an angle (the apicomedian portion of the basomedian area is also impunctate); and the lip free margin is undulate. In the male, the clypeal lobe is narrow (corners closer to each other than to adjacent orbit), and the forefemoral notch is large, extending far on femoral anterior surface (Fig. 18c), largely glabrous, with an obtuse, longitudinal crest.

Description.- Mesothoracic punctures coarse, averaging about one diameter apart on scutal disk and near center of mesopleuron (some to many punctures may be several diameters apart); interspaces shiny. Propodeal dorsum irregularly, coarsely rugose, with tendency to form longitudinal ridges; side ridged. Hindcoxal dorsum with inner margin carinate, carina somewhat expanded basally.

Setae (numbers in parentheses indicate setal length expressed as a fraction of basal mandibular width): sinuous, suberect on each side of oral fossa next to occipital carina (up to 0.5); erect, sinuous to practically straight on postocellar area, scutum anteriorly (up to 0.4 in female and 0.6 in male), and mesopleuron; straight, inclined anterolaterad on propodeal dorsum; suberect on midfemoral venter (longest setae 0.3).

Head, thorax, gaster, and legs black, mandible dark reddish mesally, tarsal apex reddish. Frontal setae silvery in both sexes. Wing membrane slightly infumate; forewing costal vein brown and subcostal vein dark brown, or both veins dark brown. Terga I-III silvery fasciate apically.

$\overline{0.25 \mathrm{~mm}}$
c

Figure 18. Tachysphex ambiguus Arnold: a - female clypeus; b-male clypeus; c - male forefemur; d - volsella e - penis valve.

ㅇ.- Clypeus (Fig. 18a): bevel slightly shorter than basomedian area, meeting the latter at an angle; lip free margin slightly, obtusely protruding mesally; broadly, shallowly concave adlaterally; and shallowly concave laterally (median projection and lateral concavity varying from prominent to inconspicuous). Width of postocellar area 1.2-1.3 \times length. Dorsal length of flagellomere I $2.4-2.6 \times$ apical width. Dorsal foretibial surface with two or three inconspicuous spines, outer surface with thin spine near midlength. Forebasitarsus with 7-9 rake spines. Apical depression of tergum V narrow, varying from microsculptured, setose, to almost unsculptured, asetose. Pygidial plate microareolate and dull (except apically), with minute punctures that average many diameters apart. Length 9.8-11.6 mm.
0°.- Mandible: trimmal carina with tooth (Fig. 18b), cleft rudimentary or absent. Clypeus (Fig. 18b): bevel shorter than basomedian area, in most specimens somewhat stepped at lip base; lip free margin broadly, obtusely protruding mesally, broadly emarginate laterally, with welldefined corner; distance between corners $0.8 \times$ distance between corner and orbit. Width of postocellar area $1.5-1.6 \times$ length. Dorsal length of flagellomere I $1.6-1.8 \times$ apical width. Forefemoral notch asetose, larger than average for Tachysphex, extending far on femoral anterior surface (Fig. 18c), largely glabrous, with longitudinal, obtuse crest, and proximal margin somewhat expanded (obtusely to sharply). Outer margin of forebasitarsus with varying number of rake spines (e.g., only apical spine present in single specimen from Serowe, Botswana; one apical and one subbasal in a specimen from Bulawayo, Zimbabwe; and four spines in specimen from St. Benedict, Zimbabwe, although the two intermediate ones are short, about as long as basitarsus width); outer apical spine of foretarsomere II shorter than tarsomere III. Tergum VII evenly, densely punctate throughout or punctures several diameters apart mesally. Length 7.0-8.8 mm. Volsella and penis valve: Figs. 18d, e.

Collecting period.- 7 March through 12 September.

Geographic distribution (Fig. 19).Tanzania to South Africa.

Records.- BOTSWANA: Serowe (1 \&, 1 ${ }^{\circ}$). SOUTH AFRICA: Eastern Cape Province: 3 km N Steytlerville ($1 \mathrm{o}^{\circ}$, USU), 6 km N Steytlerville (20°, USU). Free State: Tussen Die Riviere Game Reserve (1 of, 1 ơ, PPRI). Gauteng: Johannesburg: Melville Koppies Reserve ($1{ }^{*}$, FSCA). Northern Cape Province: Olifantshoek at $27^{\circ} 57^{\prime} \mathrm{S} 22^{\circ} 48^{\prime} \mathrm{E}$ (1

Figure 19. Collecting localities of Tachysphex ambiguus. σ^{*}, PPRI). Northern Province: Afguns ($1 \delta^{\star}$, AMG). TANZANIA: Iringa Region: 18 km W Iringa (1
 Elisabethville). ZIMBABWE: Bulawayo ($1 \circ^{*}$, AMG; $1 \stackrel{\circ}{+}$, ANSP; $2 \oplus$ ㅇ, $2 \sigma^{*}$, SAM, including lectotype \circ and

 (1 ㅇ, SAM), Essexvale (1 ㅇ, AMG), near Harare [probably Chishawasha] (2 ㅇ, 4 ơ, RMNH), Hope Fountain
 Kyle Lake (1 ㅇ), Lion and Cheetah Park 24 km W Harare (1 아), Nyamandhlovu ($1 \sigma^{*}$, ANSP; $3 \sigma^{*}$, TMP), St. Benedict 30 km NE Macheke ($1 \sigma^{\star}$), Turk Mine ($1 \sigma^{\star}$, SAM), Umtali ($1 \sigma^{\star}$, AMG), Vumba Mts. ($1 \sigma^{*}$, ANSP).

Tachysphex ambositrae Leclercq

Figures 20-21.
Tachysphex ambositrae Leclercq, 1967:67, \odot. Holotype: \uparrow, Madagascar: Ambositra (MNHN), examined.Bohart and Menke, 1976:272 (listed); Pulawski, 2003:797 (in checklist of Malagasy Sphecidae).

Recognition.- The female of ambositrae, a Madagascan species, can be recognized by the following combination: postocellar area wide (width $2.0 \times$ length), with erect setae (Fig. 20a); forefemoral venter shiny, with sparse punctures (Fig. 20c); gaster all red, nonfasciate, with segment VI somewhat flattened (Fig. 20d). The male is unknown.

Description (based on holotype only).- Mandible: outer ridge somewhat swollen and expanded over notch. Scutal punctures up to several diameters apart on disk. Mesopleuron dull, punctatorugose. Episternal sulcus complete, unusually deep below scrobal sulcus. Propodeal dorsum and side coarsely ridged. Hindcoxal dorsum with inner margin carinate basally, carina not expanded. Sternum I: apical depression bisected by obtuse, longitudinal carina.

Setae erect on postocellar area and on each side of oral fossa next to occipital carina, about 1.5 \times midocellar diameter long; oriented obliquely anterad on propodeal dorsum.

Head and thorax black, mandible dark reddish mesally. Frontal setae silvery (unknown in male). Wing membrane infumate; forewing costal and subcostal veins almost black. Legs black except tarsal apex reddish. Gaster red. Terga without silvery, apical fasciae.

ㅇ.- Clypeus (Fig. 20b): basomedian area markedly convex; bevel slightly longer than baso-

Figure 20. Tachysphex ambositrae Leclercq: a - female head in frontal view; b - female clypeus; c - female forefemur; d - gastral segment VI of female (P: lateral margin of pygidial plate, T : ventral margin of tergum VI).
median area; lip free margin arcuate, with two lateral incisions (and two teeth) on each side. Width of postocellar area $2.0 \times$ length (Fig. 20a). Dorsal length of flagellomere I $2.6 \times$ apical width. Scutum and scutellum slightly flattened. Midtrochanteral venter: punctures several diameters apart, interspaces unsculptured. Forefemoral venter with punctures that are several diameters apart (Fig. 20c), interspaces unsculptured. Foretibial outer surface with a few small fossae that suggest presence of spines (missing now), integument between fossae unsculptured, glabrous. Forebasitarsus with 14 rake spines. Apicoventral margin of apical tarsomeres convex. Terga IV and V: punctures several diameters apart, interspaces unsculptured, apical depression unsculptured. Tergum VI flatter than usual in the genus (Fig. 20d); pygidial plate sparsely punctuate, lateral margin effaced anteriorly. Length 15.0 mm .
0^{7}.-Unknown.
Geographic distribution (Fig. 21).Madagascar. Known from a single specimen collected by A. Seyrig in Ambositra in October 1928. The species may be extinct now as the natural habitat around Ambositra has been nearly completely lost to deforestation, conversion to agriculture, grazing, and grass fires, as I could see in March and April 1994.

Records.- MADAGASCAR: Ambositra (1 ค, MNHN, holotype).

Figure 21. Collecting localities of Tachysphex ambositrae and anceps.

Tachysphex anceps Arnold

Figures 21-23.
Tachysphex anceps Arnold, 1945:102, ㅇ. Holotype: ㅇ, Madagascar: Bekily (MNHN), examined.- Bohart and Menke, 1976:272 (listed); Pulawski, 2003:797 (in checklist of Malagasy Sphecidae).

Recognition.- Tachysphex anceps, an all black endemic of Madagascar, has the labrum flat, the mesopleuron with well-defined punctures, the setae straight, erect on the postocellar area, nearly erect on the scutum and on the midfemoral venter (as in Figs. 215e, f), inclined obliquely anterad on the propodeal dorsum, and the apical tarsomeres without spines on venter or lateral margin. Unlike sexinus, it has the usual, glabrous swelling above each antennal socket. Unlike saturnus, the notaulus is inconspicuous, and the scutal hindcorner is nonprominent.

The female of anceps has a clypeal lip with two lateral incisions on each side (Fig. 22a), and terga I-III fasciate apically. The female of perniger is similar, but the fasciae are present only on terga II and III and only laterally. The female of seyrigi differs in having minute mesopleural punctures.

The male of anceps can be recognized by the following combination: body black, clypeal lip roundly triangular (Fig. 22b), trimmal carina nondentate, and sterna III-VI largely impunctate anterad of apical depressions.

Description.- Scutal punctures averaging about one diameter apart in female, less than that in male, but in female some discal punctures up to several diameters apart. Mesopleural punctures well defined, averaging about one diameter apart; interspaces microsculptured. Episternal sulcus complete. Propodeal dorsum rugose, side ridged but ridges evanescent in some specimens (then

Figure 22. Tachysphex anceps Arnold: a - female clypeus ($\times 41$); b - male clypeus ($\times 64$); c - female labrum ($\times 128$); d - base of male forefemur ($\times 120$); e apical hindtarsomere of female in ventral view ($\times 180$).
integument with easily recognizable punctures). Hindcoxal dorsum with inner margin carinate basally.

Setae erect, about one midocellar diameter long on postocellar area; erect, about $0.4 \times$ basal mandibular width on each side of oral fossa next to occipital carina; suberect on scutum and midfemoral venter, about 1.5-2.0 \times midocellar diameter; oriented obliquely anterad on propodeal dorsum.

Body all black except mandible reddish mesally. Frontal setae silvery in both sexes. Wing membrane moderately infumate; forewing costal and subcostal veins dark brown. Terga I-III in female, I-IV in male, silvery fasciate apically.

ㅇ.- Labrum emarginate mesally (Fig. 22c). Clypeus (Fig. 22a): bevel longer than basomedian area; lip free margin arcuate, with two lateral incisions on each side. Width of postocellar area $1.2-1.4 \times$ length. Dorsal length of flagellomere I 2.1-2.2 \times apical width. Scutellum slightly flattened. Forefemoral venter uniformly, minutely punctate, punctures several diameters apart. Dorsal foretibial surface with one or two inconspicuous spines, outer surface with a few thin bristles. Forebasitarsus with 10-13 rake spines. Apicoventral margin of apical tarsomeres slightly arcuate (Fig. 22e). Tergum V (except laterally) with a few, sparse punctures; apical depression impunctate, glabrous. Pygidial plate with punctures that average several diameters apart; interspaces unsculptured. Length $8.5-9.0 \mathrm{~mm}$.
0°.- Mandible: trimmal carina at most with obtusely angulate tooth remnant. Clypeus (Fig. 22b): bevel shorter than basomedian area; lip free margin roundly triangular, without corner (forming single curved line with rest of clypeal margin). Width of postocellar area 1.3-1.5 \times length. Dorsal length of flagellomere I 1.5-1.7 \times apical width, equal to about 0.7 of II. Forefemoral notch smaller than average for the genus, setose to partly glabrous (Fig. 22d). Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Sterna III-VI largely impunctate anterad of apical depression. Length $5.0-7.0 \mathrm{~mm}$. Volsella and penis valve: Fig. 23.

Prey.- The holotype female is pinned with a small nymphal gryllid, presumably her

Figure 23. Tachysphex anceps Arnold: volsella and penis valve. prey.

Geographic distribution (Fig. 21).— Madagascar.
 National Park at $22^{\circ} 36^{\prime} \mathrm{S} 45^{\circ} 10^{\prime} \mathrm{E}\left(30^{\circ} ; 1\right.$ 우, MSNT). Toliara: 22 km E Ampanihy at $24^{\circ} 41^{\prime} \mathrm{S} 44^{\circ} 46^{\prime} \mathrm{E}\left(10^{\circ}\right)$, Bekily ($1 \mathrm{o}^{7}$, MNHN, holotype of anceps), Bereboka 60 km NE Morondava ($2 \mathrm{o}^{\circ}$, BMNH), Berenty (3 ค ,
 (1 ㅇ, 10 ơ $^{\circ} ;$ o $^{\pi}$, MSNT).

Tachysphex angustus Arnold, new status

Figures 24-25.
Tachysphex hermia var. angustus Arnold, 1924:54, ठ̛. Holotype: 0^{7}, Zimbabwe: Bulawayo (SAM), exam-ined.-As Tachysphex hermia angustus: Bohart and Menke, 1976:274 (new status, listed).

Recognition.- Tachysphex angustus, an all black southern African species, has conspicuous
scutal and mesopleural punctures, a flat labrum, a galea shorter than wide in profile, hindwing crossvein cu-a vertical, setae erect on the postocellar area and midfemoral venter and diverging anterad from midline on the propodeal dorsum, and unspecialized tarsi (length of midtarsomere II more than twice width and that of hindtarsomere IV greater than width, apical tarsomeres without spines on venter or lateral margins).

The female of angustus has a slightly concave postocellar area (Fig. 24a); clypeal lip not emarginate laterally (Fig. 24c), mesopleuron with well-defined punctures and shiny interspaces; setae appressed on the hindfemoral venter; and tarsomeres IV not elongate (e.g., length of hindtarsomere IV $1.2-1.4 \times$ apical width). It can be distinguished with some difficulty from titania, in which the postocellar area is flat or nearly so and the galea is slightly longer than wide in profile (Fig. 393). The female of longipes is also similar, but has the mesopleuron dull, punctatorugose, setae erect on the hindfemoral venter (Fig. 215e), and tarsomeres IV elongate (e.g., length of hindtarsomere IV $1.7 \times$ apical width).

The male of angustus has a distinctive clypeus whose middle section is convex and whose lip is essentially truncate (varying from slightly arcuate or sinuate to nearly truncate), with corner either obtuse or well defined (Fig. 214b). The sinuous setae of the postocellar area help in recognition.

Description.- Scutal and mesopleural punctures well defined, conspicuous, on scutal disk and near center of mesopleuron varying from less than to more than one diameter apart; interspaces shiny. Propodeal dorsum rugose, in many specimens also with longitudinal ridges; side ridged. Hindcoxal dorsum with inner margin carinate basally. Sternum I, in some specimens, with short, median carina on apical depression.

Setae erect or suberect on postocellar area, lower gena, thorax, fore- and midfemoral venters, diverging anterolaterad from midline on propodeal dorsum, not concealing integument; sinuous on postocellar area, sinuous or straight on lower gena, scutum anteriorly, and mesopleuron. Setal length, expressed as a fraction of basal mandibular width, about $0.7-1.0$ on postocellar area and adjacent to hypostomal carina, about $0.2-0.4$ on midfemoral venter.

Head, thorax, gaster, femora, and tibiae black, mandible reddish at about two thirds of length, tarsal apex brown or reddish. Frontal setae silvery in both sexes. Wing membrane almost hyaline; costal vein of forewing brown, subcostal vein dark brown. Terga I-IV (I-V in some males) silvery fasciate apically.

ㅇ.- Clypeus (Fig. 24c): bevel slightly shorter to slightly longer than basomedian area; lip arcuate to straight, not incised laterally, in many specimens inconspicuously angulate mesally. Postocellar area slightly concave (Fig. 24a), its width 1.2-1.5 \times length in most specimens, but 2.2 \times length in single female from Loeriesfontein. Dorsal length of flagellomere I 2.6-2.8 \times apical width; middle flagellomeres longer than average for the genus (e.g., dorsal length of flagellomere IV 3.2-3.6 \times apical width). Distal half of forefemoral venter with punctures up to several diameters apart; all forefemoral venter with minute punctures that are many diameters apart in female from Loeriesfontein. Dorsal foretibial surface with two inconspicuous spines, outer surface with one or two spines. Forebasitarsus with 5-7 rake spines. Tergum V microsculptured and setose throughout, including apical depression. Pygidial plate aciculate, with punctures that average many diameters apart. Length $8.5-10.5 \mathrm{~mm}$.
$0^{\text {h}}$.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 24d): middle section markedly convex; bevel varying from about as long as basomedian area to nearly reduced; lip free margin varying from slightly arcuate or sinuate to nearly truncate, with well-defined but nonprominent corner; distance between corners $0.8-1.0 \times$ distance between corner and orbit. Width of postocellar area 1.9-2.2 \times length (Fig. 24b). Dorsal length of flagellomere I 1.2-1.4 \times apical width.

Figure 24. Tachysphex angustus Arnold: a - female head; b - male head; c - female clypeus and mandible; d - male clypeus and mandible; e - volsella; f - penis valve.

Forefemoral notch microscopically setose, smaller than average for the genus in Namibian specimens. Outer margin of forebasitarsus mostly without preapical spines, occasionally with one such spine; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Length 6.0-7.1 mm . Volsella and penis valve: Figs. 24e, f.

Floral records.- The specimens collected in Homeb area, Namibia, were visiting flowers of Welwitschia mirabilis J.D. Hooker; those collected between Aus and Rosh Pinah were visiting pink flowers of Galenia sp. (Aizoaceae); and that collected east of Skeleton Coast Park was visiting flowers of Zygophyllum simplex Linnaeus, as noted by the collectors, F.W. and S.K. Gess.

Geographic distribution (Fig. 25).Namibia to Zimbabwe and South Africa, also Tanzania.

RECORDS.- BOTSWANA: Serowe: Farmers Brigade (2 of *, PPRI). LESOTHO: Mamalapi Mtn. ($1 \sigma^{\boldsymbol{\beta}}, \mathrm{AMG}$), Mamathes ($2 \mathrm{o}^{\circ}$, AMG). NAMIBIA: Bethanie District: Barby Farm 25 mi W Helmeringhausen ($1 \delta^{*}$, BMNH). Karasburg District: Fish River Canyon (2 0^{*}, AMG, CAS), Fish River Canyon 18 km E Ai Ais at $27^{\circ} 57^{\prime} 03^{\prime \prime} \mathrm{S}$ $17^{\circ} 32^{\prime} 35^{\prime \prime} \mathrm{E}$ ($1 \quad \uparrow$; 2 \& \uparrow, CSE). Khorixas District: Brandberg: Hungorob River (1 \& , 30°, SAM), Hungorob River mouth ($4 \delta^{\circ} ; 1$ \& \uparrow, $5 \delta^{\circ}$, SAM), Messum

Figure 25. Collecting localities of Tachysphex angustus and anubis. Valley ($1 o^{7}, \mathrm{SAM}$), and Wasserfallfläche (1 o , SAM), road 3245 E Skeleton Coast Park at $20^{\circ} 14^{\prime} \mathrm{S} 13^{\circ} 53^{\prime} \mathrm{E}(1+9, \mathrm{AMG}), 120 \mathrm{~km}$ from coast on road to Uis Myn (3 0°, AMG). Lüderitz District: Aus ($10^{\circ} ; 4$ \& 9 , $1 \delta^{\circ}$, BMNH), Aus to Rosh Pinah at $26^{\circ} 50.1^{\prime} \mathrm{S} 16^{\circ} 17.6^{\prime} \mathrm{E}$ ($3 \circ$ ㅇ, AMG), Uguchab River near Aurusberg ($2 \circ$, CAS, PPRI). Omaruru District: Messum River (1 ㅇ, 1 ơ $^{\circ}$, SAM). Swakopmund District (all in Namib/Naukluft Park): Ganab (1 ㅇ, 1 o $^{\circ} ; 1$ ơ $^{\pi}$, PPRI), Homeb ESE
 Mirabeb ($1 \mathrm{o}^{\circ}$, PPRI), Namib Desert at $23^{\circ} 38^{\prime}$ S $15^{\circ} 41^{\prime} \mathrm{E}\left(4 \delta^{\circ}\right.$, PPRI), Namib Desert Research Station (2 \circ, USU). Windhoek District: Gaub River at $23^{\circ} 29^{\prime} 12^{\prime \prime} \mathrm{S} 15^{\circ} 46^{\prime} 08^{\prime \prime} \mathrm{E}\left(1 \sigma^{\circ}\right.$, CSE). SOUTH AFRICA: Eastern
 km NW Willowmore in Grootrivierberg Range ($4 \mathrm{o}^{\star}$, USU). Gauteng: Johannesburg: Cyrildene ($1 \circ$, AMG) and Mondeor Hills (1 ㅇ, AMG). Mpumalanga: O.T.K. [= Oostelike Transvaalse Koöperasie] Reserve near Loskop Dam Nature Reserve (10°, PPRI). Northern Cape Province: SW Loeriesfontein ($1 \circ$, 1 ơ, OÖLM), Middelpos ($1 \sigma^{\circ}$, FSCA), Richtersveld National Park at $28^{\circ} 05^{\prime} \mathrm{S} 16^{\circ} 57^{\prime} \mathrm{E}(18$, AMG). Northern Province: Afguns ($1 \quad$ \& AMG), Mogol Nature Reserve ($10^{*} ; 3 \sigma^{\circ}$, PPRI), 10 km SW Naboomspruit (10°, FSCA). Western Cape Province: Beukesfontein at $32^{\circ} 53^{\prime} \mathrm{S} 19^{\circ} 44^{\prime} \mathrm{E}(1 \mathrm{o}$, PPRI), Karoo National Park in Beaufort
 (1 ㅇ, PPRI), Swartrivier 7 km NW Prince Albert ($1 \mathrm{c}^{\star}$), Tierberg Farm 23 km NE Prince Albert ($1 \mathrm{c}^{\circ}$, OHL), 24 km W Worcester ($1 \mathrm{o}^{7}$, USU). TANZANIA: Mara Region: Seronera in Serengeti National Park ($1 \mathrm{o}^{\circ}$). ZIMBABWE: Bulawayo ($1 \stackrel{\circ}{ }$, AMG; $1 \overbrace{}^{*}$, SAM, paratype of angustus), Bulawayo: Hillside ($1 \sigma^{\circ}$, SAM, holotype of angustus), Bulawayo at Umguza River ($1 \delta^{\pi}$, paratype of angustus), Matobo ($1+$, BMNH).

Tachysphex anubis Pulawski

Figures 25-26.
Tachysphex anubis Pulawski, 1964:98, ㅇ, $\boldsymbol{\jmath}^{7}$. Holotype: ㅇ, Egypt: Abu Rawash near Cairo (CAS), exam-ined.- Pulawski, 1971:196 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:272 (listed).

Recognition.- Tachysphex anubis, known only from Lower Egypt, has a flat labrum (not protruding beyond clypeal free margin), hindwing crossvein cu-a vertical, and simple tarsi (midtarsomere II more than twice as long as apically wide, apical tarsomeres without spines on venter or lateral margins). It is further characterized by well-defined mesopleural punctures with shiny interspaces, setae erect on the postocellar area, suberect on the midfemoral venter, and inclined anterad on the propodeal dorsum. In addition, the wing veins are all pale yellowish brown, the lateral section of the female clypeus has the free margin practically straight, not concave (Fig. 26a), and the outer apical spine of male foretarsomere II is longer than foretarsomere III.

Tachysphex anubis shares the above character combination with yarrowi, but differs in having a nonprominent scutal hindcorner, punctures near the center of the mesopleuron less than one diameter apart, setae denser on the mesopleuron than on the metapleuron, in the female the postocellar area flat and the midtrochanteral venter densely punctate, and the male clypeal lip obtusely pointed and without lateral corner (Fig. 26b). In yarrowi, the scutal hindcorner is slightly prominent, punctures near the center of the mesopleuron are more than one diameter apart, setae are as dense on the mesopleuron as on the metapleuron, in the female the postocellar area is concave and the midtrochanteral venter has only a few, sparse punctures, and the male clypeal lip is evenly arcuate and with an obtuse lateral corner (Fig. 416b).

Description.- Scutal punctures well defined, up to 2-3 diameters apart near center; interspaces unsculptured, shiny. Mesopleural punctures fine, less than one diameter apart; interspaces shiny. Punctures of mesothoracic venter (except near midline) up to many diameters apart. Propodeal dorsum finely, irregularly rugose, in many specimens also with irregular, longitudinal ridges; side finely ridged (ridges effaced or nearly so in some specimens). Hindcoxal dorsum with inner margin carinate basally.

Setae erect on postocellar area, longer than midocellar diameter; suberect on each side of oral fossa next to occipital carina, about as long as midocellar diameter; suberect on scutum; dense, largely concealing integument on mesopleuron but contrastingly sparser on metapleuron; suberect on midfemoral venter, about equal to midocellar diameter; inclined anterad on propodeal dorsum. Setae of tergum I appressed, longer and denser than average for the genus.

Head and thorax black, mandible yellowish red in female, reddish to brown in male, at about two thirds of length. Frontal setae silvery in both sexes. Wing membrane nearly hyaline; costal and subcostal veins of forewing pale yellowish brown. Femora all black or female hindfemur narrowly reddish apically. Fore and midtibiae black, reddish apically; hindtibia reddish except brown or black ventrally. Gaster black, in most females terga I and II and sternum II reddish, at least laterally; in most males terga I and II reddish laterally, also tergum I mesally in some; apical depressions of terga translucent. Terga I-V silvery fasciate apically.

ㅇ. - Clypeus (Fig. 26a): bevel slightly shorter than basomedian area; lip free margin arcuate or slightly sinuate, not incised laterally. Width of postocellar area 1.6-1.8 \times length. Dorsal length of flagellomere I 1.9-2.2× apical width. Dorsal foretibial surface without spines or with one inconspicuous, preapical spine, outer surface with one, thin spine. Forebasitarsus with four or five (mostly five) rake spines. Apical depression of tergum V setose. Pygidial plate aciculate or unsculptured except for a few, evanescent punctures. Length 4.4-5.3 mm.
0^{7}.- Mandible: trimmal carina without tooth or cleft. Clypeus (Fig. 26b): bevel about as long as basomedian area; lip free margin obtusely pointed, without corner, forming single curved line with rest of clypeal margin; minute oblique carina emerging from lip outer margin (distance between insertion points of the carinae equal to about 0.9 of distance between each carina and corresponding orbit). Width of postocellar area $2.2-2.4 \times$ length. Dorsal length of flagellomere I $1.1-1.3 \times$ apical width, equal to about 0.8 of II. Forefemoral notch with bottom microscopically

Figure 26. Tachysphex anubis Pulawski: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d - penis valve.
setose. Outer margin of forebasitarsus with two preapical rake spines (one near midlength); outer apical spine of foretarsomere II longer than tarsomere III. Apical margin of sternum VIII in some specimens with low, obtuse median tooth. Length $3.5-4.2 \mathrm{~mm}$. Volsella and penis valve: Figs. 26c, d.

Geographic distribution (Fig. 25).- Lower Egypt.
RECORDS.- EGYPT: AI Jizah (= Ghiza): Abu Rawash (8 + , $8 \circ^{\circ}$, holotype and paratypes of anubis), Manshiet Radwan (1 \circ).

Tachysphex argentatus Gussakovskij

Figures 27, 28.
Tachysphex argentatus Gussakovskij, 1952:242. ㅇ, ơ ($\circ=$ Tachysphex erythrophorus). Lectotype: \boldsymbol{o}^{7}, Tajikistan: Stalinabad, now Dushanbe (ZIN), designated by Pulawski, 1967:398, examined before 1971.Pulawski, 1967:398 (Turkey, description of 9), 1971:369 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:12 (Israel); Bohart and Menke, 1976:272 (listed); Kazenas, 1978b:115, 128 (in key to Sphecidae of Kazakhstan and Central Asia); Nazarova, 1998:40 (Tajikistan); Kazenas, 2001:28 (in checklist of Sphecidae of Kazakhstan and Central Asia), 2002:65 (Kazakhstan).
As Tachytes rufiventris: Magretti, 1884: 587 (Eritrea), present correction.
Recognition.- The female of argentatus is characterized by an unusually broad, broadly rounded apically pygidial plate (Fig. 27c) that is almost unsculptured basally except for a few,
sparse punctures, a vertical hindwing crossvein cu-a, a membranous galea. Additional recognition features include a gaster red at least basally, mesopleuron dull, with ill-defined punctures that are nearly contiguous, mesopleural setae largely (but not fully) concealing the integument, mesothoracic venter closely punctate, hindfemoral outer surface with dense, reflective setae at least ventrally, and maxillary stipes with a few, inconspicuous setae. Tachysphex incanus is almost identical, but in argentatus the free margin of the clypeal lip is either evenly arcuate or has a small, obtuse point, and the cleft of the trimmal carina is narrow (Fig. 27a). In incanus, the tip of the clypeal lip is slightly larger and the cleft of the trimmal carina is broader (Fig. 191a).

The male can be recognized by the following: sterna IV-VII largely impunctate and glabrous, hindwing crossvein cu-a vertical, galea membranous, clypeal lobe corners well defined and closer to each other than to the corresponding eye (distance between corners about $0.6-0.9$ of that between a corner and adjacent orbit), free margin concave between midpoint and corner (Fig. 27b), mesopleuron dull, with ill-defined punctures that are nearly contiguous, mesopleural setae largely concealing integument, forefemoral notch with well-defined, microscopically setose platform, outer margin of forebasitarsus with four or five rake spines, and gaster red at least basally. Unlike deserticola and vestitus, the frons of argentatus is the usual shape, not particularly convex.

Description.- Galea membranous. Scutal punctures well defined, less than one diameter apart. Mesopleural punctures shallow, nearly contiguous, interspaces dull. Propodeal dorsum evenly microareolate, side microsculptured or minutely ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae appressed on postocellar area and scutum (including anteriorly); angled apically or somewhat sinuous on each side of oral fossa next to occipital carina, about as long as 0.3 of basal mandibular width; on mesopleuron largely but not completely concealing integument; oriented mainly posterad on propodeal dorsum, but oriented anterad in a specimen from Arava Valley, Israel; outer surface of female hindfemur with dense, reflective setae, at least near ventral margin.

Head and thorax black but mandible yellowish red (except distally) and pronotal lobe yellowish at least posteriorly. Frontal setae silvery in both sexes. Wing membrane nearly hyaline; costal vein of forewing light brown, subcostal vein brown (all or largely so). Fore- and midfemora varying from black (except apically) to red, hindfemur red except mostly black in some females; tibiae and tarsi red. Gaster all red or with black tip in female and segments IV-VII brown in male. Terga I-IV silvery fasciate apically (I-V in some males).

ㅇ.- Clypeus (Fig. 27a): bevel slightly convex, varying from about $0.3 \times$ length of basomedian area to nearly as long as basomedian area, partly concealed by setae that originate dorsad of it; lip free margin with ill-defined, obtuse teeth mesally, somewhat concave laterally. Width of postocellar area $0.5-0.6 \times$ length. Dorsal length of flagellomere I 2.1-2.8 \times apical width. Dorsal foretibial surface with three spines, outer surface with a few spines. Forebasitarsus with 7-9 rake spines. Apical tarsomeres each with one subbasal and one preapical small spine on venter. Preapical setae of segment V thickened. Tergum V next to apical depression nearly unsculptured except for a few, sparse punctures; apical depression unsculptured, glabrous. Pygidial plate unusually broad, broadly rounded apically, with two differently sculptured areas: anteriorly unsculptured except for a few, sparse punctures, posteriorly dull, either with microscopic longitudinal ridges or apparently unsculptured (Fig. 27c); the two areas mostly separated by transverse groove (that corresponds to ridge on internal surface), but groove absent in a female from Wadi Digla, Egypt (Pulawski, 1971). Length 6.0-11.0 mm.
$0^{7} .-$ Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 27b): bevel absent (dense, uniform punctuation extending to lip base); lip free margin prominent mesally (inconspicuously so in many specimens), at least shallowly concave between midpoint and corner (which is well

JK \& CS
Figure 27. Tachysphex argentatus Gussakovskij: a - female clypeus and mandible; b-male clypeus and mandible; c - pygidial plate of female; d - volsella; e - penis valve.
defined); distance between corners $0.6-0.9 \times$ distance between corner and orbit. Width of postocellar area $0.6-0.7 \times$ length. Dorsal length of flagellomere I 1.6-2.1 \times apical. Forefemoral notch with well-defined, microscopically setose platform. Outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III; apical tarsomeres with ventral spine near center. Tergum VII, near base, with punctures that are one or more diameters apart. Sterna IV-VII impunctate and glabrous except on anterolateral area that becomes smaller toward gastral apex (but with usual, erect setae at base of apical depressions). Length $5.6-7.6 \mathrm{~mm}$. Volsella and penis valve: Figs. 27d, e.

Geographic distribution (Fig. 28).— Mali and Eritrea north to Turkey, Arabian Peninsula east to southern Kazakhstan and Tajikistan.

Records.- EGYPT: Al Qahirah (= Cairo): Katamia area 40 km E Maadi (1 \&), Wadi Digla (Pulawski, 1971), Maadi (1 $\sigma^{\text {r }}$). Al Suways (= Suez): Wadi Hagul 30 km SW Suez (1 ㅇ, $1 \sigma^{\circ}$). Sina (= Sinai):
 (1 o , GENOVA, det. Tachytes rufiventris by P. Magretti). ISRAEL: Beersheba (Pulawski, 1971), 135 km N Elat Iddan ($1 \sigma^{\circ}, \mathrm{CSE}$), En Gedi ($1 \mathrm{o}^{\circ}$), Hazewa in Arawa Valley at $30^{\circ} 46.88^{\prime} \mathrm{N} 35^{\circ} 14.56^{\prime} \mathrm{E}(1$ o, CSE), Mezad Aqrabbim 45 km SE Beersheba (1 ㅇ, CSE), Qetura Kibbutz in Arava Valley (2 ơ $^{\circ}$, UCD). KAZAKHSTAN: Qyzylorda: 3 km NW railroad station Kamyshlybash ($1 \circ$), village Priaral'skoye 10 km NNW railroad station Kamyshlybash ($1 \mathrm{o}^{\boldsymbol{*}^{\prime}}$). Zhambyl: 40, 50, and 60 km NW Furmanovka ($3 \mathrm{o}^{\star}$). MALI: Anefis ($1 \mathrm{o}^{\star}, \mathrm{KMG}$). OMAN: Al Bagriya $23^{\circ} 32.3^{\prime} \mathrm{N} 58^{\circ} 31.3^{\prime} \mathrm{E}\left(2 \mathrm{c}^{\circ}\right)$, Behla ($1 \mathrm{o}^{\star}, \mathrm{KMG}$), Rostaq (1 ㅇ, KMG). SYRIA: Duma 10 km NE Damascus (Pulawski, 1971), Mezze 4 km W Damascus (Pulawski, 1971), Wadi Raqqad in south-

Figure 28. Collecting localities of Tachysphex argentatus.
ern Syria (1 \mathbf{o}^{*}). TAJIKISTAN (Pulawski, 1971): Djilikul, Dushanbe, Kabadian, Tigrovaya Balka Nature Reserve (Nazarova, 1998). TURKEY: Ankara: Kalecik at Kizilirmak River (1 or $^{\boldsymbol{*}}$). Mersin: Köselerli 48 km NW Silifke at $36^{\circ} 38^{\prime} \mathrm{N} 33^{\circ} 27^{\prime} \mathrm{E}\left(1+\right.$ \&) , Mut (Pulawski, 1971). TURKMENISTAN: 10 km W Askhabad (o°), Komarovskiy ca 10 km E Askhabad (Pulawski, 1971), Tedjen (2 σ^{c}). UNITED ARAB EMIRATES: W Bih

Tachysphex argenticeps Arnold

Figures 29-32.
Tachysphex argenticeps Arnold, 1959:328, ơ. Holotype: $\boldsymbol{o ̛}^{*}$, Tanzania: Itumba in Rukwa Valley (BMNH), examined.- Bohart and Menke, 1976:272 (listed).

Recognition.- The female of argenticeps has an unusually broad pygidial plate, sharply divided into an essentially unsculptured, shiny basal part and a microsculptured, dull apical part (Figs. 29c, d, 30b), and a distinctive clypeus: the lobe free margin has six obtuse teeth (Fig. 29a), although the admedian or lateral teeth may be fused, and all teeth may disappear in worn specimens.

In the male, sterna III-VI are largely impunctate and glabrous, the outer margin of forebasitarsus has four or five spines, and the clypeal lobe is narrow (corners closer to each other than to orbit), with a median projection that varies considerably in shape. Additionally, at least the gastral base and the hindfemur are red. Several other species are similar (e.g., argentatus, julliani, mauretanus), but argenticeps differs in having well-defined mesopleural punctures (punctures partly confluent in some specimens). The male of prosopigastroides is also similar, but in argenticeps the setae of the head and thorax are appressed or nearly so and not sinuous, the supraantennal swelling is the usual shape (nonprominent), and the scutum and mesopleuron have well-defined punctures. In prosopigastroides, the setae of the head and thorax are sinuous, conspicuously suberect to erect, the supraantennal swelling is prominent, triangular in lateral view (Fig. 289c), and the scutum and mesopleuron are coarsely punctatorugose.

Type locality.- The type locality given in the original description may be incorrect. The locality Itumba, NNE of Rungwa, Singida Region, is a great distance from Lake Rukwa. The two streams named Itumba, Mbeya Region, are closer to Lake Rukwa, but not exactly in this lake's valley either.

Figure 29. Tachysphex argenticeps Arnold: a - female clypeus and mandible ($\times 37$); b - male clypeus and mandible $(\times 61)$; c - female pygidial plate in dorsal view $(\times 80)$; $d-$ same, lateral oblique view.

Description.- Galea membranous. Mandible: outer ridge somewhat swollen and expanded over notch. Scutal punctures well defined, conspicuous; discal punctures averaging from about one to about two diameters apart. Mesopleural punctures large, well defined in most specimens (averaging less than one diameter apart at center), but partly confluent in some. Punctures of mesothoracic venter varying from about one to many diameters apart. Propodeal dorsum rugose and with longitudinal ridges (ridges irregular except well defined and regular in Ethiopian specimens); side ridged; posterior surface, in dorsal third or so, with wide median impression. Hindcoxal dorsum without well-defined carina on inner margin. Inner apical spine of hindtarsomere V reaching claw base. Sternum I with or without longitudinal carina.

Setae erect on each side of oral fossa next to occipital carina (length $0.3-0.5 \times$ basal mandibular width); markedly curved on scutum (setal tips nearly touching scutal surface) except suberect anteriorly; only slightly obscuring integument of mesopleuron; oriented anterad on propodeal dorsum but adlateral setae oriented posterad and meeting apicomesally; suberect or erect on midfemoral venter, about as long as midocellar diameter.

Head and thorax black, mandible yellowish red (except apically), pronotal lobe yellowish or reddish posteriorly. Frontal setae in female either all silvery or with golden tinge just beneath midocellus; in male silvery except with golden tinge just below midocellus, but all golden in Kenyan and most Tanzanian specimens. Wings almost hyaline; forewing costal vein light brown, subcostal vein

Ghana

Ghana
Ethiopia

Ethiopia

Figure 30. Tachysphex argenticeps Arnold: a - head of an Ethiopian female in frontal view; b - pygidial plate of female; c - male sternum VIII; d - volsella; e - penis valve.
light brown to brown. Femora all red or fore- and midfemora black (except apically) and hindfemoral dorsum black basally. Tibiae and tarsi red. Gaster red or segments IV and V black in female (also segment VI in some females), segments IV-VII brown or black in many males. Terga I-III or I-IV in female, I-IV or I-V in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 29a): bevel rudimentary or absent; lip free margin with six obtuse teeth (admedian or lateral teeth may be fused). Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I 2.2-2.5 \times apical width. Forefemoral venter with sparse, minute, inconspicuous punctures, at least basally. Dorsal foretibial surface with two or three spines, outer surface with two or three spines. Forebasitarsus with 7-9 rake spines. Venters of apical tarsomeres each with one subbasal and one preapical spine. Preapical setae of segments IV and V thickened. Apical depression of tergum V impunctate and asetose, markedly broadened mesally. Pygidial plate unusually

Figure 31. Tachysphex argenticeps Arnold: a - base of male forefemur showing notch and its platform $(\times 120)$; b - forefemoral notch in top view $(\times 360)$; $\mathrm{c}-$ sculpture of forefemoral notch $(\times 3000)$; $\mathrm{d}-$ apex of male tergum VIII.
broad, its basal part shiny, unsculptured except for a few, sparse punctures; distal part sharply delimited, dull, microsculptured (Figs. 29c, d, 30b) (also with ill-defined, longitudinal ridges in many Kenyan and Tanzanian females). Length 7.8-9.8 mm.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 29b): bevel rudimentary or absent; lip free margin with conspicuous median projection and well-defined, prominent corner; distance between corners $0.8 \times$ distance between corner and orbit. Width of postocellar area $0.8-1.0 \times$ length. Dorsal length of flagellomere I 1.8-2.0 \times apical width. Forefemoral notch with well-defined, characteristically microsculptured, microscopically setose platform (Figs. 31a-c). Outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Venter of tarsomeres V, in many specimens, each with one preapical spine. Tergum VII with punctures that are several diameters apart (except less than one diameter apart near hindmargin). Punctures of sterna III-VI averaging several to many diameters apart, thus integument largely glabrous (sternum IV or sterna III and IV densely punctate anterolaterally). Length 5.2-9.0 mm. Volsella and penis valve: Figs. 30d, e.

Variation.- West African specimens differ from East African individuals (i.e., those from Ethiopia, Kenya, and Tanzania) in details of trochanteral punctation, form of sternum I, pilosity, and shape of male sternum VIII and volsella, as described below:

1. Sternum I is ecarinate in most West African specimens, but has a well-defined median carina in those from East Africa and Namibia.
2. In females from West Africa, the frons is uniformly, densely setose between the antennal sockets and midocellus (the integument is concealed), and the interantennal area is setose. In East African females, the dense pilosity conceals the integument on the frons lower half and also on a transverse strip just below the midocellus, but the intermediate zone is covered with finer, sparse setae, and the integument is easily visible (Fig. 30a); the interantennal area is asetose.
3. Punctures of the midtrochanteral venter are several diameters apart in West African females, whereas about one or two diameters apart in those from East Africa.
4. Male sternum VIII is evenly emarginate apically, but markedly tridentate (Figs. 30c, 31d) in Ethiopian and most Kenyan and Tanzanian specimens.
5. The volsella has a dorsal expansion in West African males, but the expansion is lacking in East African and Namibian specimens (Figs. 30c, d).

Walking behavior.- I observed both females and males of argenticeps, first in a dry river bed near Olorgesailie, Kenya, in June and July 1999, and subsequently on several other occasions. Specimens were performing short flights, then landing and walking in patterns that varied from straight to circular. This behavior is shared with vestitus and in contrast with many other Tachysphex, including the closely related vulneratus, whose males stay in one place or walk only minimally between flights.

Geographic distribution (Fig. 32).Ivory Coast to Ethiopia, Somalia, Kenya, and Tanzania, also Namibia.

Records.- ETHIOPIA: Sidamo: 22 km N Moyale ($14{ }^{\circ}$, $7 \delta^{\circ}$), 35 km N Moyale (2 우, $2 \delta^{\circ}$). GHANA: Buipe ($1 \mathrm{o}^{\mathrm{r}}$), Kawampe 45 km N Kintampo at $8^{\circ} 30^{\prime} \mathrm{N} 1^{\circ} 35^{\prime} \mathrm{W}\left(20^{\circ}\right), 55 \mathrm{~km} \mathrm{~N}$ Tamale ($1 \mathrm{o}^{\pi}$). IVORY COAST: 20 km W Boundiali (1 \&), Katiola ($1 \mathrm{o}^{7}, \mathrm{MSNT}$), 56 km N Niakaramandougou (3 or $^{\text {o }}$). KENYA: Coast Province: Taita Discovery Centre ($1 \quad \circ, 1 \delta^{\circ}$), ca 10 km N Taita Discovery Centre ($5 \circ^{\circ}$), Voi ($1 \quad \circ, 1 \sigma^{\circ}$). Eastern Province: near Ewaso Ng'iro River opposite Archer's Post (3 of, $3 \overbrace{}^{\circ}$), $5 \mathrm{~km} \operatorname{NNE}$ Isiolo ($1 \mathrm{o}^{\circ}$), 94 km E Thika ($2 \mathrm{o}^{\circ}$).

Figure 32. Collecting localities of Tachysphex argenticeps.

Rift Valley Province: Archer's Post on Ewaso

 Bamako ($1 \mathrm{of}^{\star}, \mathrm{KMG}$). NAMIBIA: Grootfontein District: 10 km NE Grootfontein ($1 \mathrm{\sigma}^{7}, \mathrm{OHL}$). Karasburg District: Blinkoog Farm 50 km NE Karasburg ($1 \stackrel{\circ}{+}$, NMN). Okahandja District: ca 30 km W Okahandja
 Coast Region: 17 km E Chalinze (2 ㅇ, 3 o $^{\circledR}$). Dar es Salaam Region: Dar es Salaam: Bahari ($1 \circ$, MSNT). Dodoma Region: 74 km E Dodoma ($2 \mathrm{o}^{\text {º }}$). Iringa Region: 18 km W Iringa ($1 \mathrm{o}^{\text {º }}$). Kilimanjaro Region:

 5 \& $4 \boldsymbol{o}^{\circ}$, UDS). Rukwa Region: northern Rukwa Valley ($5 \delta^{\circ}$, BMNH). Tanga Region: 73 km NW Korogwe ($3 \circ, 4 \sigma^{\circ}$), 84 km NW Korogwe ($14 \sigma^{\circ}$), 10 km WNW Mabokweni ($1 \circ^{\circ}$), 2 km NE Mkomazi ($1 \circ^{\circ}$), Pangani
 of argenticeps). TOGO: 5 km W Sokodé (16 ㅇ, $1 \mathrm{o}^{\text {º }}$).

Tachysphex argentifrons Arnold

Figures 33-36.
Tachysphex argentifrons Arnold, 1924:58, ㅇ, ơ ($+=$ Tachysphex melanius $)$. Lectotype: \boldsymbol{o}^{\prime}, South Africa: Eastern Cape Province: Algoa Bay (TMP), here designated, examined.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:272 (listed); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).
As Tachysphex hippolyta: de Beaumont, 1967b:509 (South Africa), present correction.
Recognition.- The female of argentifrons has tarsomeres IV wider than long, with the dorsoapical margin very broadly emarginate, almost straight (Fig. 33f), apicoventral margins of tarsomeres III and IV mesally projecting or at least convex, tarsomeres V angulate basoventrally, each with a central cluster of small spines on the venter and the apicoventral margin produced into a lobe (Figs. 34a, b), and on each leg one claw smaller than the other (Fig. 34c). Other species share these characteristics, but argentifrons differs in having a combination of unusually short flagellomere I (dorsal length $1.4-1.6 \times$ apical width and about $0.6 \times$ length of II, Fig. 33c), sparsely setose foreand midfemoral posteroventral surfaces, with setigerous punctures many diameters apart (Fig. 33e), and the dorsal outer margin of foretarsomere IV markedly shorter than the inner margin. Subsidiary recognition features include: gaster and tibiae all black; free margin of the clypeal lip with two lateral incisions on each side (Fig. 33a), at least three apical rake spines of forebasitarsus with sockets contiguous, and apical depression of sternum I not bisected by longitudinal carina. The female of venator is similar, but has flagellomere I longer (dorsal length about $2.25 \times$ apical width, about 0.85 length of II), the free margin of the clypeal lip with only one, shallow lateral emargination (Fig. 406), an impunctate midtrochanteral venter, and apical depression of sternum I bisected by longitudinal carina.

The male of argentifrons is instantly recognized by its unusually short flagellomere I and contrastingly long flagellomere II: the ventral length of I is smaller than apical width or exceptionally equal to apical width, slightly less than half length of II (Fig. 33d) In addition, the clypeal lip is pointed mesally (Fig. 33b), with the free margin somewhat concave between the midpoint and corner.

DeSCRIPTION.- Scutal punctures well defined, averaging about two diameters apart on disk in female, about one diameter in male. Mesopleural punctures, in most specimens, well defined, averaging from about 1-2 to 2-3 diameters apart near center, but minute, evanescent, several diameters apart in one female from Nylsvley Nature Reserve, South Africa; interspaces with microsculpture that varies from conspicuous to evanescent (integument dull to shiny). Propodeal dorsum finely, irregularly rugose to evenly microareolate, in most specimens with short, irregular ridges diverging from anterior margin; side ridged. Hindcoxal dorsum with inner margin carinate.

Setae straight; subappressed to suberect on each side of oral fossa next to occipital carina; erect on postocellar area (length about $1.5 \times$ midocellar diameter) and on scutum (length about one midocellar diameter); slightly inclined posterad on propodeal dorsum; on midfemoral venter subappressed to suberect in female, erect in male (length about one midocellar diameter).

Head and thorax black, mandible reddish mesally. Frontal setae silvery in female and most males, with golden tinge in some males from Bergfliet Forest Reserve, South Africa. Wing membrane slightly infumate; forewing costal vein light brown, subcostal vein dark brown. Gaster, femora, and tibiae black, inner foretibial surface reddish in some males; tarsi varying from all black to largely red. Terga I-III silvery fasciate apically.

ㅇ.- Labrum shallowly emarginate. Clypeus (Fig. 33a): bevel shorter to longer than basomedian area, the two areas not clearly delimited in some specimens; lip free margin arcuate, shallow-

Figure 33.Tachysphex argentifrons Arnold: a - female clypeus and mandible ($\times 44$); b - male clypeus and mandible ($\times 57$); c - female flagellomere I ($\times 180$); d - male flagellomeres I and II ($\times 130$); e - female forefemur, posterior surface ($\times 50$); f - female hindtarsomere IV, dorsal view ($\times 120$).
ly emarginate mesally, with two lateral incisions on each side. Width of postocellar area 1.0-1.2× length. Dorsal length of flagellomere I 1.4-1.6 \times apical width (Fig. 33c). Scutum and scutellum flattened. Fore- and midfemoral venters and posteroventral surfaces aciculate, with well-defined punctures that are many diameters apart (Fig. 33e). Dorsal foretibial surface with several bristles, outer

Figure 34. Tachysphex argentifrons Arnold: a - female hindtarsomere V, ventral view ($\times 240$); b - female hindtarsomere V, oblique lateral view ($\times 240$); c - female hindtarsal claws ($\times 150$); d - male hindtarsomere V, ventral view ($\times 144$).
surface impunctate, asetose except for a few thin bristles. Forebasitarsus with $8-11$ rake spines. Tarsomeres III with apicoventral margin arcuate. Tarsomeres IV wider than long, with dorsoapical margin very broadly emarginate, almost straight (Fig. 33f) and apicoventral margin obtusely prominent; outer margin of foretarsomere IV about 0.5 length of inner margin. Tarsomeres V angulate basoventrally, with central cluster of small spines on venter (Fig. 34a); lateral margin with row of small spines subbasally (Fig. 34b); apicoventral margin produced into lobe (Fig. 34a). Outer claws of mid- and hindtarsi shorter, thinner than inner claws (Fig. 34c), but opposite on foretarsus. Apical depression of tergum V impunctate, glabrous. Pygidial plate with punctures that average many diameters apart; interspaces shiny, aciculate or unsculptured. Length $7.8-8.5 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina without tooth or cleft. Clypeus (Fig. 33b): bevel ill defined but shorter than basomedian area; lip free margin pointed mesally, slightly concave between midpoint and nonprominent corner; distance between corners $0.9-1.1 \times$ distance between corner and orbit. Width of postocellar area 1.0-1.3 \times length. Dorsal length of flagellomere I $0.9-1.1 \times$ apical width, equal to about 0.6 of II, ventral length mostly less than apical width (Fig. 33d), but equal to apical width in single specimen from 30 km W Grahamstown. Length of flagellomere II $1.6 \times$ width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Venters of apical tarsomeres, in some specimens, each with apicomedian cluster of minute spines; apiconventral margin slightly arcuate (Fig. 34d). Sternum VIII: apical margin with median tooth that ranges from prominent to
minute (rounded in some specimens). Length $5.7-7.7 \mathrm{~mm}$. Volsella and penis valve: Fig. 35 .

Geographic distribution (Fig. 36).South Africa.

Records.- SOUTH AFRICA: Eastern Cape Province: 10 km SE Alexandria ($50{ }^{\circ}$, OÖLM), Alexandria Forest (1 \&, 2 ơ $^{\text {º }}$, AMG), Algoa Bay (1 ơ, TMP, lectotype of argentifrons), Colchester at $33^{\circ} 42^{\prime} \mathrm{S} 25^{\circ} 50^{\prime} \mathrm{E}\left(1+9,3 \mathrm{o}^{\circ}\right), 30 \mathrm{~km}$ W Grahamstown ($1 \mathrm{o}^{\circ}$), 18 km WNW Grahamstown: Hilton Farm (20°, AMG; 2 o $^{\circ}$, PMA), Jeffreys Bay ($1 \sigma^{\circ}$, SAM), Kenton-on-Sea ($3 \sigma^{\circ}$, AMG), Nature's Valley at $33^{\circ} 55^{\prime} \mathrm{S} 23^{\circ} 32^{\prime} \mathrm{E}$ ($2 \sigma^{\circ}$, PPRI), Plettenberg Bay ($1 \mathrm{o}^{3}, \mathrm{AMG}$), 6 km N Steytlerville ($1 \stackrel{\circ}{ }$, $4 \mathrm{o}^{\circ}$, USU), 28 km S Steytlerville: Wolwekraal Farm ($2 \sigma^{\circ}$, USU), Willowmore (1 ơ, SAM, paratype of argentifrons; $2 \mathrm{o}^{*}$, TMP), 37 km NW Willowmore in Grootrivierberg Range (1 ค, $6 \mathrm{o}^{*}$, USU), 6 km S Willowmore at $33^{\circ} 20^{\prime} \mathrm{S} 23^{\circ} 27^{\prime} \mathrm{E}\left(3 \mathrm{o}^{\circ}\right)$. Gauteng: Bryanston (10°, AMG), Johannesburg: Cyrildene Island ($1{ }^{\circ}$, AMG) and Melville Koppies Reserve (2 ㅇ, 2 ơ $^{\circ}, \mathrm{FSCA}$), Magaliesburg ($2 \circ$, AMG), Pretoria ($3 \circ$, 2 o $^{\circ}, \mathrm{AEI}$), Pretoria: Botanical Garden (2 \uparrow, 1 ơ; 1 ㅇ, MS), Pretoria: 37 Farmers Folly Lynnwood ($1 \delta^{\circ}$, FSCA), Pretoria: Gardens of Union Building at $25^{\circ} 45^{\prime} \mathrm{S} 28^{\circ} 12^{\prime} \mathrm{E}$ (2 0°, PPRI), Roodeplaat (10°, PPRI), Strubens Valley: Florida at $26^{\circ} 08^{\prime} \mathrm{S} 27^{\circ} 54^{\prime} \mathrm{E}$ ($2 \mathrm{~d}^{\circ}, \mathrm{AMG}$). Kwazulu-Natal: Cathedral Peak ($1 \mathrm{o}^{\circ}$, USU), Hluhluwe Game Reserve ($10^{\circ}, \mathrm{AEI}$), Mdedelelo Wilderness Area at $29^{\circ} 07^{\prime} \mathrm{S} 29^{\circ} 26^{\prime} \mathrm{E}$ (1 ơ $^{\circ}, \mathrm{PPRI}$), Utrecht (2 ㅇ, OÖLM), 10 km w Utrecht ($3 \stackrel{\circ}{ }$, $1 \mathrm{o}^{\circ}$, OÖLM). Mpumalanga: Barberton (1 i, $1 o^{7}$, PPRI), Bergvliet Forest Reserve: Sabie at $25^{\circ} 05^{\prime} \mathrm{S} 30^{\circ} 54^{\prime} \mathrm{E}$
 $30^{\circ} 48^{\prime} \mathrm{E}$ (1 ${ }^{\text {¢ }}$), Graskop ($1 \mathrm{o}^{\star}$, PMA), Loskop Dam Nature Reserve (30°, PPRI), 20 km SW Lydenburg
 Northern Cape Province: Horingsgat at $30^{\circ} 18^{\prime} \mathrm{S} 18^{\circ} 05^{\prime} \mathrm{E}(1 \circ$, PMA). Northern Province: Buffelspoort Dam ($1 \stackrel{\circ}{ }, 1 \delta^{\prime}, \mathrm{AMG}$), Dunstable Farm at $24^{\circ} 27^{\prime} \mathrm{S} 30^{\circ} 45^{\prime} \mathrm{E}\left(1 \sigma^{\circ}\right)$, Entabeni Forest Reserve: Soutpansberg at $23^{\circ} 00^{\prime} \mathrm{S} 30^{\circ} 16^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}, \mathrm{PPRI}$), Guernsey Farm 15 km E Klaserie ($1+$, PMA), Happy Rest Nature Reserve at

 Cape Province: Bo Kouga (2 ㅇ, 2 o *, SAM), Cape of Good Hope Nature Reserve ($4 \sigma^{\circ}$, USNM), Cape Peninsula: Hout Bay (4 , , 6 ơ $^{\text {, }}$, ZMLU, determined as Tachysphex hippolyta by de Beaumont), Cape Town: Table Mountain at $33^{\circ} 57^{\prime} \mathrm{S} 18^{\circ} 24^{\prime} \mathrm{E}\left(1 \circ, 1 \circ^{\circ}\right)$, Cape Town: above Tokai Forest in Constantiaberge at $34^{\circ} 02^{\prime} \mathrm{S}$
 ENE Clanwilliam at $32^{\circ} 05^{\prime} 54^{\prime \prime} \mathrm{S} 19^{\circ} 03^{\prime} 56^{\prime \prime} \mathrm{E}\left(10^{\prime} ; 30^{\prime \prime}, \mathrm{CSE}\right)$, Hermanus: Fernkloof Nature Reserve (2 오, $1 \sigma^{7}$, SAM $)$, Kirstenbosch near Cape Town (2 ㅇ, $5 \sigma^{\text {o }}$, AEI), 5 km S Lambert's Bay ($4 \sigma^{7}$, OÖLM), Mossel Bay

Tachysphex asinus Arnold

Figures 37-41.
Tachysphex asinus Arnold, 1923:166, ㄴ. Holotype: ㅇ, Zimbabwe: Sawmills (SAM), examined.- Arnold, 1924:66 (description of o^{7}), 1930:3 (in checklist of Afrotropical Sphecidae); nec Arnold, 1935:497 (= scaber); Bohart and Menke, 1976:272 (listed).

RECOGNITION.- Tachysphex asinus resembles onager and scaber in having the supraantennal swelling punctate and setose (rather than impunctate, glabrous), legs largely red, and gaster all or partly red. In the female, flagellomeres III-X are flattened laterally, each with a characteristic sensory area (Figs. $38 \mathrm{c}-\mathrm{e}$), the pygidial plate is punctatorugose (Figs. 39a, b), and the length of midtarsomere II is less

Figure 37. Tachysphex asinus Arnold: female in lateral view. than twice its width.

Tachysphex asinus itself can be recognized by its finely, uniformly punctate scutum (punctures about as large as those on the postocellar area, no more than one diameter apart). In onager, many scutal punctures are markedly more than one diameter apart, and in scaber the punctures are coarse, larger than those on the postocellar area. In the male of asinus, in addition, the clypeal bevel is absent or markedly shorter than the basomedian area (about as long as basomedian area in onager and some scaber), the mesopleural integument is dull between the punctures (shiny in onager), and the setae are suberect (except in smallest specimens) on the apical depressions of sterna III-VI (setae appressed in scaber). Subsidiary recognition features of asinus are: cephalic setae all golden in both sexes (also thoracic setae in most specimens) and wings markedly bicolored (yellow basally, brown with violet shimmer in the apical third) except in smallest specimens.

Similar unassigned specimen.-A male from Kilwa near Kasenga, Shaba Province, Zaire (MRAC), closely resembles asinus in the frontal, scutal, and mesopleural sculpture, but differs in having a somewhat longer clypeal bevel, appressed sternal setae, and uniformly dark brown wings. Its status is uncertain at this time.

Description.- Labrum convex apically, somewhat protruding beyond clypeal margin. Galea sparsely punctate, shiny, as long as 0.8 of scape (Fig. 38b). Supraantennal swelling ill defined, punctate and setose like remaining frons. Scutum closely, uniformly punctate, punctures fine. Mesopleural punctures in female several to many diameters apart (interspaces shiny or nearly so), in male nearly contiguous to about one diameter apart beneath scrobe (interspaces dull). Episternal sulcus complete. Propodeal dorsum varying from rugose to almost uniformly microsculptured; side mostly ridged, unridged in smallest individuals. Hindwing vein cu-a varying: anal end as far away from wing base as cubital end or markedly further. Hindcoxal dorsum with inner margin carinate basally, carina somewhat expanded.

Setae erect on each side of oral fossa next to occipital carina, appressed on postocellar area and scutum, oriented obliquely posterad on propodeal dorsum (except oriented anterad near base).

Head and thorax black, but the following are reddish: mandible mesally, scapal venter, pronotal lobe (all or partly), and up to three basal flagellomeres in some females. Wing membrane yel-

Figure 38. Tachysphex asinus Arnold: a - female clypeus ($\times 27$); b - male galea ($\times 96$); c - apical flagellomeres of female ($\times 46$); d - portion of female antenna with flagellomere IV in center ($\times 72$); e - female flagellomere IV ($\times 140$); $\mathrm{f}-$ female forefemur, posterior view ($\times 32$).
low basally, in most specimens contrastingly darkened (with violet shimmer) in apical third (Figs. 37, 40a), but all yellow in smallest individuals; both costal and subcostal veins of forewing reddish. Legs red except coxae black, also femoral bases black in some females. Gaster red (except base of segment I black) or predominantly black (more often so in females than in males). Cephalic setae

Figure 39. Tachysphex asinus Arnold: a - female pygidial plate in dorsal view ($\times 42$); b - portion of female pygidial plate in lateral oblique view ($\times 42$); c - apical hindtarsomere of female, ventrally ($\times 90$); d - female midtarsomeres III-V ($\times 36$); $\mathrm{e}-$ male clypeus ($\times 33$); f - male midtarsomeres III-V ($\times 42$); g - male sternum VIII ($\times 90$).
golden in both sexes, also thoracic setae in most specimens. Tergal fasciae ill defined.
ㅇ.- Clypeus (Fig. 38a): middle section markedly convex, bevel markedly shorter than basomedian area, not sharply delimited from the latter (large punctures intermixed with micropunctures); lip free margin arcuate, with two lateral incisions on each side. Width of postocellar area $1.0-1.2 \times$ length. Dorsal length of flagellomere I $1.6 \times$ apical width, flagellomeres VII-IX about as
wide as long; flagellomeres III-X compressed laterally, ventral surface with characteristic sensory areas (Figs. 38c-e). Forefemoral venter shiny, with minute setigerous punctures that are at least several diameters apart (Fig. 38f); only a few punctures present in some individuals. Dorsal foretibial surface with several fine bristles, outer side with impunctate, glabrous zone (which is ill defined in some specimens) and a few erect setae rather than spines. Tarsi short: length of fore- and midtarsomeres II about $1.2 \times$ and $1.6 \times$ apical width, respectively (1.2 and 2.0 in single female from Delagoa Bay, Mozambique, the smallest of all examined); that of midtarsomere III equal to apical width (Fig. 39d); of fore-, mid-, and hindtarsomeres IV about $0.8,0.9$, and $1.0 \times$ apical width, respectively. Forebasitarsus with $10-13$ rake spines. Apical tarsomeres mostly with two minute spines near apicoventral margin, which is minimally convex (Fig. 39c), but spines absent on one or several legs in some specimens. Apical depression of tergum V impunctate, asetose. Pygidial plate punctatorugose, incised apically (Figs. 39a, b), but incision reduced in worn specimens. Length $10.4-16.5 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 39e): bevel absent or ill defined, markedly shorter than basomedian area; lip free margin markedly arcuate to obtusely pointed, with ill-defined corner; distance between corners $1.0-1.2 \times$ distance between corner and orbit. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I 1.3-1.6 \times apical width, equal to $0.8-0.85$ that of II. Forefemoral notch microscopically setose, margined posteriorly. Outer margin of forebasitarsus without preapical spines (exceptionally with one preapical rake spine next to apical one); outer apical spine of foretarsomere II shorter than tarsomere III. Length of midtarsomeres II and III 1.8-1.9 and $1.2 \times$ apical width, respectively (Fig. 39f). Apical tarsomeres, in some specimens, with one or several small spines apicoventrally. Apical depressions of sterna III-VI with suberect setae that are about one midocellar diameter long and markedly longer than discal setae of sternum II (but setae appressed in smallest specimens). Sternum VIII tridentate apically (Fig. 39g). Length $9.5-14.8 \mathrm{~mm}$. Volsella and penis valve: Figs. 40b, c.

Prey.- Maureen H. Bourbin collected a female of asinus with prey 17 km E Chalinze, Tanzania, on 14 June 2001. The wasp was walking on sandy ground with the prey kept dorsum up under her body, holding it by the antennae with her mandibles. Interestingly, she did not release her grip on the antennae even after dying in the killing jar. The prey is an early stage gryllid, 9.5 mm long.

Mimicry.- Tachysphex asinus is a member of a mimicry complex that includes Cerceris diodonta Schletterer, Liris haemorrhoidalis (Fabricius), Tachysphex mzingeli, onager, and rhodesianus, several undetermined Tachytes, and an asilid fly (Ancylorhynchus sp., det. Eric M. Fisher). Although most of them are instantly recognizable in the laboratory, these species are easily mistaken in the field because of their similar size and coloration (included bicolored wings), as I found

Figure 40. Tachysphex asinus Arnold: a - forewing showing variously colored areas; b - volsella; c - penis valve.
during my fieldwork in Tanzania, Zambia, and Zimbabwe. The asilid Hoplistomerus serripes Fabricius, which closely resembles Liris haemorrhoidalis according to Carpenter (1929), is apparently another member of this complex.

Geographic distribution (Fig. 41).Tanzania to northern Namibia and northern South Africa.

Records.- BOTSWANA: Kuke Pan (1 \circ, BMNH), Moremi Reserve (2 \&, 80°, BMNH). The female from Gemsbok Pan (Arnold, 1935) is actually scaber. MALAWI: Chikawa in lower Shire valley ($1 \delta^{\pi}$, BMNH), between Florence Bay and Karonga (2 ㅇ, 8 or $^{\text {B }}$, BMNH), Likangala near Lake Chilwa ($1 \circ$, ZMAN), Mlanje ($1 \circ$, BMNH), Mombera District ($1 \mathrm{o}^{\text {º }}$, BMNH). MOZAMBIQUE: Delagoa Bay (1 早, MCZ). NAMIBIA: Ondangwa District: Ondangwa (1 of, NMN). Rundu District: 100 km SW Rundu (2 ơ; 1 if, MS). SOUTH AFRICA:

Figure 41. Collecting localities of Tachysphex asinus and asmara.

Northern Province: near Beitbridge ($2 \sigma^{\circ}$, PPRI), 17 mi SE Gravelotte ($1 \sigma^{\circ}$), 2 mi N Messina (60^{\star}). TANZANIA: Arusha: Tarangiri National Park at $3^{\circ} 50^{\prime} \mathrm{S} 36^{\circ} 10^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{AMNH}\right)$. Coast Region: 17 km E Chalinze (3 ㅇ, $18 \delta^{\circ} ; 4 \sigma^{\circ}$, UDS; $4 \sigma^{\circ}$, JS). Singida Region: Itigi (1 ㅇ, BMNH). ZAMBIA: Eastern Province: between Chipata and Lundazi (1 \& , $3 \sigma^{\circ}$, BMNH), 27 km E Petauke ($2 \sigma^{\circ}$), 31 km E Petauke (3 o $^{\circ} ; 2 \sigma^{\circ}$, MSNT), 32 km
 WNW Lusaka ($1 \mathrm{ơ}^{\circ}, \mathrm{MSNT}$), Westwood (1 P, ZMAN). Southern Province: 5 km E Choma ($6 \mathrm{o}^{\circ} ; 1 \mathrm{of}^{\circ}$,

 ZMAN), Victoria Falls ($60^{\circ} ; 1$ ơ *, NHMZ).

Tachysphex asmara Pulawski, sp. nov.

Figures 41, 42.
Derivation of name.- Asmara, the capital of Eritrea where the holotype was collected and whose name means united in the Tigrinya language; a noun in apposition to the generic name.

Recognition.- The female of asmara is unique in having a clypeal bevel perpendicular to the basomedian area and delimited from the latter by a crest that extends laterad to the lip corner (Figs. 42a, b). The shape of the clypeal lip is also distinctive. Subsidiary recognition features include: scutum and mesopleuron shiny, conspicuously punctate, midtrochanteral venter impunctate and shiny, setae erect on postocellar area and midfemoral venter, and gaster all red (except for black spots).

The male is characterized by a conspicuously punctate scutum and mesopleuron (with most interspaces shiny), setae erect on the postocellar area and midfemoral venter, and an all red gaster. Other characters that help in recognition are: clypeal lobe narrow (distance between corners 0.7. \times distance between corner and orbit), midtrochanteral venter impunctate and shiny, forebasitarsus with two rake spines in basal half, and outer apical spine of foretarsomere II markedly shorter than foretarsomere III.

Description.- Scutal and mesopleural punctures conspicuous, averaging more than one

Figure 42. Tachysphex asmara Pulawski, sp. nov.: a - female clypeus and mandible; b - outline of female clypeus in lateral view showing vertical bevel; c - male clypeus and mandible; d - volsella; e - penis valve.
diameter apart at center of each of these two sclerites; interspaces unsculpured or nearly so. Propodeal dorsum rugose, side ridged. Hindcoxal dorsum with inner margin carinate basally. Midtrochanteral venter impunctate, shiny.

Setae suberect on each side of oral fossa next to occipital carina, sinuous in female, straight in male (setal length $0.4 \times$ basal mandibular width in female, $0.3 \times$ in male), erect on postocellar area (length about $1.5 \times$ midocellar diameter in female, about $1.0 \times$ in male), inclined posterad on scutum anteriorly; inclined obliquely anterad on propodeal dorsum; suberect on midfemoral venter.

Head and thorax black, mandible reddish mesally. Frontal setae silvery in both sexes. Wing membrane slightly infumate; costal vein of forewing reddish brown, subcostal vein brown. Femora black except male hindfemur red dorsoapically; fore- and midtibiae black, hindtibia reddish dorsally in female, largely red in male; tarsi reddish. Gaster red (female segments II and III as well as sternum IV with black spots). Terga I-III fasciate apically (fasciae golden, visible only from certain angles in female, silvery in male).

ㅇ.- Clypeus (Figs. 42a, b): bevel perpendicular to basomedian area, i.e., parallel to insect's longitudinal axis, delimited from basomedian area by crest that extends laterally to lip corner; lip free margin with conspicuous median projection (that is slightly emarginate mesally), deeply incised laterally. Width of postocellar area $1.4 \times$ length. Dorsal length of flagellomere I $2.6 \times$ apical width. Forecoxa with minuscule apicomedian process. Dorsal foretibial surface with two spines,
outer surface with one spine near midlength. Forebasitarsus with nine rake spines. Apical depression of tergum V unsculptured, asetose. Pygidial plate with punctures that average several diameters apart except close to each other near margin; interspaces shiny, almost unsculptured. Length 14.1 mm .
δ^{7}.- Mandible: trimmal carina with prominent tooth, without cleft. Clypeus (Fig. 42c): bevel flat, markedly shorter than basomedian area, forming obtuse angle with the latter; lip free margin arcuate, with well-defined corner; distance between corners $0.7 . \times$ distance between corner and orbit. Width of postocellar area $1.5 \times$ length. Dorsal length of flagellomere I $1.8 \times$ apical width. Forefemoral notch with bottom microscopically setose. Outer margin of forebasitarsus with two rake spines in basal half in addition to apical one; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Sterna densely punctate except apical depressions of sterna III-VI practically unsculptured and glabrous. Length 8.1 mm . Volsella and penis valve: Figs. 42d, e.

Geographic distribution (Fig. 41).- Eritrea, Ethiopia.
Records.- Holotype: ㅇ, ERITREA: Asmara, 31 Jan 1929, collector unknown (CAS). Paratype: ETHIOPIA: Shewa: Ambo, $7,500^{\prime}[=2,500 \mathrm{~m}], 3-6$ Feb 1962, S.M. Clark ($1 \mathrm{o}^{\top}$).

Tachysphex aterrimus Arnold

Figures 43, 44.
Tachysphex aterrimus Arnold, 1924:56, ${ }^{\circ}$, đ̛̉. Lectotype: $\stackrel{+}{+}$, Zimbabwe: Bulawayo (SAM), here designated, examined.-Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:272 (listed); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).

Lectotype selection.- Arnold (1924) studied 21 specimens of aterrimus, one of which is actually titania. He mentioned a female and a male as the types, and he designated only one additional pair as paratypes. I select as a lectotype of aterrimus the female that he labeled as the type, and the male as a paralectotype.

Recognition.- Tachysphex aterrimus, an all black southern African species, has a flat labrum, midtarsomere II more than twice as long as apically wide, apical tarsomeres without spines on venter or lateral margins, and the anal end of hindwing crossvein cu-a as far from the wing base as the cubital end or slightly closer. Furthermore, the setae are erect on the postocellar area (Figs. 43a, b) and midfemoral venter and diverging obliquely anterad from the propodeal midline.

A number of species share these characteristics, but aterrimus differs by the sculpture of its frons, clypeus, and mesopleuron, by the width of the postocellar area, and the shape of the clypeus. In particular, the mesopleural punctures are well defined, at least 2-3 diameters apart, and the interspaces are shiny; the area between the supraantennal swelling and midocellus is either dull, unevenly microsculptured and with shallow, ill-defined punctures, or it is sparsely punctate, with unsculptured interspaces. The clypeal bevel is unsharply delimited from the basomedian area, and the sparse punctation extends to the frontoclypeal suture or nearly so. The width of postocellar area is $1.8-2.0 \times$ length in the female and $2.4-2.8 \times$ length in the male. In the female, the middle clypeal section (Fig. 43c) is almost flat, as in fugax and helveticus aegyptiacus, but unlike those taxa the clypeal setae do not conceal the integument, and unlike fugax the flagellum is not elongate, the length of flagellomere IV being $2.5-2.6 \times$ apical width (rather than $4.0-4.5$). In addition, the clypeal lip of many females has a lateral incision or sinuosity (Fig. 43c). In the male, the clypeus has a welldefined corner (Fig. 43b), the corners being about as far from each other as from the respective orbit; and subsidiary recognition features are: foretarsal rake present, apical portion of volsella without setae (Fig. 43e).

Figure 43. Tachysphex aterrimus Arnold: a - female head in frontal view; b: male head in frontal view; c - female clypeus and mandible; d - male clypeus and mandible; e - volsella; f - penis valve.

Description.- Mandible: outer ridge somewhat swollen and expanded over notch. Labrum shallowly emarginate mesally. Clypeal bevel indistinctly delimited from basomedian area, sparse punctation of clypeal middle section extending to frontoclypeal suture or nearly so. Scutal punctures well defined, several diameters apart on disk (at least 2-3 diameters). Mesopleural punctures
well defined, at least 2-3 diameters apart (interspaces unsculptured). Punctures of mesothoracic venter varying from about one to several diameters apart. Episternal sulcus complete in some specimens. Propodeal dorsum rugose, side ridged. Hindcoxal dorsum with inner margin carinate, carina slightly expanded basally.

Setae (numbers in parentheses refer to setal length expressed as a fraction of basal mandibular width): erect on postocellar area ($0.4-0.6$), scutum ($0.4-0.6$ anteriorly), mesopleuron, midfemoral venter (0.3-0.4), and on each side of oral fossa next to occipital carina; diverging anterolaterad from midline on propodeal dorsum.

Head and thorax black, mandible red at two-thirds length. Frontal setae silvery in both sexes. Wing membrane almost hyaline; costal and subcostal veins of forewing dark brown. Gaster and legs black, tarsal apex brown. Terga I-IV silvery fasciate apically (fasciae ill defined mesally).

ㅇ.- Clypeus (Figs. 43a, c): middle section minimally, uniformly convex, nearly flat, with most or all punctures more than one diameter apart, bevel, as long as basomedian area or shorter; lip: see Variation below. Width of postocellar area $1.8-2.0 \times$ length. Dorsal length of flagellomere I 1.7-2.0 apical width. Forefemoral venter with minute punctures that are several diameters apart (interspaces unsculptured). Dorsal foretibial surface with a few inconspicuous bristles, outer surface with one or two spines. Forebasitarsus with 5-7 rake spines. Apical depression of tergum V varying from micropunctate and microsetose to unsculptured, glabrous. Pygidial plate alutaceous, with shallow punctures that are many diameters apart. Length 6.1-7.6 mm.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Figs. 43b, d): bevel shorter than basomedian area; lip free margin arcuate or sinuate, with prominent corner; distance between corners $0.8-1.1 \times$ distance between corner and orbit. Width of postocellar area $2.4-2.8 \times$ length. Dorsal length of flagellomere I 1.4-1.5 \times apical width. Forefemoral notch glabrous. Outer margin of forebasitarsus mostly with 3-5 rake spines, but with only one preapical spine (near tarsomere's midlength) in some; outer apical spine of foretarsomere II shorter to longer than tarsomere III. Length 5.7-6.6 mm. Volsella and penis valve: Figs. 43e, f.

Variation.- Frons sculpture. The frons in many specimens is coriaceous (i.e., dull, conspicuously and unevenly microsculptured), with shallow, ill-defined punctures that are no more than one diameter apart. It is contrastingly shiny, with punctures several diameters apart and the interspaces unsculptured, in South African specimens from Matjiesfontein, Plessierivier, Willowmore, and Wolwekraal Farm.

Female clypeus. The clypeal lip is arcuate in most females and has a small lateral sinuosity on each side (Fig. 43c), but the sinuosity is absent in the lectotype, the females from Plessierivier, and some from Botswana. The lip has an obtuse median projection and a conspicuous lateral incision in the single female from Kitwe, Zambia.

Collecting period.- 11-26 January, 11 February, 20 March, 1 April-13 November, 18-22 November, 1-18 December.

Geographic distribution (Fig. 44).Namibia, Zambia, Zimbabwe, Botswana, South Africa.

Records.- BOTSWANA: Serowe (3 申) ,

Figure 44. Collecting localities of Tachysphex aterrimus and atlanteus.

Serowe: Farmers Brigade ($1 \stackrel{+}{ }$, PPRI). NAMIBIA: Okahandja District: Okahandja (1 ㅇ, BMNH). Outjo District: 31 km SE Kamanjab (1 ค, MS). Swakopmund District: Kuiseb River at Gobabeb (1 \circ). Tsumeb District: Namutoni ($1 \circ$, TMP, handwritten label Namuntoni). SOUTH AFRICA: Eastern Cape Province: Willowmore (1 ㅇ, TMP), 30 km S Steytlerville: Wolwekraal Farm (1 ơ, USU), 43 km NE Willowmore at
 Reserve ($1 \mathrm{o}^{*}$, PPRI). Northern Province: Pafuri in Kruger National Park ($1 \mathrm{o}^{\text {® }}$). North-West Province:

 Victoria Falls (1 or$^{\circ}$, SAM, paralectotype of aterrimus). The specimen recorded by Arnold (1924) from Matobo is actually a titania.

Tachysphex atlanteus de Beaumont

Figures 44, 45.
Tachysphex atlanteus de Beaumont, 1955:177, \uparrow, $\overbrace{}^{\circ}$. Holotype: \uparrow, Morocco: Tafraout (LAUSANNE), examined before 1971.- Pulawski, 1971:341 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976: 272 (listed).

Recognition.- Tachysphex atlanteus, known from Morocco and Tunisia, has a convex labrum (markedly protruding from beneath the clypeus), galea in profile markedly longer than wide, and propodeal side uniformly microsculptured. It differs from similar species in having the setae suberect to erect on the postocellar impression (female) or the entire postocellar area (male) but slightly shorter than the midocellar diameter, and the setae of the lower gena at most slightly longer than the midocellar diameter. Subsidiary recognition features include: terga nonfasciate or with broadly interrupted fasciae, female forecoxa without an apical process and apical depression of tergum V impunctate and glabrous, and in the male the dorsal volsellar process low, rounded (Fig. 45c). The setae are suberect on the postocellar depression in many calidus, but those of the lower gena (next to the oral cavity) are contrastingly longer than the midocellar diameter, the terga are distinctly fasciate, the female forecoxa has an apical process and tergum V is uniformly setose throughout, and in the male the dorsal volsellar process is narrow and elongate (Fig. 78b). So far as known, the two species have exclusive geographic ranges: atlanteus occurs in Morocco and Tunisia, and calidus in sub-Saharan Africa, extending into southern Sahara.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea markedly longer than wide in profile, punctate (punctures more than one diameter apart near anterior margin, about one diameter apart near posterior margin), its length equal to 0.9 of scape in female, to 1.0 in male. Middle clypeal section conspicuously convex. Scutal punctures well defined in female, ill defined in male, about one diameter apart in some females and in males, up to 2-3 diameters apart on disk in other females. Mesopleuron dull, uniformly microareolate, impunctate. Propodeal dorsum evenly microareolate; side uniformly microsculptured. Hindcoxal dorsum with inner margin carinate basally.

Setae suberect to erect on postocellar impression in female, on entire postocellar area in male, slightly shorter than midocellar diameter; mostly shorter than midocellar diameter on each side of oral fossa next to occipital carina, but some setae slightly longer; appressed on scutum; sublateral setae of propodeal dorsum oriented posterad and meeting apicomesally, admedian setae oriented obliquely posterad toward midline (oriented anterad near propodeal base); propodeal side glabrous anteriorly.

Head and thorax black, with the following reddish: mandible (except apically), clypeal bevel and lip, and pronotal lobe at least posteriorly. Frontal setae silvery or with golden tinge in female,

Figure 45. Tachysphex atlanteus de Beaumont: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.
golden in male. Wing membrane nearly hyaline; costal and subcostal veins of forewing reddish brown. Femora, tibiae, and tarsi red, but fore- and midfemora black basally in some females, and all femora partly black in some males. Gaster all red, apex darkened in some males. Terga not fasciate apically or basal terga with broadly interrupted fasciae (I and II, or II alone, or I-III).

ㅇ.- Clypeus (Fig. 45a): bevel longer than basomedian area; lip free margin arcuate, with vestigial emargination mesally, not incised laterally. Width of postocellar area $0.8 \times$ length. Dorsal length of flagellomere I 2.8-3.0 \times apical width. Dorsal foretibial surface with two spines, outer surface with one or two spines, with micropunctures and setae somewhat sparser than on remaining surface. Forebasitarsus with 8 or 9 rake spines. Apical spines of hindtarsomere IV reaching claw bases. Tergum V sparsely punctate mesally, its apical depression impunctate, glabrous. Pygidial plate somewhat convex longitudinally in lateral view, with lateral margin low, not raising above plate's surface, with punctures averaging many diameters apart; interspaces unsculptured or aciculate. Length $12.2-13.0 \mathrm{~mm}$.
$0^{7} .-$ Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 45b): bevel about as long as basomedian area, delimited anterolaterally by obtuse, oblique carina that emerges from lip corner; lip free margin arcuate to straight, shallowly emarginate mesally in some specimens, with well-defined corner; distance between corners $0.9-1.2 \times$ distance between corner and orbit. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I $2.2-2.4 \times$ apical width. Forefemoral notch with bottom microscopically setose. Outer margin of forebasitarsus with 5-8 spines; outer apical spine of foretarsomere II longer than tarsomere III. Hindfemoral venter with
inner (= posterior) margin sharp in distal half. Length $7.5-9.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 45 c , d.

Geographic distribution (Fig. 44).- Morocco, Tunisia.
RECORDS.- MOROCCO: Ksar es Souk to Ouarzazate ($1 \mathrm{of}^{\text {o }}$, paratype of atlanteus), Tafraout (3 ơ; 2 ㅇ, LAUSANNE; holotype and paratypes of atlanteus), Tinerhir (de Beaumont, 1955). TUNISIA: 8 km S Feriana (10^{7}).

Tachysphex aureorufoniger Pulawski, sp. nov.

Figures 46, 47.
Derivation of name.- Aureorufoniger, derived from the Latin masculine adjectives aureus, golden, rufus, red, and niger, black; referring to this species black body, red legs, and golden vestiture.

RECOGNITION.- Tachysphex aureorufoniger is one of the species in which the labrum is convex, markedly protruding from beneath the clypeus, the galea is longer than wide in profile, and the propodeal side is finely ridged throughout. In addition, its propodeal dorsum is longitudinally ridged at least basally, glabrous apicomesally (glabrous area at least twice as long as the midocellar diameter), the basomedian setae are oriented obliquely anterad, and the adlateral and apical setae oriented obliquely posterad (Fig. 46b). Also, the gaster is black and in fresh specimens the tergal fasciae are golden rather than silvery.

Description (male only).- Labrum convex, markedly protruding from beneath clypeus. Galea shiny, with punctures that are many diameters apart, longer than wide in profile, about as long as 1.1 of scape. Scutal and mesopleural punctures shallow, somewhat ill defined, most of them less than one diameter apart. Propodeal dorsum irregularly, longitudinally ridged at least basally (in some specimens subbasal ridges extend to about midlength, in others one or two median ridges extend nearly to dorsum's apex); side ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae appressed on postocellar area and scutum; subappressed and shorter than midocellar diameter on each side of oral fossa adjacent to occipital carina; arranged in complicated pattern on propodeal dorsum (Fig. 46b): basomedian setae oriented obliquely anterad, adlateral and apical setae oriented obliquely posterad (but separated apicomesally by elongate, glabrous area that is at least twice as long as midocellar diameter).

Head, thorax, and gaster black, mandible reddish mesally. Wing membrane yellowish; costal vein of forewing reddish, subcostal vein reddish brown. Femora, tibiae, and tarsi red (except foreand midfemora black basally). Setae golden on head and thorax in fresh specimens, becoming pale in worn ones. Terga I-V fasciate apically, fasciae golden in fresh specimens.

o . - Unknown.

$0^{\text {th }}$.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 46a): bevel about as long as basomedian area, delimited anterolaterally by small, obtuse carina that emerges from lip corner; lip free margin arcuate, shallowly emarginate mesally, with well-defined corner; distance between corners $1.2-1.4 \times$ distance between corner and orbit. Width of postocellar area $0.7-0.8 \times$ length. Dorsal length of flagellomere I $1.9 \times$ apical width. Forefemoral notch with microscopically setose bottom. Outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Length $8.3-12.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 46c, d.

Geographic distribution (Fig. 47).— Tanzania, Zambia.
Records.- Holotype: ${ }^{\boldsymbol{7}}$, ZAMBIA: Eastern Province: E side of Luangwa bridge at $14^{\circ} 59^{\prime}$ S $30^{\circ} 13^{\prime}$ E, 3 Mar 1998, WJP (CAS). PARATYPES: TANZANIA: Morogoro Region: 128 road km NW Morogoro,

Figure 46. Tachysphex aureorufoniger Pulawski, sp. nov.: a - male clypeus and mandible; b - propodeal dorsum showing ridges and setal pattern; c - volsella; d - penis valve.

12 June 2001, M.H. Bourbin and WJP (2 o $^{\text {® }}$). ZAM-
BIA: Central Province: 2 km E Mumbwa, 31 Mar 1995, WJP (2 ه) ; 7 km W Mumbwa, 30 Mar 1995, AM (1 σ^{\top}). Eastern Province: Chipata (as Fort Jameson), 3-6 June 1910, S.A. Neave (1 ơ, BMNH); E side of Luangwa bridge, 12 Mar 1998, WJP (2 σ^{\top}); 6-18 km SW Mfuwe, 20-22 Mar 1995, WJP (1 o); 31 km E Petauke, 17 Mar 1995, WJP (2 ơ); 32 km E Petauke, 24-26 Mar 1995, AM (3 ơ, MSNT) and WJP ($8 \delta^{\star}$); 42 km WSW Petauke, 16 Mar 1995, WJP (1 O^{o}).

Tachysphex auropilosus R. Turner

Figures 48, 49.
Tachysphex auropilosus R. Turner, 1917a:321, ㅇ. Lectotype: ㅇ, Kenya: Simba (BMNH), here designated, examined.- Arnold, 1923a:173 (original description copied), 1930:4 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:272 (listed).

Figure 47. Collecting localities of Tachysphex aureorufoniger.

RECOGNITION.-Tachysphex auropilosus has a labrum minimally convex adjacent to free margin, a galea slightly longer in profile than wide, and hindwing crossvein cu-a vertical. The following combination is diagnostic in both sexes: thoracic vestiture golden, free margin of clypeal lobe essentially arcuate but minimally concave laterally (Figs. 48a, b), and apical tarsomeres each with a group of spines on venter and lateral margins. In addition, female tarsomeres IV and V are characteristically modified (see Description below and Figs. 48c, d), and male tarsomeres V are expanded laterally (Figs. 48e, f). Subsidiary recognition features include: femora uniformly microsculptured, setae appressed on postocellar area, mesothorax, and femora, and gaster and legs all or largely red.

The female of mzingeli is similar, but in auropilosus the clypeal middle section has a sparsely punctate, subapical area (Fig. 48a); the wings are uniformly yellow; and apical tarsomeres have 2-4 spines on each lateral margin (Fig. 48d). In mzingeli, the middle clypeal section is uniformly punctate, the wings are either yellow basally and brown with a violet shimmer distally or all yellow, and the apical tarsomeres have one or two spines on each lateral margin. The female tarsi are also similar in rapax and scopa (in which setae are erect and sinuous on postocellar area, mesothorax, and femora), in tanqua (in which fore- and midfemoral venters are practically unsculptured), and in harpax. In the latter species, midtarsomere III averages shorter than in auropilosus (length 1.2-1.4 \times apical width rather than $1.5 \times$), the thoracic setae are silvery, the femora are black, and the body length does not exceed 11.0 mm (about 14.5 mm in auropilosus).

Description.- Galea longer than wide in lateral view (as long as 0.8 of scape), with large, sparse punctures and also minute punctures that are about 1-2 diameters apart (minute punctures absent near anterior margin). Free margin of labrum with short, stout setae (as in Fig. 178c). Scutum evenly, minutely punctate, punctures nearly contiguous. Mesopleuron microsculptured, dull, with evanescent punctures in Kenyan specimens, but punctures easily recognizable in those from Tanzania. Episternal sulcus complete in female but not in male. Propodeal dorsum evenly microareolate to ridged; side microsculptured, not ridged in specimens from Kenya, finely ridged in those from Tanzania. Hindcoxal dorsum with inner margin carinate basally. Sternum I with apical depression bisected by obtuse median carina.

Setae suberect on each side of oral fossa next to occipital carina (setal length less than one midocellar diameter); appressed on postocellar area and scutum; appressed and oriented posterad on propodeal dorsum except oriented anterad basomedially.

Head and thorax black, mandible reddish at about two-thirds of length. Frontal setae silvery or golden in female, golden in male; thoracic setae golden. Wing membrane yellow; forewing costal vein light brown, subcostal vein dark brown. Femora, tibiae, and tarsi red (forefemur black basodorsally, also midfemur in some specimens). Gaster all red in female or sterna black, in male either all red or tergum V and sterna V-VII largely black. Terga I-IV in female, I-V in male, fasciate apically (fasciae golden in female, silvery in male).

ㅇ.- Clypeus (Fig. 48a): bevel rudimentary; lip free margin arcuate, not incised laterally. Width of postocellar area $0.8 \times$ length. Dorsal length of flagellomere I $2.6 \times$ apical width. Forecoxa with small but conspicuous apicomedian process. Dorsal foretibial surface with two spines, outer surface with several spines. Forebasitarsus with nine or 10 rake spines that are divided into a subbasal and an apical group. Tarsomeres IV: length about $1.1 \times$ apical width, dorsoapical emargination rounded proximally (Fig. 48c). Tarsomeres V elongate, with one or two preapical spines on venter and a row of $2-4$ spines at about midlength of each lateral margin (Figs. 48d, g); apicoventral margin produced into rounded lobe (Fig. 48d). Claws elongate, length of arolium about onethird of claw length (Figs. 48c, d). Apical depression of tergum V finely punctate and setose. Pygidial plate with punctures that average several diameters apart (but many punctures one diame-

Figure 48. Tachysphex auropilosus R. Turner: a - female clypeus and mandible; b - male clypeus and mandible; c - apical hindtarsomeres of female in dorsal view; d - same in ventral view; e - apical hindtarsomeres of male in lateral oblique view; f - same in ventral view; g - apical hindtarsomere of female in lateral view; h - volsella; i - penis valve.
ter apart); interspaces aciculate, shiny. Length 14.5 mm .
0^{7}.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 48b): bevel about as long as basomedian area; lip free margin arcuate, somewhat concave laterally, with well-defined corner; corners about equidistant from each other and adjacent eye margin. Width of postocellar area
$0.7-0.8 \times$ length. Dorsal length of flagellomere I 1.5-1.6 \times apical width. Bottom of forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Tarsomeres V: venter with preapical cluster of small spines (Fig. 48f), each lateral margin expanded, with a row of small spines emerging from expansion (Fig. 48e). Length $9.0-9.9 \mathrm{~mm}$. Volsella and penis valve: Figs. 48h, i.

Geographic distribution (Fig. 49).Kenya, Tanzania.

Records.- KENYA: Coast Province: Voi ($1 \quad \circ$, BMNH). Eastern Province: Makindu (2 \& , BMNH, including paralectotype of auropilosus), Simba (2 ㅇ, BMNH, including lectotype of auropilosus). Rift Valley Province: 26 mi SW Nairobi ($1 \mathrm{o}^{\text {o }}$). TANZANIA: Iringa Region: 18 km W Iringa (2 ${ }^{\text {® }}$). Tanga Region: 2 km NE Mkomazi (1 \&).

Tachysphex bara Pulawski, sp. nov.

Figures 50-53.
Derivation of name.- Named after the Bara people of Madagascar, who cohabit with this wasp; a noun in apposition to generic name.

Recognition.- Tachysphex bara, an

Figure 49. Collecting localities of Tachysphex auropilosus and barkeri. endemic of Madagascar, differs from all other species inhabiting that island by the combination of an all red gaster, setae of the propodeal dorsum inclined posterad (except basomedian setae erect), pygidial plate punctatorugose in the female (Fig. 50d), and male sterna IV-VI with erect setae (Fig. 51a), setal length being slightly more than one midocellar diameter. The rugose propodeal dorsum is also distinctive (Fig. 50c), although rugae are evanescent in many males. The pygidial plate is also rugose in exceptional females of insulsus. In that species, however, the propodeal dorsum is evenly microareolate, with the setae inclined anterad.

The presence, on the venter of apical tarsomeres, of a central spine in female (Fig. 50f) and at least two preapical spines in male (Fig. 51b) is a subsidiary recognition features of bara.

Description.- Galea in profile about as long as wide. Scutal punctures less than one diameter apart. Mesopleural punctures shallow, ill defined, interspaces microsculptured, dull. Episternal sulcus complete. Propodeal dorsum, in most specimens, irregularly rugose (Fig. 50c) and side ridged (dorsal rugae and lateral ridges evanescent in some males). Hindcoxal dorsum with inner margin carinate basally, carina not expanded.

Setae appressed on postocellar area and scutum, erect on each side of oral fossa next to occipital carina (setal length about one midocellar diameter); oriented posterad on propodeal dorsum (except basomedian setae erect).

Head and thorax black, mandible reddish mesally. Frontal setae with golden tinge, golden in some males. Wing membrane slightly infumate, almost hyaline; forewing costal vein light brown, subcostal vein dark brown. Femora black except apex red (apical third of hindfemur red in some females). Tibiae and tarsi red. Gaster all red or terga III-VI slightly darkened in some females. Terga I-III fasciate apically, but fasciae ill defined.

ㅇ.- Clypeus (Fig. 50a): bevel shorter than basomedian area; lip free margin arcuate, with two lateral incisions on each side. Width of postocellar area about $0.8 \times$ length. Dorsal length of flagellomere I 1.9-2.1 \times apical width. Dorsal foretibial surface with two or three spines, outer surface

Figure 50. Tachysphex bara Pulawski, sp. nov.: a - female clypeus ($\times 41$); b - male clypeus ($\times 51$); c - propodeal dorsum of female in dorsal view ($\times 36$); d - female pygidial plate, lateral oblique view ($\times 60$); e - female tarsomeres IV and V in dorsal view ($\times 57$); $\mathrm{f}-$ female hindtarsomere V in ventral view ($\times 102$); $\mathrm{g}-$ female tarsomeres IV and V in lateral view $(\times 60)$.

Figure 51. Tachysphex bara Pulawski, sp. nov.: a - gastral segments IV-VII of male in lateral view ($\times 150$); b-male hindtarsomere V, ventral view ($\times 150$).
with several spines. Forebasitarsus with 15-18 rake spines. Tarsomeres IV obtusely emarginate dorsoapically (Fig. 50e), with almost straight apicoventral margin (Fig. 50f); their apical width slightly more than length on fore- and midtarsi, equal to length on hindtarsus. Apical tarsomeres V slightly elongate (Fig. 50e), not angulate basoventrally, venter with erect microsetae (Fig. 50g) and one central spine, each lateral margin with one or two small spines behind midlength; apicoventral margin triangular (Fig. 50f). Apical depression of tergum V impunctate, glabrous. Pygidial plate irregularly punctatorugose (Fig. 50d). Length $10.5-13.0 \mathrm{~mm}$.
σ^{7}.- Mandible: trimmal carina with cleft and prominent tooth. Clypeus (Fig. 50b): bevel ill defined or absent; lip free margin arcuate, corner obtuse but well defined; distance between corners $0.9-1.0 \times$ distance between corner and orbit. Width of postocellar area $0.7-0.8 \times$ length. Dorsal length of flagellomere I $1.6-1.7 \times$ apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Venters of tarsomeres V each with two (occasionally three) small, preapical spines (Fig. 51b). Sternal punctures increasing in size toward gastral apex. Sterna IV-VI with erect setae (also apical depressions of sterna II and III), setal length slightly more than midocellar

Figure 52. Tachysphex bara Pulawski, sp. nov.: volsella and penis valve.

Figure 53. Collecting localities of Tachysphex bara.
diameter (Fig. 51a) Sternum VIII shallowly emarginate apically, hindmargin arcuate mesally in some specimens. Length $8.5-9.5 \mathrm{~mm}$. Volsella and penis valve: Fig. 52.

Geographic distribution (Fig. 53).- Madagascar.
Records.- Holotype: \circ, MADAGASCAR: Fianarantsoa: Isalo National Park at $22^{\circ} 36^{\prime} \mathrm{S} 45^{\circ} 10^{\prime}$ E, 18-19 Mar 1994, WJP (CAS). PARATYPES: MADAGASCAR: Fianarantsoa: same data as holotype (3 P); same data but AM (1 \& , MSNT); same locality but 14 Apr, WJP (2 9); 40 road km W Ihosy, 16 Apr 1994,

 ($1 \circ, 1 \delta^{\circ}$, MSNT), same locality but 14 Apr, WJP ($1 \circ+1 \circ^{\circ}$); Zombitsy Nature Reserve 16 km E Sakaraha at $22^{\circ} 53^{\prime} \mathrm{S} 44^{\circ} 42^{\prime} \mathrm{E}, 20 \mathrm{Apr} 1998$, M.E. Irwin and E.I. Schlinger ($1 \mathrm{o}^{\circ}$).

Tachysphex barkeri Arnold

Figures 49, 54, 55.
Tachysphex barkeri Arnold, 1923:158, \& (as Barkeri, incorrect original capitalization). Holotype: $\&$, South Africa: Kwazulu-Natal: Umbogintwini (DURBAN), examined.- Arnold, 1929c:385 (variation), 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:272 (listed).
Tachysphex braunsi var. debilis Arnold, 1924:64, ${ }^{\pi}$, junior primary homonym of Tachysphex debilis Pérez, 1907 (now in Tachytes), and of Tachysphex debilis R. Turner, 1908 (a senior invalid synonym of subopacus R. Turner, 1910). Holotype: ${ }^{\circ}$, South Africa: Mpumalanga: Piet Retief (TMP), examined. New synonym.
Tachysphex braunsi var. boer Arnold, 1929:387. Substitute name for Tachysphex braunsi var. debilis Arnold.As Tachysphex braunsi boer: Bohart and Menke, 1976:272 (new status, listed).
As Tachysphex diabolicus: de Beaumont, 1967:509 (South Africa), present correction.
ReCognition.- As in brachypus, the labrum of barkeri is not protruding or minimally protruding beyond the clypeal free margin and obtusely pointed mesally, and the galea is longer than wide in profile, with the lateral surface concave in most specimens (a unique such feature among Tachysphex but possibly an artifact resulting from desiccation).

Other significant features shared by the females of these two species include: tarsi unusually short (e.g., length of foretarsomere II and of midtarsomere III about equal to apical width), ventral midfemoral margin evenly convex except contrastingly concave preapically (as in Fig. 327c), body black, forebasitarsus with apical margin emarginate (Fig. 54d) and only two or three apical rake spines (Fig. 54d) with contiguous sockets, and pygidial plate densely punctate, with most punctures less than one diameter apart (Fig. 54e). The female of barkeri differs from that of brachypus in having the propodeal side finely ridged (rather than unridged), the clypeal lobe wider (distance between lip corners $1.4-1.6 \times$ distance between corner and orbit rather than about 1.1), the flagellum thicker (e.g., length of flagellomere III 1.3-1.4 \times apical width rather than $1.7-1.8$), and the well-defined sensory areas on flagellomeres III-X (rather than inconspicuous).

The male of barkeri has an unusually short flagellomere I whose ventral length is slightly less than the apical width (Fig. 55c); a moderately elongate flagellomere II (ventral length about $1.6 \times$ that of flagellomere I); slightly shortened tarsi (e.g., length of midtarsomeres II and III 1.8-2.0 and $1.2 \times$ apical width, respectively); and the propodeal side is ridged, although ridges may be evanescent. Tachysphex brachypus is similar, but has the propodeal side unridged. The flagellar and tarsal proportions are also similar in eurystoma, in which, however, the propodeal side is not ridged, the galea is shorter than wide in lateral view and not concave, the clypeal lobe is broader (distance between lip corners $1.3 \times$ clypeal midline, while $1.0-1.1 \times$ in barkeri), and the forebasitarsus has two or three preapical rake spines (no such spines or one spine in barkeri).

JUSTIFICATION OF NEW SYNONYMY.- The holotypes of barkeri and boer are the opposite sexes of one species. These names are therefore synonyms.

Description.- Galea longer than wide in profile (about as long as 0.9 of scape), with lateral surface concave in most specimens; shiny, with evanescent, sparse punctures (except densely punctate anteriorly). Labrum obtusely pointed mesally (Fig. 54c), not exposed or barely exposed. Scutum evenly punctate, punctures averaging about one diameter apart in female, less than that in male. Mesopleural punctures, beneath scrobe, averaging about 2-3 diameters apart in female and about 1-2 diameters in male; interspaces conspicuously microsculptured, dull. Episternal sulcus complete in many females and some males. Propodeal dorsum varying: irregularly rugose and with longitudinal ridges, or irregularly rugose, or evenly microareolate; side finely ridged (ridges evanescent in some specimens). Hindcoxal dorsum with inner margin carinate basally, carina somewhat expanded.

Setae erect on postocellar area, about as long as midocellar diameter; erect on each side of oral fossa next to occipital carina, about $0.2 \times$ basal mandibular width; practically appressed on scutum; markedly shorter than midocellar diameter on midfemoral venter; oriented posterad on propodeal dorsum.

Head, thorax, and gaster black, mandible black or dark reddish mesally. Frontal setae silvery in female, golden or with golden tinge in male. Wing membrane slightly infumate or yellowish; forewing costal vein brown, subcostal vein dark brown. Femora black (red apically in some males); tibiae and tarsi black in female, varying from all black to all red in male. Terga I-III silvery fasciate apically.

ㅇ.- Clypeus (Fig. 54a): bevel markedly shorter than basomedian area; lip sinuate or obtusely prominent mesally, with two lateral incisions on each side. Width of postocellar area 1.3-1.4 \times length. Dorsal length of flagellomere I 1.3-1.4 \times apical width; ventral surface of flagellomeres III-X with characteristic sensory areas (as in Figs. 38c-e). Forefemoral venter minutely, evenly punctate, punctures 2-3 diameters apart (posteroventral surface with punctures that are many diameters apart in a female from Vernon Crookes Nature Reserve, South Africa). Dorsal foretibial surface with a few inconspicuous bristles, outer surface with several bristles, partly impunctate and glabrous toward apex. Ventral midfemoral margin evenly convex except contrastingly concave preapically (as in Fig. 327c). Tarsi short: length of fore- and midtarsomeres II $1.1 \times$ and $1.6 \times$ apical width, respectively; that of midtarsomere III equal to apical width (Fig. 55b); and that of fore-, mid- and hindtarsomeres IV about $0.9,0.9$, and $1.0 \times$ apical width, respectively. Forebasitarsus: apical margin with characteristic angulate emargination (Fig. 54d); outer margin with seven or eight rake spines (which are compressed dorsoventrally); only two or three apical spines with contiguous sockets; length of apical spines about $1.2 \times$ basitarsus width. Apical tarsomeres stout; venter with preapical group of minute spines (or at least one spine); lateral margins, in some specimens, with small spine near midlength (spines may be absent on all legs or on one side of each leg). Apical depression of tergum V impunctate and glabrous except basally and laterally. Pygidial plate slightly emarginate apically, with numerous large and numerous small punctures, many of which are less than one diameter apart (Fig. 54e). Length 9.5-11.7 mm.
$\delta^{\boldsymbol{t}}$.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 54e): bevel rudimentary or absent; lip free margin arcuate to obtusely pointed, with well-defined corner; distance between corners $1.0-1.1 \times$ distance between corner and orbit. Width of postocellar area $1.1-1.2 \times$ length. Dorsal length of flagellomere I 1.0-1.1 \times apical width, ventral length slightly less than apical width (Fig. 55 c). Forefemoral notch of medium size or slightly larger than average for the genus (Fig. 54f), glabrous or microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Length of midtarsomere II 1.8-2.0 \times apical width, that of midtarsomere III $1.2 \times$ apical width (Fig. 55d). Venters of tarsomeres V each with one preapical spine. Apex of sternum VIII varying from tridentate to shallowly emarginate (with

Fourth Series, Volume 58, Supplement I

Figure 54. Tachysphex barkeri Arnold: a - female clypeus ($\times 32$); b - male clypeus ($\times 44$); c female labrum ($\times 96$); d - apex of female foretarsomere I and foretarsomere II $(\times 90)$; e - pygidial plate of female in lateral oblique view $(\times 72)$; f - base of male forefemur ($\times 90$).
hindmargin straight between lateral prongs). Length $6.8-8.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 55 e , f.

Geographic distribution (Fig. 49).— Zambia, Zimbabwe, Swaziland, and South Africa.
Records.- SOUTH AFRICA: Eastern Cape Province: Algoa Bay (\& + , TMP), Belmont Valley 10 km E Grahamstown at $33^{\circ} 19^{\prime} \mathrm{S} 26^{\circ} 38^{\prime} \mathrm{E}$ (3 \& , AMG), Grahamstown ($1 \mathrm{o}^{\circ}, \mathrm{AMG}$), 18 km WNW Grahamstown:

Figure 55. Tachysphex barkeri Arnold: a - basal flagellomeres of female; b - female midtarsus; c - basal flagellomeres of male; d - male midtarsus; e - volsella; f - penis valve.

Hilton Farm ($2 \rightarrow 1$ of 7, AMG), Howison's Poort 6 km WSW Grahamstown (2 \uparrow, AMG), Strowan Farm 5 air km W Grahamstown ($1 \sigma^{\star}$, AMG), Tsitsikama Forest: Oakhurst ($1+2 \sigma^{\star}$, AMG;). Free State: Adullam Farm
 Gauteng: Johannesburg: Melville Koppies Reserve (1 ơ, FSCA), Krugersdorp: Witpoortjie (1 \uparrow, AMG), Strubens Valley: Florida (1 ơ; 1 ㅇ, 5 ơ *, AMG). Kwazulu-Natal: Cathedral Peak ($1 \mathrm{o}^{\star}, \mathrm{KU}$), Hluhluwe Game Reserve ($1+1$, ơ *, ZMLU; $\overbrace{}^{*}$ determined as Tachysphex diabolicus by de Beaumont), Kamberg National Park
 AMG), Umbogintwini ($1 \stackrel{\circ}{+}$, DURBAN, holotype of barkeri), Vernon Crookes Nature Reserve: Umzinto at $30^{\circ} 17^{\prime} \mathrm{S} 30^{\circ} 37^{\prime} \mathrm{E}\left(2\right.$ 우; 3 ㅇ, 1 ơ $^{\circ} \mathrm{PPRI}$). Mpumalanga: Mac Mac Falls 10 km N Sabie at $25^{\circ} 02^{\prime} \mathrm{S} 30^{\circ} 48^{\prime} \mathrm{E}$ ($2 \sigma^{7}$, PPRI), Middelburg ($1 \circ$, AMG), Piet Retief ($1 \stackrel{\circ}{\circ}, 1 \mathrm{o}^{\circ}$, TMP, including holotype of boer), White River
 PPRI). North-West Province: Rustenburg Nature Reserve (2 ㅇ, 2 ot ; 3 ㅇ, 2 of, PPRI). Western Cape

 BMNH). SWAZILAND: Malkerns Research Station (2 ơ, ZMAN), Mdzimba Hills (4 \circ, ZMAN), Usutu
 Chishawasha near Harare (1 $0^{\prime \prime}, \mathrm{BMNH}$).

Tachysphex bemba Pulawski, sp. nov.

Figures 56, 57.
Derivation of name.- Named after the Bemba people, one of the main ethnic groups of Zambia; a noun in apposition to generic name.

Recognition.- Tachysphex bemba has a convex labrum (markedly protruding beyond the clypeal free margin) and the propodeal dorsum glabrous apicomesally, with most basomedian setae pointing obliquely anterad. Unlike other species with this character combination, the female has the clypeal lip not incised laterally, legs black, and a pygidial plate conspicuously microsculptured, dull, with ill-defined punctures. The male has a slightly arcuate clypeal lip (Fig. 56b), well-developed foretarsal rake (basitarsus with four or five spines), and appressed sternal setae. The gaster is bicolored in most specimens (red basally, black apically), but all black in some.

Description.- Labrum convex, markedly protruding beyond clypeal free margin. Galea with variable punctation (dense to sparse), as long as $0.9-1.0$ of scape. Scutal punctures minute, no more than one diameter apart, interspaces shiny in most specimens, dull in some. Mesopleuron dull, uniformly microsculptured in female; in male with shallow, inconspicuous punctures that are about one diameter apart at center (interspaces microsculptured but somewhat shiny). Propodeal dorsum evenly microsculptured, in many specimens also with fine ridges that may extend nearly to hindmargin mesally (Fig. 56c); side ridged in females and some males, ridges evanescent or absent in many males. Hindcoxal dorsum with inner margin carinate basally. Sternum I in some females with evanescent, longitudinal carina.

Setae nearly appressed on each side of oral fossa next to occipital carina (setal length about equal to midocellar diameter); appressed on postocellar area and scutum; oriented posterad on propodeal dorsum except for glabrous, apicomedian area that may be nearly rounded or markedly elongate longitudinally (Fig. 56c).

[^0]Head and thorax black, mandible reddish at about two thirds of length. Frontal setae silvery in most females (golden in single female from Luvumbu Valley, Zambia), golden in male (silvery next to antennal sockets in some specimens). Scutal setae with golden tinge in male. Wing membrane slightly infumate; costal and subcostal veins of forewing brown. Color of legs: see below. Gastral segments I-III red in most specimens (sternum III black in many males), remainder black; but gaster all black in single female from Aroab area, Namibia. Terga I-III (I-IV in some males) silvery fasciate apically, fasciae golden rather than silvery in single female from Waldau River, Namibia.

ㅇ.- Clypeus (Fig. 56a): bevel shorter than basomedian area; lip free margin arcuate, shallowly emarginate mesally, somewhat sinuous laterally. Width of postocellar area $0.7-0.9 \times$ length. Dorsal length of flagellomere I 2.4-2.6 \times apical width. Dorsal foretibial surface with one or two spines, outer surface with one or two spines. Forebasitarsus with 5-7 rake spines. Outer margin of foretarsomere IV slightly shorter than inner margin. Tergum V densely punctate and setose throughout, including apical depression. Pygidial plate conspicuously microsculptured, dull (except at very apex), with minute punctures that average many diameters apart. Length $10.0-10.2 \mathrm{~mm}$. Legs black, tarsal apex brownish.
δ^{7}. - Mandible: trimmal carina with tooth, with or without cleft. Clypeus (Fig. 56b): bevel to longer than basomedian area; lip free margin slightly arcuate, shallowly emarginate mesally, with well-defined corner that is sharply projecting in most specimens, with short carina emerging from corner; distance between corners $1.1 \times$ distance between corner and orbit. Width of postocellar area $0.7-0.9 \times$ length. Dorsal length of flagellomere I $1.6-1.7 \times$ apical width. Forefemoral notch with microscopically setose bottom. Outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Length $6.6-9.2 \mathrm{~mm}$. Volsella and penis valve: Figs. 56d, e. Femora black in most specimens but red in males from Chibombo, Zambia; tibiae varying from all red to largely black; tarsi red.

Geographic distribution (Fig. 57).Zambia, Namibia, northwestern Zimbabwe.

Records.- Holotype: io, ZAMBIA: Northern Province: 54 road km NE Serenje at $13^{\circ} 05^{\prime} \mathrm{S} 30^{\circ} 35^{\prime} \mathrm{E}, 23$ Mar 1998, WJP (CAS). Paratypes: NAMIBIA: Keet-man-shoop District: 102 km from Aroab on road to Koës, 15 May 1973, J. Jacot-Guillarmod (1 \& AMG). Okahandja District: Waldau River 17 km W Okahandja, 13-14 Feb 1996, WJP (1 of). ZAMBIA: Central Province: Chibombo 97 road km N Lusaka, 14 Mar 1998, WJP

Figure 57. Collecting localities of Tachysphex bemba and bipustulosus.
 Valley [20 km N Chama], 19-26 July 1910, S.A. Neave (1 \&, BMNH). Northern Province: 65 road km NE Serenje, 22 Mar 1998, WJP (1 ® $^{\prime}$); 82 road km NE Serenje, 22 Mar 1998, WJP (2 or $^{\text {ºn }}$). ZIMBABWE: Victoria Falls, 28-31 Mar 1998, WJP (1 \&).

Tachysphex bipustulosus Arnold

Figures 57-59.

Cameron, 1905. Holotype: \uparrow, Zimbabwe: Bulawayo (SAM), examined.-Arnold, 1924:61 (description of 0^{7}), 1930:3 (in checklist of Afrotropical Sphecidae).
Tachysphex bipustulosus Arnold, 1949:275. Substitute name for Tachysphex bituberculatus Arnold.— Bohart and Menke, 1976:272 (listed).

RECOGNITION.- Tachysphex bipustulosus, occurring south of the equator, has the supraantennal swelling conspicuously expanded, higher than the antennal socket rim but not connected to the latter, and with lateral sides almost perpendicular to the frons plain (Figs. 58c-e); in addition, the socket rim is markedly higher dorsally than ventrally. The supraantennal swelling is enlarged in two other southern African species, mashona and ovambo. In mashona, however, the supraantennal swelling is fused with the antennal socket rim, and in ovambo it is lower and more rounded than in bipustulosus, with lateral sides sloping obliquely. Subsidiary recognition features of bipustulosus are: propodeal side microsculptured, not ridged; female flagellomere I short (dorsal length $1.4 \times$ apical width) and tarsi shortened (e.g., length of foretarsomere II and of midtarsomere III about equal the apical width, whereas in ovambo 1.2 and $1.3 \times$ apical width, respectively), and male sterna densely, uniformly setose. The only other species with an expanded supraantennal swelling, the Palearctic pusulosus, conspicuously differs from bipustulosus and its relatives (see pusulosus for differences, p. 522).

Description.- Antennal socket rim markedly higher dorsally than ventrally; supraantennal swelling conspicuously enlarged, higher than socket, separated from the latter, and with lateral sides almost perpendicular to the frons plain (Figs. 58c-e). Scutum evenly punctate, discal punctures slightly less to slightly more than one diameter apart. Mesopleural punctures fine (evanescent in the smallest male), about one diameter apart anteriorly and 2-3 diameters apart posteriorly; interspaces microsculptured, dull. Propodeal dorsum evenly microareolate, side sparsely, microscopically punctate, not ridged or with microscopic ridges anteriorly. Hindcoxal dorsum with inner margin carinate basally. Sternum I without longitudinal carina in female, with carina that bisects apical depression in male.

Setae appressed on postocellar area, scutum, and midfemoral venter; inclined, about $0.2 \times$ basal mandibular width on each side of oral fossa next to occipital carina; inclined posterad on propodeal dorsum.

Head, thorax, and gaster black, mandible reddish preapically. Frontal setae silvery in female, silvery or golden in male. Wing membrane slightly infumate; forewing costal vein light brown, subcostal vein brown (respectively brown and black in single male from Tanzania). Color of legs varying in female but tarsi red; in male tibiae and tarsi red (see also Variation below). Terga I-IV silvery fasciate apically.

ㅇ.- Labrum emarginate mesally. Clypeus (Fig. 58a): bevel shorter than basomedian area; lip free margin arcuate or sinuate, with two lateral incisions on each side. Width of postocellar area 1.2 \times length. Dorsal length of flagellomere I $1.4 \times$ apical width. Dorsal foretibial surface with a few short, evanescent bristles, outer surface with two bristles but no spines. Tarsi short: length of foreand midtarsomeres II about 1.0 and $1.6 \times$ apical width, respectively; that of midtarsomere III equal to apical width (Fig. 58f); of fore-, mid-, and hindtarsomeres IV about $0.9 \times, 1.0 \times$, and $1.0 \times$ apical width, respectively. Forebasitarsus with eight rake spines, spines flattened dorsoventrally. Apical tarsomeres stout. Apical depression of tergum V impunctate, glabrous. Pygidial plate narrowly but conspicuously incised apically (Fig. 58g), punctures varying (see Variation below). Length $6.5-7.8 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 58b): bevel ill defined, markedly shorter than basomedian area; lip free margin roundly, obtusely triangular, with somewhat ill-defined corner; distance between corners $1.0 \times$ distance between corner and orbit (0.8 in

Figure 58. Tachysphex bipustulosus Arnold: a - female clypeus, mandible, and lower frons $(\times 42)$; b - male clypeus and mandible $(\times 54)$; $\mathrm{c}-$ central portion of female head showing supraantennal swelling, frontal view ($\times 32$); d - antennal socket and supraantennal swelling of female in lateral oblique view $(\times 108)$; $\mathrm{e}-$ antennal socket and supraantennal swelling of female in lateral view $(\times 108)$; $\mathrm{f}-$ female midtarsomeres II-V $(\times 57) ; \mathrm{g}-$ pygidial plate of female $(\times 108)$.

Tanzanian male). Width of postocellar area $1.0-1.2 \times$ length. Dorsal length of flagellomere I about $1.25 \times$ apical width, ventral length equal to apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Length of midtarsomere II $2.0-2.2 \times$ apical width, that of midtarsomere III $1.4-1.6 \times$ apical width. Venters of tarsomeres V each with one preapical spine. Apical margin of sternum VIII with or without median tooth. Length 8.0-9.0 mm . Volsella and penis valve: Figs. 59.

Variation.- In the Zimbabwean specimens, the supraantennal swelling is about two

Figure 59.Tachysphex bipustulosus Arnold: volsella and penis valve. antennal socket diameters long (Fig. 58c), gradually sloping down dorsad (Figs. 58d, e), and punctate in dorsal half. In the female, the punctures of the pygidial plate average several diameters apart at center, and the femora and tibiae are black. In the male, the femora all black or red only apically.

In specimens from South Africa, the supraantennal swelling is about 1.5 diameter of the antennal socket long, abruptly sloping down dorsad, and impunctate. In the female, the punctures of the pygidial plate average about one diameter apart or less, and the femora and tibiae are reddish or the femora are red basally. In the male, the femora are red or black only basally.

Geographic distribution (Fig. 57).- Tanzania to South Africa.
Records.- SOUTH AFRICA: Mpumalanga: Skukuza in Kruger National Park (3 ${ }^{\circ}$, PPRI). Northern Province: D'Nyala Nature Reserve ($^{\circ}$), Doorndraai Dam Nature Reserve at $24^{\circ} 18^{\prime} \mathrm{S} 28^{\circ} 44^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$), Guernsey Farm 15 km E Klaserie ($2 \mathrm{o}^{\circ}$, PMA), Mogol Nature Reserve ($1 \sigma^{\circ}$), 20 km N Naboomspruit
 OÖLM). TANZANIA: Morogoro Region: 62 road km SW Morogoro ($1 \delta^{\circ}$). ZIMBABWE: Bulawayo (4 q q, 60°, SAM, including holotype of bituberculatus and ơ improperly designated by G. Arnold as type), Bulawayo: Umguza River (1 đ̊), Iwaba near Kwekwe ($1+$, BMNH), Kami River 7 km W Nyamandhlovu (1 o^{\top}), Kami Ruins (1 o , SAM, paratype of bituberculatus), Leighwoods 52 km SW Bulawayo ($1 \mathrm{o}^{\text {® }}$), Mavuradonha Wilderness area 15 km E Muzarabani (1 ơ, OÖLM), Nyagui River 25 km NE Shamva (1 ơ, OÖLM), Redbank at Kami River (2 早, $9 \sigma^{*} ; 3 \sigma^{\circ}$, NHMZ), Sanyati Valley ($2 \sigma^{\circ}$, SAM), Sawmills (10°, SAM).

Tachysphex bostryx Pulawski, sp. nov.

Figures 60, 61.
Derivation of name.- Bostryx, Greek for curly; with reference to the sinuous genal and propodeal setae of this species.

Recognition.- Tachysphex bostryx has the labrum markedly convex and protruding beyond the clypeal free margin, propodeal side not ridged, setae sinuous on the lower gena (also many setae on the propodeal dorsum), no longer than one midocellar diameter on the postocellar area. Tachysphex micans and pulcher are similar, but in bostryx the propodeal side is asetose anteriorly, the setae do not conceal integument on the mesopleuron and hindfemoral outer surfaces, the inner hindtibial spur is the usual shape (i.e., with fine, closely spaced rays), the apical depression of female tergum V is asetose, and the outer dorsal margin of female foretarsomere IV is about 0.7 of the inner margin. In the other two species, the propodeal side is setose throughout, the setae conceal the integument on the mesopleuron (at least in fresh specimens) and the hindfemoral outer sur-
face (at least apicoventrally), the inner hindtibial spur (except many pulcher) has stout, widely spaced rays at least near midlength, female tergum V is setose throughout, and the lateral margins of female foretarsomere IV are about equal in length. Also, bostryx is geographically isolated from the other two: it is known from southern Ethiopia, Somalia, Kenya, and Tanzania, whereas micans ranges from Morocco to Mongolia, south to Mali and Arabian Peninsula, and pulcher occurs in southwestern Asia (Turkey to Yemen, east to Kazakhstan and Tajikistan).

Description.- Labrum markedly convex, protruding from beneath clypeus. Galea evenly micropunctate (punctures about one diameter apart), as long as 0.9 of scape in female, as 1.0 in male. Scutal punctures ill defined, about one diameter apart; interspaces microsculptured. Mesopleuron uniformly microsculptured. Propodeal dorsum and side uniformly microareolate. Hindcoxal dorsum with inner margin not carinate. Apical spines of hindtarsomere IV reaching claw bases in female.

Setae not concealing integument; sinuous along occipital and hypostomal carinae, on scutum adjacent to pronotal lobe, on preepisternal area anteriorly, and on propodeal dorsum and posterior face; nearly appressed on postocellar area (no longer than midocellar diameter), appressed on scutal disk; setal length, on each side of oral fossa next to occipital carina, up to 0.6 of basal mandibular width; variously oriented on propodeal dorsum; propodeal side glabrous anteriorly.

Head and thorax black, but mandible (except apex), clypeal bevel, labrum, and scapal venter yellowish red. Frontal and clypeal setae silvery in female, golden in male. Wing membrane hyaline; costal and subcostal veins of forewing light brown. Femora, tibiae, and tarsi red, midfemoral dor-

Figure 60. Tachysphex bostryx Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d - penis valve.
sum black basally (also forefemoral dorsum in most specimens). Female gaster either all red or terga III-V black basally or with a pair of black, adlateral spots, male gaster varying from all red to all black (except segment VII reddish and apical depressions of segments translucent); in many males terga I and VII red, terga II-VI partly red and partly black. Terga I-IV silvery fasciate apically (male tergum V with inconspicuous, broadly interrupted fascia).

ㅇ.- Clypeus (Fig. 60a): bevel slightly shorter than basomedian area; lip free margin arcuate, emarginate mesally, minimally concave laterally. Width of postocellar area $0.4-0.5 \times$ length. Dorsal length of flagellomere I $2.8 \times$ apical width. Dorsal foretibial surface with three spines, outer surface with two or three spines. Forebasitarsus with eight or nine rake spines. Outer dorsal margin of foretarsomere IV about 0.7 length of inner margin. Apical depression of tergum V unsculptured, glabrous. Pygidial plate with punctures that are many diameters apart, interspaces aciculate or unsculptured. Length $9.5-11.0 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 60b): bevel about as long as basomedian area; lip free margin emarginate mesally, with ill-defined corner; distance between corners $1.2 \times$ distance between corner and orbit. Width of postocellar area $0.4-0.6 \times$ length. Dorsal length of flagellomere I $2.0-2.25 \times$ apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with 3-6 preapical rake spines; outer apical spine of foretarsomere II markedly longer than tarsomere III. Sternum VIII evenly emarginate apically, margin almost straight between prongs. Length $6.0-9.7 \mathrm{~mm}$. Volsella and penis valve: Figs. 60c, d.

Geographic distribution (Fig. 61).Southern Ethiopia and Somalia to Tanzania.

Records.- Holotype: + , ETHIOPIA: Sidamo: 63 km S Yabelo at $4^{\circ} 22^{\prime} \mathrm{N} 38^{\circ} 17^{\prime} \mathrm{E}, 16$ Aug 1997, Veronica Ahrens, WJP, Emiru Seyoum (CAS). Paratypes: ETHIOPIA: Sidamo: 13 km N Moyale, 10 Aug 1997, Veronica Ahrens, WJP, Emiru Seyoum ($1 \mathrm{o}^{\circ}$); same data as holotype (2 ㅇ, $22 \sigma^{\circ}$). KENYA: Eastern Province: near Ewaso Ng'iro River opposite Archer's Post, 2-8 Dec 2002, WJP (1 ® $^{\circ}$); 5 km NNE Isiolo, 8-10 June 2000, M.H. Bourbin, V.F. Lee, and WJP ($4 \stackrel{+}{\circ}$, $1 \circ^{\circ}$). Rift Valley Province:

Figure 61. Collecting localities of Tachysphex bostryx and brachypus.

Archer's Gate to Samburu National Reserve, 19 June 1999, WJP and J.S. Schweikert (5 © ${ }^{\circ}$); Magadi road 46 air km SW Nairobi, 17 June and 18 July 1999, WJP and J.S. Schweikert (2 of $^{\text {º }}$; same locality, 29 Nov 2002, WJP ($1 \mathrm{o}^{\circ}$); Olorgesailie, 19 July 1999, WJP and J.S. Schweikert ($2 \mathrm{o}^{\circ}$). SOMALIA: Kismaayo at $0^{\circ} 22^{\prime}$ S $42^{\circ} 32^{\prime} \mathrm{E}, 24 \mathrm{Feb} 1980$, collector unknown ($1 \mathrm{o}^{\circ}, \mathrm{BMNH}$). TANZANIA: Tanga Region: 73 km NW Korogwe, Omary S. Haji and WJP, 11-12 July 2001 ($2 \sigma^{\circ}$), 14-15 July 2001 ($2 \sigma^{\circ} ; 1 \delta^{\circ}$, BMNH), 18 July 2001 ($2 \sigma^{\circ}$), and 19-20 July 2001 (3 ơ); same locality, 26 Dec 2002 and 15 Jan 2003, WJP (2 ơ); same locality, 15 Jan 2002, M.A. Prentice ($4 \delta^{\circ}$); 2 km NE Mkomazi, 29-31 Dec 2002, WJP ($1 \sigma^{\circ}$) and 13 Jan 2003, M.A. Prentice ($1 \mathrm{o}^{\circ}$); Pangani River Camp 86 km NW Korogwe, 15 Jan 2003, WJP (1 f).

Tachysphex brachypus Pulawski, sp. nov.

Figure 61.
Derivation of name.- Brachypus, Greek for short-legged, with reference to the shortened tarsi of this species.

Recognition.- The female of brachypus is similar to barkeri. See that species (p. 142) for recognition characters.

The male shares with barkeri an unusually short flagellomere I (ventral length slightly less than apical width); a moderately elongate flagellomere II (dorsal length about $1.2 \times$ that of flagellomere I); galea longer than wide in profile (at least slightly so), with lateral surface concave in most specimens; and a slightly shortened midtarsus (length of tarsomere II 1.7-2.0 \times apical width, that of tarsomere III $1.2-1.4 \times$ apical width). In brachypus, however, the propodeal side is punctate but not ridged (at least slightly ridged in barkeri). The antennal and tarsal proportions are also similar in eurystoma in which, however, the galea is shorter than long in profile, the clypeal lobe is broader (distance between lip corner $1.3 \times$ clypeal midlength, while about equal to midlength in brachypus), and the forebasitarsus has two or three preapical rake spines (no preapical spines or one such spine in brachypus).

Status of the species.- Tachysphex brachypus differs only minimally from barkeri and could be regarded as an individual variant of the latter. I treat them as separate species because I could not document intergradation in their morphological characters.

Description.- Galea shiny, with minute, evanescent punctures, about as long as 0.7 of scape in small specimens (those from Zambia and Zimbabwe) to about 0.9 of scape in others. Labrum obtusely pointed mesally (as in barkeri, see Fig. 54c), not or barely exposed. Scutal punctures averaging about one diameter apart (several discal punctures up to $2-3$ diameters apart in female). Mesopleural punctures fine, averaging about 2-3 diameters apart near center in female and one diameter in male; interspaces microsculptured, dull. Propodeal dorsum evenly microareolate, side finely punctate (punctures evanescent in some specimens). Hindcoxal dorsum with inner margin carinate basally.

Setae erect on postocellar area (setal length about one midocellar diameter); erect on each side of oral fossa next to occipital carina, about $0.2 \times$ basal mandibular width; practically appressed on scutum; markedly shorter than midocellar diameter on midfemoral venter; oriented posterad on propodeal dorsum.

Head, thorax, gaster, and legs black except mandible dark reddish near midlength and tarsal apex red in some specimens. Frontal setae silvery in both sexes. Wing membrane slightly infumate; forewing costal vein brown, subcostal vein dark brown. Terga I-III silvery fasciate apically, also tergum IV in specimens from Zambia.

ㅇ.- Clypeus: bevel ill defined but shorter than basomedian area; lip sinuate, with two lateral incisions on each side. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I $1.4 \times$ apical width. Forefemoral venter uniformly, minutely punctate. Dorsal foretibial surface with at most one fine bristle, outer surface with two bristles. Ventral midfemoral margin evenly convex except contrastingly concave preapically (as in Fig. 327c). Tarsi short: length of fore- and midtarsomeres II about 1.1 and $1.6 \times$ apical width, respectively; that of midtarsomere III equal to apical width; that of fore-, mid-, and hindtarsomeres IV about $1.0,0.9$, and $0.9 \times$ apical width, respectively. Forebasitarsus: apical margin with characteristic angulate emargination (see Fig. 54d); outer margin with 8-10 rake spines (that are compressed dorsoventrally); only two or three apical spines with contiguous sockets; length of apical spines about equal to basitarsus width. Apical tarsomeres stout; venter with preapical group of minute spines; apicoventral margin slightly convex; lateral margins each with $1-3$ small spines near midlength. Apical depression of tergum V punctate and setose. Pygidial plate emarginate apically, surface with many large punctures intermixed with small ones; many punctures less than one diameter apart (as in Fig. 54e). Length $8.0-10.6 \mathrm{~mm}$.
δ°.- Mandible: trimmal carina with tooth and cleft. Clypeus: bevel ill defined or absent; lip free margin arcuate, with well-defined corner; distance between corners 1.0-1.1 \times distance between
corner and orbit. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I about $1.2 \times$ apical width, ventral length less than apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines (most specimens) or with one such spine near basitarsus midlength; outer apical spine of foretarsomere II shorter than tarsomere III. Length of midtarsomere II 1.7-2.0 \times apical width, that of midtarsomere III 1.2-1.4 \times apical width. Venters of tarsomeres V each with one minute, preapical spine. Sternum VIII: apical margin tridentate. Length 7.0-8.2 mm. Volsella and penis valve as in barkeri (see Figs. 55e, f).

Geographic distribution (Fig. 61).- Northern Namibia, Zambia, and Malawi to northeastern South Africa.

Records.- Holotype: ㅇ, ZAMBIA: 7 km SW Kalomo, 8-9 Mar 1995, WJP (CAS). Paratypes: MALAWI: Mlunguzi E Zomba, 10 Mar 1975, G.G.M. Schulten (1 \&, ZMAN). NAMIBIA: Grootfontein
 km SW Rundu, 1 Feb 1993, J. Gusenleitner (1 \&). SOUTH AFRICA: Eastern Cape Province: Katberg, 1-10 Feb 1933, R.E. Turner (c°, BMNH). Gauteng: Pretoria, no date, J. Brincker ($1 \stackrel{q}{ }$, BMNH). Mpumalanga: O.T.K. [= Oostelike Transvaalse Koöperasie] Nature Reserve near Loskop Dam, 9-11 Dec 1985, CDE (1 ơ; 10°, PPRI). Northern Province: $14-29 \mathrm{~km}$ W Alldays at $22^{\circ} 44^{\prime} \mathrm{S} 28^{\circ} 57^{\prime} \mathrm{E}, 14$ Mar 1990, CDE ($1 \quad q$, PPRI); Langjan Nature Reserve, 10 Mar 1990, CDE (10^{\star}, PPRI); Mogol Nature Reserve, $27-29$ Feb 1984, CDE (2 ơ $^{\circ} ; 2$ o $^{\circ}$, PPRI); Percy Fyfe Nature Reserve at $24^{\circ} 03^{\prime} \mathrm{S} 29^{\circ} 09^{\prime} \mathrm{E}, 10-12$ Mar 1980, C. Kok (1 o $^{\circ}$, PPRI); Swadini in Blydepoort Nature Reserve at $24^{\circ} 32^{\prime} \mathrm{S} 30^{\circ} 54^{\prime} \mathrm{E}$, 26-29 Jan 1987, B. Grobbelaar (1 ơ, PPRI); 5 mi
 Province: Rustenburg Nature Reserve, 22-23 Feb 1982, W.W. Mansell (2 $\circ ; 2$; \uparrow, PPRI); same locality, 23-26 Feb 1981, CDE ($2 \sigma^{7}$, PPRI); same locality, 17-20 Mar 1980, CDE, W.A. Harrop and C.G. Moolman (20°; 1 우, $3 \sigma^{*}$, PPRI). ZAMBIA: Southern Province: 5 km E Choma, 11 Mar 1995, WJP ($2 \sigma^{\circ}$). ZIMBABWE: Bulawayo airport, 29 Jan 1995, WJP (1 \&) ; Matobo, 30 Jan 1998, Ma. Halada (ở, OÖLM). $^{\text {O }}$

Tachysphex braunsi Arnold

Figures 62, 63.
Tachysphex braunsi Arnold, 1923:150, 우, ® $^{\text {(}}$ (as Braunsi, incorrect original capitalization). Lectotype: ${ }^{\circ}$, South Africa: Eastern Cape Province: Willowmore (SAM), here designated, examined.—Arnold, 1924:64 (color variation; previous record of twig nesting was in error), 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:272 (listed); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).

Lectotype selection.— Arnold (1923) spoke of a single type (without reference to sex) in the original description of braunsi, but he designated a female and a male as types. I have selected the female as the lectotype.

Recogntion.- The following significant features are shared by both sexes of braunsi: labrum mostly flat (minimally convex at the very apex), propodeal dorsum evenly microareolate, propodeal side microsculptured and finely punctate, setae nearly appressed on the postocellar area and scutum and slightly inclined posterad on the propodeal dorsum.

In addition to the above, the female of braunsi is characterized by the unsculptured, shiny foreand midfemoral venters (except for a few large punctures), red tibiae (at least partly), and slightly shortened tarsi (length of midtarsomere II $2.2 \times$ apical width). Tachysphex rufopictus is similar, but braunsi has unusually short flagellomere VIII (length $1.2 \times$ width), the clypeal lip minimally pointed mesally and with two lateral incisions (one may be ill defined) on each side (Fig. 62a), and an all black gaster. In rufopictus, the length of flagellomere VIII is $1.5 \times$ width, the clypeal lip is unusually narrow, evenly arcuate, not incised laterally (Fig. 323a), and the gaster is red basally.

The male has a distinctive clypeus, with an elongate middle section and a roundly pointed lip but no corner (Fig. 62b). In addition, the foretarsus has no rake, apical fasciae on terga I-III are
inconspicuous, setae of sterna III-VI are appressed, about as long as those at the base of sternum II, and, in most specimens, the midfemur is impunctate or sparsely punctate posteroventrally. Tachysphex rufopictus is similar, but in braunsi the gaster is all black (rather than red basally), and punctures of sterna IV-VI are inconspicuously larger and sparser than those of sternum II (markedly larger and sparser in rufopictus). The male of waltoni also has a similar clypeus, but the midfemur is finely, uniformly punctured, many setae of the propodeal dorsum are inclined anterad (including those near the propodeal foremargin), terga I-III are silvery fasciate apically (fasciae well defined), and setae of sterna III-VI are subappressed, markedly longer than those on sternum II basally.

Description.- Labrum flat except slightly convex near free margin. Galea longer than wide in profile, its length equal to 0.8 of scape. Scutal punctures small but well defined, averaging about two diameters apart on disk in female, about one diameter apart in male. Mesopleural punctures minute, averaging several to many diameters apart at center in female and 2-3 diameters in male; interspaces microsculptured but shiny. Propodeal dorsum evenly microareolate, side microsculptured and finely punctate (impunctate in some males). Hindcoxal dorsum with inner margin carinate and somewhat expanded basally. Sternum I, in female, with short longitudinal carina apicomesally.

Setae erect on each side of oral fossa next to occipital carina (setal length about $0.2 \times$ basal mandibular width); nearly appressed on postocellar area and scutum; oriented posterad on propodeal dorsum.

Figure 62. Tachysphex braunsi Arnold: a - female clypeus and mandible; b - male clypeus and mandible with outline showing variation of clypeal free margin; c - volsella; d - penis valve.

Head and thorax black, mandible red mesally. Frontal setae silvery in both sexes except golden dorsally in some males. Wing membrane markedly infumate, slightly so in small males; forewing costal vein light brown, subcostal vein brown. Femora in female varying from largely red (forefemur only apically so) to all black, in male black except red apically. Tibiae and tarsi red to largely black. Gaster black. Terga I-III each with inconspicuous, silvery fascia apically.

ㅇ.- Clypeus (Fig. 62a): lobe narrower than in most other species (distance between corners $1.2 \times$ distance between corner and corresponding orbit); bevel longer than basomedian area; lip mainly arcuate but sinuate in some specimens, longer mesally than laterally, with two lateral incisions on each side (one of which may be ill defined). Width of postocellar area $1.2 \times$ length. Dorsal length of flagellomere I $1.6 \times$ apical width; flagellomeres III-VIII with sensory areas; length of flagellomere VIII $1.2 \times$ width. Fore- and midfemoral venters with a few, sparse punctures, interspaces unsculptured, shiny. Dorsal foretibial surface with one or two spines, outer surface with several thin spines, interspaces with sparse micropunctures. Tarsi slightly shortened: length of fore-, mid-, and hindtarsomeres II 1.5, 2.2, and $2.2 \times$ respective apical width; that of midtarsomere III $1.3-1.4 \times$ apical width; of tarsomeres IV about equal to apical width. Forebasitarsus with 10 or 11 rake spines. Apical tarsomeres: apicoventral margin slightly arcuate. Apical depression of tergum V unsculptured, glabrous. Pygidial plate sparsely punctate. Length $9.8-10.8 \mathrm{~mm}$.
o^{7}.- Mandible: trimmal carina with obtuse tooth, without cleft (Fig. 62b). Clypeus (Fig. 62b): middle section conspicuously long; bevel ill defined; lip free margin obtusely pointed mesally (markedly longer mesally than laterally), not angulate laterally, forming single curved line with rest of clypeal margin. Width of postocellar area $1.2 \times$ length. Dorsal length of flagellomere I 1.2-1.4 \times apical width, equal to 0.7 of II. Forefemur minutely, densely punctate throughout or posteroventral surface with large, sparse punctures in apical half; notch microscopically setose. Midfemur, in most specimens, impunctate or sparsely punctate posteroventrally, but densely punctate throughout in one of four males from Touwsrivier area. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Length $7.0-9.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 62c, d.

Geographic distribution (Fig. 63).- Eastern Cape, Northern Cape, and Western Cape provinces of South Africa.

Records.- SOUTH AFRICA: Eastern Cape Province: Algoa Bay (Arnold, 1924), Elandsheuwels Farm 40 km W Steytlerville ($1 \mathrm{o}^{\text {º }}$, USU), Fullarton E Willowmore (1 \&, 1 ơ $^{\circ} ; 1$ \&, AMG), Olifantsrivier 30 km NNE Uniondale at $33^{\circ} 27^{\prime} \mathrm{S} 23^{\circ} 19^{\prime} \mathrm{E}\left(4 \mathrm{o}^{\prime}\right), 6 \mathrm{~km}$ N Steytlerville ($1 \sigma^{\star}$, USU), Willowmore ($1 \delta^{\circ}$, AMG; $2 \oplus, 3 \sigma^{\circ}$, SAM, including lectotype 9 , paralectotype σ°, and paratype σ° of braunsi; 2 ㅇ, $10 \sigma^{*}$, TMP), 43 km NE Willowmore: Plessierivier ($1 \mathrm{o}^{\circ}$, USU), 37 km NW Willowmore in Grootrivierberg Range ($1 \mathrm{o}^{7}$, USU), 28 km S Steytlerville: Wolwekraal Farm (2 9,4 ơ, USU), 30 km S Steytlerville (1 \uparrow). Northern Cape Province: Dassiefontein Farm near Kamieskroon ($1 \delta^{7} ; 1 \delta^{\circ}, \mathrm{PPRI}$), 13 mi S Garies (1 ㅇ) , Soebatsfontein at $30^{\circ} 06^{\prime} \mathrm{S} 17^{\circ} 34^{\prime} \mathrm{E}\left(1+\frac{\circ}{} \mathrm{o}^{\circ}\right.$, OHL), Springbok (1 o, AMG), Tanqua-Karoo National Park (3 ơ, SAM). Western Cape Province: 48 mi E Barrydale ($2 \mathrm{o}^{7}$, KU), 50 km N Cape Town (1 ㅇ, OÖLM), 40 km E Clanwilliam: Sevilla (2 ㅇ, USU), Katbakkies Pass near Ceres at $33^{\circ} 49^{\prime}$ S

Figure 63. Collecting localities of Tachysphex braunsi and brevipecten.
$\left.1 \sigma^{\prime}, S A M\right)$, Matroosberg ($\left.1 \sigma^{*}, S A M\right), 1 \mathrm{~km}$ SE Prince Albert at $33^{\circ} 15^{\prime} \mathrm{S} 22^{\circ} 02^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\prime}\right)$, Swartrivier 7 km NW
 $\left.\sigma^{7} \mathrm{AMNH} ; 4 \mathrm{o}^{7}, \mathrm{KU}\right)$.

Tachysphex brevipecten de Beaumont

Figures 63, 64.
Tachysphex brevipecten de Beaumont, 1955:177, ㅇ, \boldsymbol{o}^{7}. Holotype: ㅇ, Morocco: Marrakech: Oued Tensift (LAUSANNE), examined before 1971.- de Beaumont, $1956 \mathrm{a}: 197$ (Libya), 1960b:238 (Libya); Pulawski, 1971:336 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:272 (listed); Dollfuss, 1989:13 (paratype in NHMW); Guichard, 1991:339 (Jordan).

Recognition.- Tachysphex brevipecten is one of many species in which the labrum is conspicuously convex and protruding from beneath the clypeus, and the galea is conspicuously longer than wide.

As its name suggests, the female has an unusually short apical rake spine on the forebasitarsus: its length is about equal in length to foretarsomere II (Fig. 64c), whereas it is markedly longer in the other Tachysphex with a convex labrum. In addition, the galea of brevipecten has only a few, sparse, ill-defined punctures, foretarsomere II is slightly elongate (length abut $2.2 \times$ apical width, similar as in excavatus), and the apical depression of tergum V is impunctate, glabrous.

The male is characterized by a short foretarsal rake (apical spine of foretarsomere II markedly shorter than foretarsomere III) and an apically rounded dorsal volsellar process (Fig. 64d). Unlike other such species, the galea of brevipecten is sparsely punctate (punctures ill defined, many diameters apart). In addition, the middle clypeal section is about as long as wide in brevipecten (distance between corners about equal to midlength), whereas markedly broader in sahelensis (see the latter species for further differences).

DESCRIPTION.- Labrum convex, markedly protruding from beneath clypeus. Galea elongate, equal to $1.1-1.4$ of scape, microsculptured, with ill-defined punctures that are many diameters apart. Scutal punctures minute, somewhat inconspicuous, no more than one diameter apart. Mesopleuron uniformly microsculptured. Propodeal dorsum evenly microareolate; side uniformly microsculptured. Hindcoxal dorsum carinate basally.

Setae appressed on postocellar area and scutum; suberect on each side of oral fossa next to occipital carina, shorter than midocellar diameter; on propodeal dorsum next to midline oriented anterad near base, oriented evenly posterad in apical third or so. Propodeal side all setose (setae inconspicuous anteriorly).

Head and thorax black, mandible reddish mesally; all clypeus, pronotal lobe, and thoracic venter red in one female from Marrakech, Morocco (de Beaumont, 1955). Frontal setae with golden tinge in female, golden in male. Wing membrane slightly infumate; costal vein of forewing reddish, subcostal vein brown. Femora black except red apically in many specimens, all or largely red in some Moroccan females; tibiae and tarsi red (tibiae somewhat darkened in certain females, largely so in male from Oran, Algeria, studied by de Beaumont, 1955). Gaster varying from all red (female from Marrakech) to all black except for some reddish on basal terga (male from Oran), in most specimens red basally and black apically. Terga I-III silvery fasciate apically, but fasciae inconspicuous in males from Touggourt, Algeria, and Skhira, Tunisia.

ㅇ.- Clypeus (Fig. 64a): bevel shorter to longer than basomedian area; lip free margin arcuate, emarginate mesally, incised or not incised laterally. Width of postocellar area $0.9-1.1 \times$ length. Dorsal length of flagellomere I 2.3-2.5 \times apical width. Dorsal foretibial surface with two or three spines, outer surface with two spines. Forebasitarsus with five or six rake spines (only two apical spines have sockets contiguous), apical spine about equal in length to foretarsomere II (Fig. 64c);

CS \& EH

Figure 64. Tachysphex brevipecten de Beaumont: a - female clypeus and mandible; b-male clypeus and mandible; c - female foretarsus; d - volsella; e - penis valve.
foretarsomere II slightly elongate (length $2.2 \times$ maximum width). Apical depression of tergum V impunctate, glabrous. Pygidial plate with minute punctures that are many diameters apart, interspaces unsculptured in basal half or more, somewhat microsculptured near apex. Length 9.5-12.5 mm .
σ^{7}.- Mandible: trimmal carina with obtuse tooth, without cleft. Clypeus (Fig. 64b): bevel nearly as long as basomedian area, delimited anterolaterally by obtuse carina that emerges from lip corner; lip free margin arcuate, mostly emarginate mesally, with well-defined corner; distance between corners $1.2-1.4 \times$ distance between corner and orbit. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I 1.9-2.1 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with four rake spines; outer apical spine of foretarsomere II shorter than tarsomere III. Length 6.0-10.2 mm. Volsella and penis valve: Figs. 64d, e.

Geographic distribution (Fig. 63).- Morocco to Libya and Jordan (specimens from Istria Peninsula, Croatia, mentioned in the original description, were actually mislabeled, as clarified by Pulawski, 1971).

Records (from de Beaumont, 1955, or as indicated).- ALGERIA: Biskra, Oran, Taguin in Alger Province, Touggourt (o^{s}). JORDAN: Fidan 125 km N Aqaba (Guichard, 1991). LIBYA: Cyrenaica: Bengasi. Tripolitania: Tagiura, Zuara (Pulawski, 1971). MOROCCO: Draa Valley 10 km SE Ouarzazate
 50 km N Gabès (l^{o}).

Tachysphex brevipennis Mercet

Figures 65-67.
Tachysphex brevipennis Mercet, 1909:197 (April), ㅇ, ${ }^{\circ}$. Syntypes: Spain: Escorial (MNCN), not examined.Mercet, 1910:165 (listed from Spain); Giner Marí, 1934:133 (Spain), 1943a:138 (in Sphecid Fauna of Spain); de Beaumont, 1947c:671 (redescription); de Andrade, 1949:16 (Portugal); de Beaumont, 1962:26 (Spain); Ceballos, 1964:90 (in supplement to catalog of Spanish Sphecidae); Suárez, 1969:31 (Spain); Pulawski, 1971:240 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:276 (listed); Gayubo, 1984a:83 (Spain), 1984b:363 (Portugal), 1986a:32 (Spain); Gayubo and Sanza, 1986:43 (Spain); Gayubo and Tormos, 1986:12 (Spain); Asís and Jiménez, 1988:271 (Spain); Gayubo and Mingo, 1988:77 (Spain); Dollfuss, 1989:13 (type material in NHMW); Gayubo, Asís, and Tormos, 1990a:17 (Spain); Gayubo, García, Torres, and González, 1999:89 (Spain); Gonzáles, Gayubo, and Torres, 1999:334 (Spain); Schmidt and Bitsch in Bitsch et al., 2001:239 (in Sphecid Fauna of Western Europe); Gayubo, Nieves-Aldrey, González, Tormos, Rey del Castillo, and Asís, 2004:108 (Spain); Cruz-Sánchez et al., 2005:220 (Spain).
Tachysphex minutus Nurse, 1909:516 (15 November), 오, ơ. Lectotype: đ̛, India: Gujarat: Deesa (BMNH), designated by Pulawski, 1975:311, reexamined in 1997. New synonym. - Pulawski, 1975:311 (diagnostic characters); Bohart and Menke, 1976:275 (listed).
Tachysphex lilliputianus R. Turner, 1917c:198, ơ. Holotype: ơ, India: Bihar: Pusa (BMNH), reexamined in 1997. Synonymized with Tachysphex minutus by Pulawski, 1975:311.

Tachysphex fulvicornis R. Turner, 1918b:363, ㅇ. Holotype: ㅇ, India: West Bengal: Chapra (BMNH), examined in 1974. New synonym.- Bohart and Menke, 1976:273 (listed); Guichard, 1980:227 (Oman); Krombein and Pulawski, 1994:87 (in revision of Sri Lankan Tachysphex).
Atelosphex miscophoides Arnold, 1923:178, ㅇ. Holotype: ㅇ, South Africa: Eastern Cape Province: Willowmore (SAM), examined. New synonym.- Arnold, 1924:72 (description of ơ', South Africa), 1930:4 (in checklist of Afrotropical Sphecidae).- As Tachysphex miscophoides: Bohart and Menke, 1976:275 (new combination, listed).
Atelosphex lugubris Arnold, 1924:72, ㅇ. Holotype: \circ, Zimbabwe: Sawmills (SAM), examined. Synonymized with Tachysphex minutus by Pulawski in Pulawski and Krombein, 1995:85. - Arnold, 1951:157 (Ghana).—As Tachysphex lugubris: Bohart and Menke, 1976:274 (new combination, listed).
Tachysphex imperfectus de Beaumont, 1940:178, ㅇ. Syntypes: Egypt: Cairo area: Kerdasa (A. Alfieri collection) and Gebel Asfar (originally A. Mochi collection, now ?, not in MSNT), not examined; de Beaumont (1947a:210) improperly designated holotype from non-type material (우, Algeria, Biskra, OXUM). Synonymized with Tachysphex fulvicornis by Pulawski, 1975:312.- de Beaumont, 1947a:210 (in revision of Egyptian Tachysphex); Balthasar, 1954:269 (Palestine); de Beaumont, 1955:187 (Morocco), 1960b:241 (Libya); Pulawski, 1971:248 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:9 (Israel).
Tachysphex rugosus Gussakovskij, 1952:245, ㅇ. , ở. Lectotype: $\boldsymbol{o}^{\boldsymbol{\gamma}}$, Tajikistan: Mikoyanabad, now Kabadian (ZIN), designated by Pulawski, 1971:244, examined before 1971. Synonymized with Tachysphex minutus by Pulawski in Pulawski and Krombein, 1995:85.- Pulawski, 1971:243 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:9 (Israel); Pulawski, 1974b:715 (Bulgaria, prey); Bohart and Menke, 1976:276 (listed); Kazenas, 1978:111, 124 (in key to Sphecidae of Kazakhstan and Central Asia); Pulawski, 1978:214 (in key to Sphecidae of European USSR); Shkuratov, 2000:58 (Russia: Rostov Oblast'); Kazenas, 2001:30 (in checklist of Sphecidae of Kazakhstan and Central Asia), 2002:74 (Kazakhstan).
Tachysphex heterochromus de Beaumont, 1955:187, ㅇ, ơ. Holotype: \circ, Morocco: Port Lyautey, now Kenitra (LAUSANNE), examined. New synonym.- Pulawski, 1971:250 (in revision of Palearctic Tachysphex);

Bohart and Menke, 1976:274 (listed).
As Tachysphex sp.: Pulawski, 1958:181 (Bulgaria), corrected to Tachysphex rugosus by Pulawski, 1971:243.
Tachysphex rhodius de Beaumont, 1960a:19, ㅇ, ${ }^{\circ}$. Holotype: $\boldsymbol{+}$, Greece: Island of Rhodes: Kamiros (RMNH), examined. Synonymized with Tachysphex rugosus by Pulawski, 1971:243.- de Beaumont, 1965:53 (Greece); Pulawski, 1967:408 (Turkey).
Tachysphex sinaiticus Pulawski, 1964:108, \uparrow. Holotype: $\circ+$, Egypt: Sinai Peninsula: Feiran oasis (CAS), examined. New synonym. - Pulawski, 1971:245 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:9 (Israel); Bohart and Menke, 1976:276 (listed); Roche and Zalat, 1994:115 (Egypt: Sinai Peninsula).
As Tachysphex aff. rhodius: Pulawski, 1967:408, corrected to Tachysphex rugosus by Pulawski, 1971:243.
Tachysphex quadrifurci Pulawski, 1971:246, 우, $\boldsymbol{\delta}^{7}$. Holotype: ${ }^{\circ}$, Turkmenistan: Askhabad (CAS), examined. Synonymized with Tachysphex minutus by Pulawski in Pulawski and Krombein, 1995:85. - Bohart and Menke, 1976:276 (listed); Kazenas, 1978:111, 124 (in key to Sphecidae of Kazakhstan and Central Asia); Guichard, 1991:340 (Jordan); Kazenas, 2001:30 (in checklist of Sphecidae of Kazakhstan and Central Asia).
Tachysphex convexus Pulawski, 1971:248, ㅇ. . Holotype: 우, Turkmenistan: Murgab (ZIN), examined before 1971. New synonym. - Bohart and Menke, 1976:273 (listed); Kazenas, 1978:111 (in key to Sphecidae of Kazakhstan and Central Asia), 2001:28 (in checklist of Sphecidae of Kazakhstan and Central Asia), 2002:66 (Kazakhstan).

Recognition.- Tachysphex brevipennis is unusual in lacking the episternal sulcus (Fig. 65e), a reduction shared only with carli de Beaumont and sympleuron Pulawski. All three have the wings shorter than average for Tachysphex: the distance between the origin of the subcostal vein and the wing apex is $2.25 \times$ (smallest specimens) to $2.8 \times$ (largest specimens) the scutal width at the front margin of the tegula, while $2.9-3.2 \times$ in the other Tachysphex. All three also have a short malar space (Fig. 65c), a feature shared with the unrelated Nearctic species papago Pulawski, psilocerus Kohl, and scopaeus Pulawski. In addition, the metapleural sulcus of most specimens is ill defined to absent between the upper pit and midcoxa. The three species now recognized have the following characteristics:

Tachysphex brevipennis (Africa, southern Europe, east to Kazakhstan and India): the clypeal lip is not incised laterally; the scape is the usual shape, i.e., its venter is concave in the basal half. In addition, the mesopleuron in most populations is not ridged posteriorly, and the male forefemoral notch is glabrous (but unusually small and setose in specimens from Zambia). In the female, the gaster and legs vary from all black to all red in various combinations. In the male, the foretarsal rake varies (mostly geographically) from well developed to absent. The shape of the volsella is distinctive (Fig. 66). Differences between brevipennis and sympleuron are discussed below under the latter species.

Tachysphex carli de Beaumont, 1947 (central Spain, Gibraltar, northwestern Morocco): the clypeal lip is incised laterally; the scapal venter is not concave (straight in profile); and the mesopleuron is ridged posteriorly. In addition, the female gaster is red basally, and in the male the forefemoral notch is setose and the foretarsus has no rake. The volsella is also distinctive, with an almost flat dorsal margin (see Pulawski, 1971:252).

Tachysphex sympleuron Pulawski, 1995 (India, Sri Lanka). As in brevipennis, the clypeal lip has no lateral notch, and the scapal venter is concave in the basal half. The species can be recognized by a combination of yellowish wings, mesopleuron dull and punctatorugose below scrobe, an all black flagellum, male forefemur with a setose notch, and a distinctive volsella (see Krombein and Pulawski 1994:61). Although the West African brevipennis have the same mesopleural sculpture and a black flagellum, those from Asia differ from sympleuron either in having a punctate mesopleuron (with shiny interspaces) or a basally red female flagellum. In the male of brevipennis,

Figure 65. Tachysphex brevipennis Mercet: a - female clypeus and mandible ($\times 45$); $\mathrm{b}-$ male clypeus and mandible ($\times 63$); c - malar space of female ($\times 168$); d - female mesopleuron ($\times 39$); e - pygidial plate of female ($\times 82$).
the forefemoral notch is glabrous (setose in specimens from Zambia). In India, sympleuron and brevipennis occur in mixed populations, without intermediates. For example, I collected both in the dry bed of the Banas River near Deesa in 1989.

Generic classification.- Arnold (1923) established a genus, Atelosphex, to include these Tachysphex that lack the episternal sulcus, but de Beaumont (1940) placed them in his imperfectus
species group (renamed brevipennis group by Pulawski, 1971). De Beaumont's interpretation has been accepted by all subsequent authors.

JUSTIFICATION OF NEW SYNONYMY.- I combine under brevipennis a number of allopatric populations that were previously treated as species. They were separated by differences in color, sculpture, shape of the pronotum, and male foretarsal rake, none of which is constant. As additional material becomes available, these populations appear to blend into each other, and I conclude that they are geographic forms of one polymorphic species. Details are given below and also in the Variation section. I treat carli and sympleuron as full species because I have not observed intergradation to brevipennis. The following six nominal species are newly synonymized with brevipennis:

Tachysphex convexus Pulawski, 1971 (described from one female from Kazakhstan and another from Turkmenistan). Similar to other Asian forms except that the female foretibia is sparsely punctate on the outer surface; basal flagellomeres are red; and a black gaster is combined with red legs, a color pattern that is duplicated only in an Algerian female. An additional female from Nishan, Uzbekistan, however, appears intermediate: it has the femora largely black and the sparsely punctate foretibial zone is rudimentary. The foretibial outer surface is somewhat sparse in certain specimens from other areas, e.g., the single female from Central African Republic.

Tachysphex fulvicornis R. Turner, 1918 (North Africa, Mali, Sudan, Arabian Peninsula, Israel, and also one locality in West Bengal, India). Characterized by an all black gaster, excessively dense tergal punctures, punctatorugose frons and mesopleuron, and reddish or brown reddish basal flagellomeres in the female. Identical sculpture of the frons, mesopleuron, and terga, however, is found in specimens from the Ivory Coast and Ghana, in which the female antenna is all black. In specimens from Senegal, the mesopleuron is punctatorugose, but the tergal punctures are less dense than in North African individuals. Also, flagellomeres IV and VI are yellowish brown or reddish ventrally in the single female from Pakistan and another from Suez, Egypt (that I described as quadrifurci) but their mesopleuron is punctate and tergal punctures are sparser than in fulvicornis. These two individuals are probably intermediates. Basal flagellomeres are also red in certain individuals from Kazakhstan, Uzbekistan, and Turkmenistan (convexus), and reddish ventrally in the Moroccan females described as heterochromus (see below). Forms assigned to fulvicornis and minutus are both found in Bat Yam, Israel. The legs are nearly all red in a female of fulvicornis from Biskra, Algeria, suggesting full color intergradation to heterochromus.

Tachysphex heterochromus de Beaumont, 1955 (known from Kenitra area and Mamora, two adjacent localities on the Atlantic coast of northern Morocco). The pronotal collar is swollen, as in the Iberian specimens; in the female, the mesopleural setae largely conceal the integument, the gaster and all legs are red, and the setae are golden on the frons and thoracic dorsum. The relatively dense mesopleural vestiture seems to be the most significant feature, but a female from Yaffa, Israel, approaches this condition.

Tachysphex minutus Nurse, 1909 (southeastern Europe, southwest Asia, northern India, Africa except North Africa). In these specimens, the pronotal collar is not swollen and does not reach the scutum level, and the male foretarsus has at least two preapical rake spines (in the typical brevipennis from the Iberian Peninsula, the pronotal collar is swollen and reaches the scutum level, and the male foretarsus has at most one preapical rake spine). These characters are not constant, however. The pronotal collar is also swollen (as in the Iberian specimens) in one of the two Namibian females, and one Bulgarian female approaches this condition. In a male from Gilbuena, Spain, on the other hand, the collar is as low as usual in non-Iberian populations, and the foretarsomere has two subbasal spines. The gastral base is red in the Iberian females, but it is also red in some specimens from southeastern Europe and Turkey, and in one female from Ain Sefra, Algeria. These populations, therefore, cannot be separated either by structural or chromatic characters.

Tachysphex miscophoides Arnold, 1923 (Karoo Desert, South Africa). Differing from other sub-Saharan specimens only in color: the female gaster is red basally (at least partly so), and the tibiae are either all red or the female fore- and midtibiae are partly darkened. Of the two males from the Karoo Desert that I have examined, one has tergum I partly red, whereas the gaster is all black in the other. This variation and lack of morphological differences suggest full intergradation to other populations.

Tachysphex sinaiticus Pulawski, 1964 (Sinai Peninsula). This species, based on two females from Feiran oasis, was characterized by a glabrous propodeal dorsum (with a few, isolated setae in one specimen). The three males that I collected at Saint Catherine monastery (40 air km away from Feiran oasis) in May 1993 appear to be conspecific, but their propodeal dorsum is setose, as in the other brevipennis. Thus, the asetose (or nearly so) propodeal dorsum appears to be an individual or local variation (propodeal vestiture is not likely to be sexually dimorphic). The males from Sinai have a markedly sinuate rather than arcuate clypeal lip, but the same shape is found in a male from Petra, Jordan, and one from Archer's Post, Kenya. The clypeal lip is either arcuate or sinuate in specimens from Sanaa, Yemen.

Description.- Frons punctate or punctatorugose (punctures less than one diameter apart). Malar space present (Fig. 65c), varying in length from about 0.6 to about one midocellar diameter. Basal half of scape concave ventrally. Scutum shiny, punctures averaging from more than one to less than one diameter apart. Mesopleuron punctate to punctatorugose (punctures no more than one diameter apart), interspaces confluent into longitudinal ridges posteriorly in some North African and Senegalese specimens; interspaces shiny to dull. Episternal sulcus absent (Fig. 65d). Metapleural sulcus, below upper metapleural pit, evanescent to absent in most specimens, but well defined in some (e.g., some from Bulgaria and Hungary; and in females from the Ivory Coast, Ghana, and Suez area and Sinai Peninsula, Egypt). Propodeal dorsum varying from all ridged longitudinally to irregularly ridged mesally and rugose laterally; side ridged. Hindcoxal dorsum with inner margin carinate basally, carina low to slightly expanded, absent in some males.

Setae appressed to nearly erect on postocellar area (setal length about one midocellar diameter); appressed or nearly so on scutum; inclined between mandible and occipital carina; and oriented anterad on propodeal dorsum (but oriented posterolaterad near dorsum's lateral margin and oriented posterad near base).

Head and thorax black, mandibles yellowish red mesally; scape translucent apicoventrally, remaining venter black to red. Frontal setae silvery in most specimens (females and males), but golden in females from Kenya and Tanzania. Wing membrane slightly infumate to hyaline, with yellowish tinge in a female from Karachi area, Pakistan, yellowish in specimens from India and Sri Lanka. Legs black in most specimens, but all red in some females, and all tibiae red in some males. Gaster varying from all black to all red. Terga I-III in most females (I-VI in some), I-III to I-IV in males, silvery fasciate apically (terga I-III with conspicuously golden fasciae in most females from Yemen).

ㅇ.- Clypeus (Fig. 65a): bevel shorter than basomedian area; lip free margin arcuate, not incised laterally. Width of postocellar area $1.5-2.0 \times$ length in most specimens, $3.0 \times$ length in a specimen from Klawer-Clanwilliam area, South Africa. Dorsal length of flagellomere I 2.3-2.7 \times apical width. Foretibia densely, uniformly punctate and setose throughout in most specimens, without spines or bristles on dorsum and outer surface (outer surface sparsely punctate in some specimens from Kazakhstan and Turkmenistan). Forebasitarsus with six or seven rake spines. Pygidial plate microscopically reticulate (except apically) and with sparse punctures (Fig. 65e). Length $5.5-10.1 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, in most specimens also with cleft. Clypeus (Fig. 65 b): bevel slightly shorter than basomedian area; lip in most specimens slightly arcuate but markedly sinuate in some, with well-defined corner; distance between corners $1.3-1.4 \times$ distance between corner and orbit. Width of postocellar area $2.0-3.0 \times$ length. Dorsal length of flagellomere I 1.6-2.1 \times apical width. Forefemoral notch mostly glabrous, setose in some specimens (see Variation below for details), rudimentary or absent in most Kenyan specimens, absent in a specimen from 73 km N Korogwe, Tanzania. Outer margin of forebasitarsus with $0-4$ preapical rake spines (see Variation below), number of spines may be different on each leg; in most cases, at least one spine longer than apical width of basitarsus; outer apical spine of forebasitarsus: see Variation below. Sterna densely, evenly punctate and setose. Length $4.0-6.2 \mathrm{~mm}$. Volsella and penis valve: Fig. 66.

Variation.- Gena. The gena is thick in dorsal view in most specimens from the Iberian Peninsula, many from southeastern Europe and Turkey, females from Nefta area, Tunisia, those from Arabian Peninsula (except some from

Figure 66. Tachysphex brevipennis Mercet: volsella and penis valve. Yemen) and sub-Saharan Africa (except some from Senegal). It is unusually thin in some specimens from Northern Hemisphere deserts (e.g., Suez area, Egypt; Masirah Island, Oman; Wadi el Gaber, Yemen; Askhabad, Turkmenistan) and intermediate or variable in others.

Pronotum. The pronotal collar is slightly more swollen adjacent to scutum than average for the genus in the Iberian specimens and those from the Atlantic coast of Morocco, but some specimens from Namibia are identical, and certain specimens from Bulgaria approach this condition. The collar is barely swollen in the single male from Gilbuena, Spain.

Frons and mesopleuron sculpture. The integument varies from punctate to punctatorugose, with many intermediates. For example, both frons and mesopleuron are punctate in specimens from Kazakhstan, southeastern Europe, Sicily, Iberian Peninsula, the Kasserine area in Tunisia, Atlantic coast of Morocco, Masirah Island, Niger, Ethiopia, several from Mauritania, and one male from Taita Discovery Centre area, Kenya. Both frons and mesopleuron are punctatorugose in most specimens from North Africa, West Africa, and the Arabian Peninsula, but the mesopleuron is just punctate in one female from Mauritania, one from the Toumodi area, Ivory Coast, and the only female from San area, Mali. The frons is punctatorugose and the mesopleuron punctate in specimens from southern Africa, Tanzania, Pakistan, Yemen, and Voi area, Kenya.

Tergal punctation. In most populations, tergal punctures are close to each other. For example, punctures of tergum II are separated by interspaces that are linear or nearly so (interspaces particularly narrow in specimens from Senegal, Ivory Coast, Ghana, Mali, Niger, Tanzania, Arabian Peninsula, and most North African specimens). The interspaces are slightly larger (many of them equal to puncture diameters or slightly more) in specimens from southeastern Europe, Turkey, from Sanaa, Yemen, those from South Africa, the single female from Ain Sokhna, Egypt, and the single male from Kasserine area, Tunisia.

Color of female clypeus. In most specimens, the clypeus is black except for a reddish, linear zone on the bevel adjacent to the lip base. The reddish zone is somewhat expanded in some Iberian, some Egyptian, some Senegalese, and some Omani specimens, two females from Matjiesfontein, South Africa, as well as the single female from Pakistan; and the clypeal middle section is predominantly or entirely reddish in many specimens from Morocco, Algeria, Egypt, Yemen, in the single
female from Agadez Region, Niger, in the single female from Mali, and some females from Kazakhstan, Uzbekistan, and Turkmenistan.

Color of female flagellum. The flagellum is mostly black, but flagellomere I is somewhat reddish ventrally in the single female from Pakistan, and some flagellomeres are yellowish brown ventrally in single female collected west of Suez, Egypt (flagellomeres IV and VI on right antenna, flagellomere III on left antenna). Flagellomeres I-III are brown or red at least ventrally in North African specimens (including those from coastal Morocco), some Senegalese specimens, the single female from Agadez Region, Niger, but all black in single female from Metlaoui area, Tunisia), most females from Niger, the females from the Arabian Peninsula, Mali, and one from St.-Louis, Senegal (in these females, the scape is also reddish, and so is the pedicel in some).

Color of female legs. The legs are black in most specimens, but all red in those from coastal Morocco, one from Biskra, Algeria (de Beaumont 1947), many from South Africa (coxae and femoral dorsum may be black), one from Helmeringhausen area, Namibia, and some from Kazakhstan, Uzbekistan, and Turkmenistan. The black femora are combined with partly red tibiae in the Iberian specimens, one female from Bulgaria, one from Metlaoui area, Tunisia, one from Tafraout, Morocco, one from Ain Sefra, Algeria, two from Mauritania (only hindtibial dorsum basally in the latter three specimens), some from Willowmore, South Africa (tibiae may be all red), and one from the Klawer-Clanwilliam area, South Africa. The female from Agadez Region, Niger, has the posterior face of the fore- and midfemora reddish apically. Tarsi varying from black to red.

Color of female gaster. The female gaster is mostly black, but segments I and II are red in specimens from the Iberian Peninsula and some from Macedonia, Greece, and Turkey; segments I and II and part of III are red in the single female from Ain Sefra, Algeria, as are terga I and II mesally in female from Metlaoui area, Tunisia; and segments I and II or I-III are red in most females from South Africa (segments I and II red only laterally and preapically in two \circ from Willowmore) and one from Helmeringhausen area, Namibia. Segment VI and sternum V are red in the females from Kenya and some from Tanzania. The gaster is all red (with terga IV and V darkened) in all four known specimens from the Atlantic coast of Morocco (the type series of heterochromus).

Male clypeal lip. Evenly arcuate in most specimens, but conspicuously sinuate (i.e., with a rounded, median projection) in all three males examined from Sinai Peninsula, single males from Petra, Jordan, Wadi Gaber, Yemen, and either arcuate or sinuate in males from Archer's Post, Kenya, from Tanzania, and from Sanaa, Yemen.

Male forefemoral notch. Glabrous in most populations, but setose (and unusually small) in specimens from Zambia.

Male forebasitarsus: number of rake spines. The number of preapical spines is two or three in most populations (four in some Egyptian and some Senegalese specimens); when only two are present, they are placed mostly subbasally on the tarsomere. The single male from Dushanbe area, Tajikistan, has two such spines, but one is rudimentary on one leg. There are two spines on one leg (one rudimentary), and one rudimentary spine on the other in the single males from Kasserine area, Tunisia, and Chipata area, Zambia. No preapical spines are found in most Iberian specimens, but some have one, and the single male from Gilbuena has two.

Male foretarsus: length of rake spines. The longest rake spines are found in specimens from Northern Cape Province of South Africa, Pakistan, Sanaa, Yemen, Askhabad (Turkmenistan), and Deesa (India). In several of them, the outer apical spine of foretarsomere II is as long as tarsomere III (but shorter in other males from these areas).

Color of male legs. Legs mostly black, but the tibiae and tarsi are red in most South African specimens (black in single male from Matjiesfontein) and in single male from Kenitra, Morocco; also the femora are red in the single male from Kamieskroon area, South Africa (midfemoral dor-
sum largely black).
Color of male gaster. The gaster is black in most specimens, but tergum I has a red transverse, preapical band in the single male from Kamieskroon area, South Africa.

Prey.- Pulawski (1974b) observed in Bulgaria a female carrying her prey, a young nymph of the grasshopper Omocestus petraeus (Brisout).

Geographic distribution (Fig. 67).Africa, Iberian Peninsula, Sicily, southeastern Europe north to Hungary and Romania, Azerbaijan and Turkey to Israel, Arabian Peninsula, Transcaspia (Uzbekistan, Tajikistan, Turkmenistan), Pakistan, and India.

Records.- ALGERIA: Ain Sefra (1 o , MNHN), Biskra (de Beaumont, 1947a). AZERBAIJAN: Baku area (Pulawski, 1971). BENIN: 15 km SE Sabé ($1 \uparrow$; $1 \quad \uparrow$, 1 ơ, OÖLM), Zagnanado on River Oumé at $7^{\circ} 16^{\prime} \mathrm{N} 2^{\circ} 21^{\prime} \mathrm{E}(1+\circ$, OÖLM). BULGARIA: Kiten 35 km SE Burgas (2 \circ), Nessebar (2 ㅇ)), Ropotamo River mouth ($1 \circ \frac{\circ}{} 1^{\circ}$), Sandanski (Pulawski, 1971), Sozopol ($2 \circ$, 8 d $^{\circ}$). BURKINA FASO: Boromo ($2 \sigma^{\circ}$, FSAG), 28 km NE Dédougou at $12^{\circ} 35.5^{\prime} \mathrm{N} 3^{\circ} 15.6^{\prime} \mathrm{W}$ ($1 \mathrm{o}^{\circ}$), Kompienga 20 km S Pama ($1 \mathrm{o}^{\circ}$, LEM), 4 km NW Ouahigouya at $13^{\circ} 37.0^{\prime} \mathrm{N} 2^{\circ} 27.6^{\prime} \mathrm{W}\left(1 \delta^{\circ}\right)$. CAMEROON: Extrême-Nord: 40 km S Maroua (1 \&) . Nord: 15 km W Campement des Eléphants and 67 km S Garoua (1 ㅇ, $2 \boldsymbol{o}^{\circ}$). CENTRAL AFRICAN REPUBLIC: Kembe at $4^{\circ} 25^{\prime} \mathrm{N} 21^{\circ} 53^{\prime} \mathrm{E}(1 \quad$ ¢ $)$. EGYPT: Al Buhayrah: El Bouston District 77 km SW

 Manshiet Radwan (Pulawski, 1971), Saqqara (1 \mathbf{o}^{\prime}). Al Qahirah (= Cairo): Gebel Asfar (de Beaumont, 1940),
 18-25 km W Suez (Pulawski, 1971). Sina (= Sinai): oasis Feiran (2 \& , holotype and paratype of sinaiticus), Saint Catherine monastery ($3 \mathrm{c}^{\circ}$). ETHIOPIA: Sidamo: 26 km N Moyale (1 f). GAMBIA: Fajara ($1 \mathrm{o}^{\circ}$, KMG), Keneba ($1+\circ$, BMNH). GHANA: Accra ($1 \circ+5 \overbrace{}^{\circ}$), Kawampe 45 km N Kintampo at $8^{\circ} 30^{\prime} \mathrm{N} 1^{\circ} 35^{\prime} \mathrm{W}$
 Rhodes (de Beaumont, 1960): Ixia, Kamiros. Pelopónnisos (de Beaumont, 1965): Kalamata, Olympia, Pyrgos, also Lagonissi (Pulawski, 1971) and Mystro 5 km SW Sparta ($1 \mathrm{o}^{\star}$, PAGLIANO). HUNGARY: 15 km SW Kecskemet (1 \&) . INDIA: Bihar: Pusa ($1 \AA^{\circ}$, BMNH, holotype of lilliputianus). Gujarat: Deesa (1 ค, 5 o *; $4 \stackrel{q}{9}, 1 \delta^{\boldsymbol{*}}$, BMNH, including holotype of minutus). West Bengal: Chapra ($1 \stackrel{\circ}{\circ}$, BMNH, holotype of fulvicornis). ISRAEL: Acco = Acre (Pulawski, 1971), Bat Yam 3 km S Yaffa (2 o $^{\text {º }}$), Nahariya (Pulawski, 1971), Urim (Pulawski, 1971), Wadi el Kelt (= Qilt) near Jericho (Balthasar, 1954), Yaffa (1 1). ITALY: Sicilia: Gela

 JORDAN: Aqaba (Guichard, 1991), Petra ($1 \delta^{\circ}$). KAZAKHSTAN: (K = Kazenas, 2002): Almaty: 20 km NE Kapchagai (K), mouth of Lepsy River (K). Aqmola: 12 km NE Atbasar (K). Aqtöbe: 5 km S Aktöbe (K), 30 km SW Irghiz (K). East Kazakhstan: 64 km S Aksuat (K), 5 km S and 33 km SSW Ayaguz ($1 \mathrm{o}^{\circ}$), 33 km SSW Ayaguz (K), 4 km W Bazarka (K), 5 km NE Karatal (K), 8 km NW Semey (K), 5 km SW village Tansyk which is $47^{\circ} 17^{\prime} \mathrm{N} 79^{\circ} 50^{\prime} \mathrm{E}$ (2 o $^{\circ}$), 20-25 km NW Tansyk (K). Pavlodar: Belogor'ye (K), Shcherbakty (K). Qarahgandy: 50 km NE Balqash (K). Qyzylorda: 5 km E Akespe $=80 \mathrm{~km}$ W Aral'sk at about $47^{\circ} \mathrm{N} 60.5^{\circ} \mathrm{E}$ (K), 3 km NW Kamyshlybash (K), 15 km S Kazalinsk (K), 14 km SE Saksaul'skiy (K), Tartugai 75 km SE Qyzylorda (1 \& , paratype of convexus). South Kazakhstan: 5-8 km SW Chardara (K). Zhambyl: 50-70 km NW Furmanovka (K). KENYA: Coast Province: ca 10 km N Taita Discovery Centre ($1 \circ+1 \mathrm{o}^{\circ}$), Voi (1 ค
 River opposite Archer's Post ($13 \quad \circ, 23 \sigma^{\top}$). Rift Valley Province: Archer's Post on Ewaso Ng'iro River (2 ㅇ, $1 \mathrm{o}^{\text {t }}$). LIBYA: Tripolitania (de Beaumont, 1960): Ain el Auenia 15 km W Jefren, Gasr Garabulli 40 km W Homs. MACEDONIA: eastern shore of Lake Prespa (Pulawski, 1971). MALI: 10 km S Mopti (1 \circ), 40 km
 $19^{\circ} 36^{\prime} \mathrm{N} 14^{\circ} 03^{\prime} \mathrm{W}\left(1 \stackrel{\circ}{+}, 1\right.$ o $\left.^{\circ}, \mathrm{PPRI}\right), 25 \mathrm{~km}$ NE Aleg ($1 \mathrm{o}^{\circ}, \mathrm{MSNT}$), 30 km S and 60 km SE Nouakchott (2 우). MOROCCO: Asni (de Beaumont, 1955), Kenitra (1 $\boldsymbol{\gamma}^{*}$), Kenitra: Mehdia (1 , paratype of heterochromus), east of Kenitra (1 ㅇ), Mamora (de Beaumont, 1955, paratypes of heterochromus), Tafraout (1 ㅇ) , Tiznit: Oued Massa (1 우). NAMIBIA: Karibib District: 23 km N Karibib (1 ㅇ) . Lüderitz District: Aus (1 ㅇ, BMNH). Okahandja District: Okahandja ($2 \sigma^{\text {or }}$, MS). Otjiwarongo District: 3 km NE Kalkfeld (1 1). Rehoboth District: 15 km N Kalkrand ($1 \mathrm{o}^{\circ}, \mathrm{MS}$). Windhoek District: Aris 25 km S Windhoek ($1 \mathrm{o}^{\circ}$). NIGER: Agadez Region: 30 km S Agadez at $16^{\circ} 39.0^{\prime} \mathrm{N} 7^{\circ} 56.9^{\prime} \mathrm{E}\left(10^{\circ}\right)$. Diffa Region: 2 km ENE Nguigmi at $14^{\circ} 15.2^{\prime} \mathrm{N}$ $13^{\circ} 08.2^{\prime} \mathrm{E}\left(1 \quad\right.$ 아). Dosso Region: 13 km S Dosso at $12^{\circ} 56.6^{\prime} \mathrm{N} 3^{\circ} 11.0^{\prime} \mathrm{E}\binom{1}{$ 우 } . Tillaberi Region: 10 km S
 Dhofar Province: Raysut in Qara Mountains (Guichard, 1980). Masirah Island: RAF camp (1 $\circ, 1$ ơ $^{\circ} ; 2$ ㅇ, $1 \sigma^{\boldsymbol{*}}, \mathrm{KMG}$). PAKISTAN: Sind: 30 km ENE Karachi on Karachi-Hyderabad road (1 \&) , Kirthar National Park 150 km NE Karachi, $25^{\circ} 10^{\prime}-26^{\circ} 05^{\prime} \mathrm{N} 67^{\circ} 10^{\prime}-67^{\circ} 55^{\prime} \mathrm{E}\left(2 \delta^{\circ}\right)$, Malir River 5 km ESE Karachi airport (60°). PORTUGAL: Aljezur and Pêra in El Algarve Province (Gajubo, 1984b), Cascais: Boca de Inferno (de Andrade, 1949), Cova do Vapor (Diniz, 1964), Douro (1 ه ${ }^{\text {r }}$), Lisboa: Benfica (de Andrade, 1949), Lagoa de Albufeira (1 ㅇ, 2 o *), Praia de Macãs (Diniz, 1964), Resende 50 km E Porto (10^{\star}), Seixal (Diniz, 1964), Sines (Diniz, 1964), Trafaria (de Andrade, 1949), Troia (Diniz, 1964). ROMANIA: Calafat (Pulawski, 1971). RUSSIA: Rostov Oblast': Vëshenskaya village area at $49^{\circ} 37^{\prime} \mathrm{N} 41^{\circ} 45^{\prime} \mathrm{E}$ (Shkuratov, 2000). SAUDI ARABIA: El

 Hargeisa ($1 \stackrel{+}{\circ}, 1$ ob *, BMNH). SOUTH AFRICA: Eastern Cape Province: 28 km S Steytlerville: Wolwekraal Farm ($1 \delta^{\circ}, \mathrm{USU}$), Willowmore ($3 \uparrow, 1 \AA^{\circ}, \mathrm{SAM}$, including holotype of miscophoides; $3 \uparrow$, TMP). Northern Cape Province: Arkoep Farm 6 km N Kamieskroon at $30^{\circ} 19^{\prime} \mathrm{S} 17^{\circ} 56^{\prime} \mathrm{E}$ (1 ㄷ, 1 o $^{\circ}$, PPRI), Buffels SW Springbok ($1 \quad$, OÖLM), W Calvinia (1 o *, OÖLM), Goegap windmill at $29^{\circ} 37^{\prime} \mathrm{S} 17^{\circ} 59^{\prime} \mathrm{E}$ (1 ค, AMG), E Kamieskroon ($1 \stackrel{\circ}{ }$, OÖLM), SW Loeriesfontein ($2 \sigma^{*}$), 50 km SW Springbok (1°, OÖLM). Western Cape
 SPAIN: Alicante: Orihuela (Gayubo and Mingo, 1988). Almería: Gérgal (Suárez, 1969), Tijola (Gayubo and Mingo, 1988). Ávila: Gilbuena near Becedas (1 ${ }^{*}$), La Herguijuela (Gayubo, Asís, and Tormos, 1990a), Santa Cruz del Valle (Gayubo and Mingo, 1988). Badajoz: Mérida (Gayubo, Asís, and Tormos, 1990a). Baleares: Ibiza (Giner Marí, 1934). Burgos (Gayubo and Sanza, 1986): Doña Santos, Fuentespina, Tubilla del Lago. Castellón de la Plana: Sierra Engarcerán (Asís and Jiménez, 1988), Villafranca del Cid (Gayubo and Tormos, 1986). Gerona: Sils (Pulawski, 1971). Granada: Granada (de Beaumont, 1947c). Jaen: Martos (Pulawski, 1971). Madrid (Gayubo and Mingo, 1988, or as indicated): El Escorial (1 đ̛, TMP), Montarco, Monte de el Pardo (Gayubo, Nieves-Aldrey, González, Tormos, Rey del Castillo, and Asís, 2004), Ribas de Jarama, Villaverde, Zarzalejo. Málaga: Málaga (Pulawski, 1971), Marbella (de Beaumont, 1962). Salamanca (Gayubo, 1984a, if not indicated otherwise): Calvarrasa de Arriba, La Alberca (2 o), La Encina 14 km S Ciudad Rodrigo, Palacios Rubios, San Martín del Castañar (Cruz-Sánchez et al., 2005), Villaflores. Soria (Gayubo, García, Torres, and González, 1999): Cidones (incorrectly transcribed as Diones) 14 km W Soria, Lubia, Rabanera del Campo, Sauquillo del Campo, Tardajos de Duero, Villalbuena, Villaverde del Monte, Vinuesa. Toledo: Toledo ($1 \stackrel{+}{ }$, δ^{*}). Valencia: Bétera (Gayubo and Mingo, 1988). Valladolid: Viana de Cega (Gonzáles, Gayubo, and Torres, 1999). Zamora (Gayubo, 1986a): Argujillo 10 km E Fuentesaúco, Fermoselle, Fuentelapeña, Mayalde. SUDAN: Wadi Medani (Pulawski, 1971). SYRIA: Arne Huran and Sahl near Damascus (Pulawski, 1971), Yabroud (1 \&) . TAJIKISTAN: Dushanbe (1 δ^{*}), Kabadian ($1 \delta^{*}$, ZIN, lectotype of rugosus). TANZANIA: Coast Region: 17 km E Chalinze ($1 \mathrm{o}^{*}$). Iringa Region: 18 km W Iringa ($1 \mathrm{o}^{\boldsymbol{*}}$). Kilimanjaro Region: Mkomazi Game Reserve: near Dindera Dam ($1 \stackrel{\circ}{+} 1 \circ^{*}, \mathrm{SAM}$) and Ibaya ($4 \stackrel{\circ}{\circ} 2$ o *,
 NW Morogoro (1 σ^{\star}). Singida Region: 20 mi SW Itigi (1 \circ). Tanga Region: 73 km NW Korogwe (1 ,

 Djerid 5 km N El Faouar at $33^{\circ} 26^{\prime} \mathrm{N} 8^{\circ} 41^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right.$, CSE), Djerba Island ($1 \mathrm{o}^{\star}$), 10 km E Kasserine ($18^{8^{*}}$), 12 km W Matmata at $33^{\circ} 32^{\prime} \mathrm{N} 9^{\circ} 50^{\prime} \mathrm{E}\left(1 \sigma^{\circ}\right.$, CSE), N Metlaoui at $34^{\circ} 26^{\prime} \mathrm{N} 8^{\circ} 25^{\prime} \mathrm{E}(1 \quad$ ㅇ $), 15 \mathrm{~km}$ W Nefta at $33^{\circ} 50^{\prime} \mathrm{N} 7^{\circ} 43^{\prime} \mathrm{E}$ (3 우, 1 ơ $^{\prime}$, CSE), Sbeitla at $35^{\circ} 32^{\prime} \mathrm{N} 9^{\circ} 45^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\star}$, CSE), Sfax (de Beaumont, 1947a). TURKEY: Hatay: Antakya (1 \&). Istanbul: Kilyos (Pulawski, 1971). Kayseri: Haçilar (1 \& , CSE). Konya: Sille (Pulawski, 1971). Mersin: Köselerli 48 km NW Silifke at $36^{\circ} 33^{\prime} \mathrm{N} 33^{\circ} 27^{\prime} \mathrm{E}$ (1 9 , CSE), Mut (1 ㅇ),
 (1 ㅇ). UKRAINE: Crimea: Zamorsk near Kerch (Pulawski, 1971). UZBEKISTAN: Aman Kutan 35 km SW Samarkand (Pulawski, 1971), Nishan (1 ㅇ). YEMEN: Aden: Khormak sar (Pulawski, 1971), Al Kakdan (1 우,
 MHNCF), Sanaa ($3 \sigma^{*} ; 1 \circ$, $8 \sigma^{*}$, RMNH). ZAMBIA: Eastern Province: 50 km NW Chipata ($1 \sigma^{*}$). Northern Province: 60 km N Kasama ($1 \mathrm{o}^{\star}$), 76 km S Kasama (1 σ^{\star}). ZIMBABWE: Redbank at Kami River (2 σ°), Sawmills (1 + , SAM, holotype of lugubris).

Tachysphex brinckerae R. Turner

Figures 68, 69.
Tachysphex brinckerae R. Turner, 1917a:323, ㅇ. . Holotype: ㅇ, South Africa: Gauteng: Pretoria (BMNH), examined.- Arnold, 1923:173 (original description copied), 1930:4 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:272 (listed).
Tachysphex consanguineus Arnold, 1924:67, ํ, 웅. Lectotype: ơ, South Africa: North-West Province: Lichtenburg (TMP), here designated, examined. New synonym.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:273 (listed).

Lectotype selection.- Arnold designated a female and a male as types of consanguineus. I have selected the male as the lectotype.

RECOGNITION.-Tachysphex brinckerae has a labrum convex and protruding beyond the clypeus free margin, a galea longer than wide in profile (length equal to 0.8 of the scape), and the propodeal dorsum glabrous at least apicomesally, the glabrous area extending from base to apex in many specimens (Figs. 58c, d). In addition, the gaster is bicolored (red basally, black apically), tergum IV lacks a silvery fascia, the tibiae are red, and the male lacks a foretarsal rake (forebasitarsus without preapical spines or at most with one such spine at about two thirds of tarsomere length; outer apical spine of tarsomere II at least slightly shorter than tarsomere III). Subsidiary recognition features include: forefemur densely, uniformly punctate and wing membrane yellowish except in some males

JUSTIFICATION OF NEW SYNONYMY.- In spite of its aberrant propodeal dorsum (see Description below), the holotype female of brinckerae appears to be conspecific with the syntypes of consanguineus and all other specimens examined (see Recognition above). Therefore, I treat these two names as synonyms.

DESCRIPTION.- Labrum convex, markedly protruding from beneath clypeus. Galea densely punctate (except anteriorly), as long as 0.8 of scape. Scutal punctures less than one diameter apart. Mesopleuron dull, uniformly micropunctate. Episternal sulcus complete in female. Propodeal dorsum evenly microareolate, but finely rugose in holotype of brinckerae; side ridged in most females (unridged in females from Wolwekraal Farm), in male inconspicuously ridged to uniformly microsculptured. Hindcoxal dorsum with inner margin carinate basally.

Setae subappressed and shorter than midocellar diameter on each side of oral fossa next to occipital carina; appressed on postocellar area and scutum; propodeal dorsum largely glabrous in most specimens, with glabrous area extending from base or nearly so to apex Fig. 68c), but largely setose in holotype of brinckerae in which glabrous area is reduced to about apical half of dor-

Figure 68. Tachysphex brinckerae R. Turner: a - female clypeus and mandible; b-male clypeus and mandible; c - propodeal dorsum of an average female showing setal pattern; d - propodeal dorsum of the holotype of brinckerae; e - volsella; f - penis valve.
sum length (Fig. 68d). Mesopleural setae in most specimens inconspicuous, not concealing integument, but markedly denser, partly concealing cuticle in females from Wolwekraal Farm, South Africa.

Head and thorax black, mandible yellowish red except basally and apically. Frontal setae silvery or golden in female, golden in male. Wing membrane yellowish in female and most males,
slightly infumate (almost hyaline) in some males; forewing costal and subcostal veins reddish in most specimens, but costal vein brown in male collected 10 mi SW Willowmore, South Africa, and subcostal vein light brown and costal vein brown in male from Touwsrivier area, South Africa. Femora varying from all red (except fore- and midfemora black basodorsally) to nearly all black (red distally); tibiae and tarsi red. Gastral segments I and II or I-III red, remainder black. Terga I-III silvery fasciate apically.

ㅇ.- Clypeus (Fig. 68a): bevel longer than basomedian area; lip free margin arcuate, incised laterally, with rudimentary mesal notch. Width of postocellar area $0.9 \times$ length. Dorsal length of flagellomere I $2.6 \times$ apical width. Dorsal foretibial surface with two or three spines, outer surface with one spine near midlength. Forebasitarsus with seven or eight rake spines. Apical spines of hindtarsomere IV nearly reaching claw bases. Tergum V densely punctate, including apical depression. Pygidial plate microsculptured, with punctures averaging 2-3 diameters apart (many punctures less than one diameter apart). Length $11.0-14.0 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, at most with rudimentary cleft. Clypeus (Fig. 68b): bevel about as long as basomedian area; lip free margin arcuate or sinuate, with well-defined corner; distance between corners about equal to distance between corner and respective orbit. Width of postocellar area $0.7-0.9 \times$ length. Dorsal length of flagellomere I $1.8-1.9 \times$ apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines or with one spine at about two thirds of tarsomere length (on one leg only in some specimens); outer apical spine of foretarsomere II shorter than tarsomere III (slightly to markedly so). Sternum VIII tridentate apically, but middle tooth inconspicuous in some specimens. Length $8.4-10.9 \mathrm{~mm}$. Volsella and penis valve: Figs. 68e, f.

Floral records.- The specimen found east of Skeleton Coast, Namibia, was visiting flowers of Zygophyllum simplex Linnaeus, as recorded by F.W. and S.K. Gess, the collectors.

Geographic distribution (Fig. 69).Zaire to Namibia and South Africa (including Lesotho).

Records.- LESOTHO: Mamathes (1 \circ; $1 \circ$, AMG), Teyateyaneng ($1 \stackrel{\circ}{\circ}$, AMG). NAMIBIA:

Figure 69. Collecting localities of Tachysphex brinckerae. Karasburg District: Fish River Canyon (10°, AMG), Fish River Canyon 13 km E Ai Ais at $27^{\circ} 55^{\prime} 22^{\prime \prime} \mathrm{S} 17^{\circ} 31^{\prime} 04^{\prime \prime} \mathrm{E}\left(10^{\circ}\right.$, CSE). Karibib District: Khan River 23 km N Karibib ($1 \mathrm{o}^{\text {º }}$), 55 km SW Usakos (1 \&), 65 km SW Usakos (1 ㅇ, MS). Khorixas District: Bethanis (1 o + , NMN), 4 km E Khorixas ($1 \mathrm{c}^{\circ}$), road 3245 E Skeleton Coast Park at $20^{\circ} 14^{\prime} \mathrm{S} 13^{\circ} 53^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right.$, AMG). Windhoek District: 8 km S Windhoek ($1 \circ$, FSCA). SOUTH AFRICA: Eastern Cape Province: Clifton Farm 18 km NW Grahamstown ($1 \mathrm{o}^{\text {º }}$, AMG), Grahamstown: Swartwaterpoort ($1 \mathrm{o}^{\mathrm{B}}$, AMG), Reddersburg (1 ㅇ, AMG), 6 km N Steytlerville ($1 \mathrm{o}^{7} ; 1 \mathrm{o}^{\circ}$, USU), 28 km S Steytlerville: Wolwekraal Farm ($1 \circ+1 \delta^{\star} ; 1 \stackrel{\circ}{\circ}, 1 \mathrm{o}^{\star}$, USU), Willowmore ($1 \circ$, TMP, paralectotype of consanguineus), 43 km NE Willowmore: Plessierivier ($2 \mathrm{o}^{3}$, USU), 37 km NW Willowmore in Grootrivierberg Range ($1 \mathrm{o}^{\mathrm{t}}$, USU), 10 mi SW
 Willem Pretorius Game Reserve ($1 \mathrm{o}^{\boldsymbol{\pi}}, \mathrm{AMG}$). Gauteng: Florida Hills ($1 \mathrm{~d}^{\circ}$), Florida: Strubens Valley (1 ? ; 2 ㅇ, 40°, AMG), Hartbeeshoek Radio Station ca 45 km WSW Pretoria at $25^{\circ} 53^{\prime} \mathrm{S} 27^{\circ} 41^{\prime} \mathrm{E}\left(9 \mathrm{o}^{\circ}\right)$, Johannesburg: Mondeor Hills ($1 \sigma^{\star}, \mathrm{AMG}$), Nkwe Pleasure Resort SE Pretoria at $25^{\circ} 53^{\prime} \mathrm{S} 28^{\circ} 26^{\prime} \mathrm{E}$ (20°, PPRI),

 PPRI), O.T.K. [= Oostelike Transvaalse Koöperasie] Nature Reserve near Loskop Dam at $25^{\circ} 27^{\prime} \mathrm{S} 29^{\circ} 24^{\prime} \mathrm{E}$
 BMNH), Steinkopf and 10 km W Steinkopf ($2 \sigma^{\circ}$, FSCA), Victoria West ($1 \circ$, AMG). Northern Province: Mogol Nature Reserve ($5 \sigma^{\star}$, PPRI), 10 km SW Naboomspruit (3 o , 4 o 7, FSCA). North-West Province: Delareyville (Arnold, 1924), Lichtenburg (1 δ^{*}, TMP, lectotype of consanguineus), Rustenburg ($1 \circ$, AMG). Western Cape Province: Bulshoek between Klawer and Clanwilliam ($1 \delta^{*}$, SAM), 18 mi SE Touwsrivier
 River (4 $\sigma^{*} ; 1 \delta^{\star}$, NHMZ), Matetsi in Hwange District ($4+1 \delta^{\circ}$, AMG).

Tachysphex bruneiceps Arnold

Figures 70-72.
Tachysphex bruneiceps Arnold, 1923:153, ㅇ. . Lectotype: ํ, Zimbabwe: Sawmills (SAM), here designated, examined.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae), 1945:97 (Madagascar), 1951:155 (Ethiopia); Leclercq, 1960:98 (Madagascar), 1961:109 (Madagascar); Bohart and Menke, 1976:273 (listed); Leclercq, 1990b:117 (Madagascar); Hancock, Chahwanda, and Mhlanga, 1995:40 (syntypes in Bulawayo Museum); Madl, 1997:821 (in checklist of Nosy Boraha Sphecidae); Pulawski, 2003:797 (in checklist of Malagasy Sphecidae); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).

RECOGNITION.- Tachysphex bruneiceps has erect, conspicuous setae on the basal declivity of tergum I (as in Fig. 16), and hindwing crossvein cu-a is oblique (the anal end is markedly further away from the wing base than the cubital end). Unlike albocinctus and detritus (which share these characters), the postocellar area of bruneiceps is broad (Figs. 70a, b, width 1.7-2.0 \times length rather than $0.6-0.8$ in female and $0.7-1.3$ in male), scutal punctures average $2-3$ to many diameters apart on the disk (rather than one diameter or less) and in most specimens are minute, inconspicuous (well defined in albocinctus). Subsidiary recognition features shared with albocinctus are: forebasitarsus expanded apically (as in Figs. 15c, d) except not expanded in occasional males, female pygidial plate broad, uniformly granulose except for superficial, sparse punctures (as in Fig. 15e), and male sterna largely glabrous, the only erect setae being those that delimit apical depressions.

Description.- Postocellar area shiny, unsculptured or slightly sculptured. Scutal punctures averaging 2-3 to many diameters apart on disk, inconspicuous in most specimens but relatively well defined in single female from Luangwa bridge area, Zambia; interspaces microsculptured, dull (Fig. 71a), apparently an effect of microscopical, longitudinal grooves on the integument (Fig. 71b). Mesopleuron conspicuously microsculptured, dull, punctures below scrobe several to many diameters apart. Punctures of mesothoracic venter averaging 1-2 diameters apart, but many diameters apart posteromesally in some males. Propodeal dorsum evenly microareolate or finely rugose, side dull, evenly microsculptured, in many specimens also finely, irregularly rugose (except anteriorly); posterior surface, in dorsal third or so, with wide median impression. Hindwing crossvein cu-a oblique (anal end further away from wing base than cubital end). Forebasitarsus expanded apically (as in Figs. 14c, 14d) except not expanded in occasional males. Hindcoxal dorsum with inner margin not carinate or carinate basally. Apical tarsomeres with several ventral bristles, but no spines on venter or lateral margin. Sternum I shallowly depressed apically.

Setae sinuous on frons, scapal venter, postocellar area (Figs. 70a, b), gena, scutum (at least anteriorly), mesopleuron, propodeum (including posterior surface); suberect to erect on frons, scapal venter, postocellar area, gena, and basal declivity of tergum I; hindfemoral venter at least with a few erect setae (erect setae missing in single female from Isoanala, Madagascar). Setal length expressed as a fraction of basal mandibular width: $0.8-1.0$ on postocellar area and on each side of
oral fossa next to occipital carina, about 0.5 on scutum posteriorly, and up to 0.8 on tergum I. Mesopleural setae not concealing integument.

Body black except mandible dark red mesally and tarsi red (black basally). Frontal setae yellowish or silvery in female, black in large males, silvery in small males. Wings membrane hyaline, slightly yellowish; forewing costal vein brown, subcostal vein

Figure 70. Tachysphex bruneiceps Arnold: a - female head in frontal view; b - male head in frontal view. dark brown. Terga I-IV in continental African populations, I-III in those from Madagascar, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 70a): bevel convex, about one third length of basomedian area; lip free margin arcuate, not incised laterally. Width of postocellar area 1.7-1.9 \times length. Dorsal length of flagellomere I $2.5-2.6 \times$ apical width. Dorsal foretibial surface with three spines, outer surface with two or three spines. Forebasitarsus with seven or eight rake spines. Apical depression of tergum V impunctate, glabrous. Pygidial plate broad, uniformly granulose except for superficial, sparse punctures (as in Fig. 15e). Length 10.8-11.8 mm.
δ^{7}.- Inner mandibular margin with tooth and cleft. Clypeus (Fig. 70b): bevel about one third length of basomedian area; lip free margin arcuate, with obtusely angulate, nonprominent corner; distance between corners $1.8-1.9 \times$ distance between corner and orbit. Width of postocellar area $1.7-2.0 \times$ length. Dorsal length of flagellomere I 2.2-2.3 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with six or seven rake spines; apical spine of tarsomeres I and II longer than following article. Punctures of tergum VII varying from one to several diameters apart. Punctures of sternum II slightly to markedly sparser mesally than laterally, apical depression glabrous (except laterally); sterna III-VI largely glabrous. Length 6.6-11.0 mm. Volsella and penis valve as in albocinctus (see Figs. 14e-g).

Geographic distribution (Fig. 72). - Senegal to South Africa, Madagascar.
 KENYA: Coast Province: Voi area ($2 \stackrel{\circ}{+}, 1 \delta^{\circ}$, OÖLM). Rift Valley Province: Marich Pass Field Studies

FIGURE 71. Tachysphex bruneiceps Arnold: a - scutal disk surface of female in lateral oblique view, part of setae removed to show punctures and distances between them $(\times 300)$; $\mathrm{b}-$ same, higher magnification $(\times 3000)$.

Centre ($1+\overbrace{}^{\circ}, 3 \sigma^{*}$). MADAGASCAR: Antsiranana: Parc National Montagne d'Ambre at $12^{\circ} 31^{\prime} 13^{\prime \prime} \mathrm{S}$ $49^{\circ} 10^{\prime} 45^{\prime \prime} \mathrm{E}$ (1 우), 3 km W Sakalava Beach (1 우). Fianarantsoa: Ambinany 7 km W Manombo (1 우, $20^{\prime \prime}$), Isalo area at $22^{\circ} 42^{\prime} \mathrm{S} 45^{\circ} 13^{\prime} \mathrm{E}\left(4 \mathrm{o}^{\circ} ; 1 \mathrm{o}^{\prime \prime}\right.$, MRAC), Isalo National Park at $22^{\circ} 36^{\prime} \mathrm{S} 45^{\circ} 10^{\prime} \mathrm{E}$ (2 $\uparrow, 7$ o $^{7} ; 7$ ㅇ, 6 o 7, MSNT), 2 km SW Manakara at $22.168^{\circ} \mathrm{S} 48.00^{\circ} \mathrm{E}$ ($1 \mathrm{o}^{\top}$), 10 km E Ranohira ($1 \mathrm{o}^{\circ}$). Mahajanga: Amborovy 8 km N Mahajanga (3 +11 σ^{*}), Ankarafantsika (1 σ^{\prime}, MHNB), Mahatazana (2 + , MHNB). Toamasina: near entrance to Andasibe National Park at $18^{\circ} 55.6^{\prime} \mathrm{S} 48^{\circ} 24.5^{\prime} \mathrm{E}\left(10^{\circ}\right)$, Ivoloina
 MRAC), Nosy Boraha ($1 \stackrel{\circ}{ }, \mathrm{MNHN}$), Nosy Boraha: Ampangorinana ($1 \quad$, $1 \delta^{\text {o }}$, MHNB), Toamasina (1 ㅇ, MHNB; 1 ㅇ, MNHN). Toliara: Anantsono (1 ㄴ, BMNH), Behara (1
 (1 ㅇ) , 22 km N Betioky (1 ㅇ, 2 o *), Isoanala (1 ㅇ, MNHN), 50 km NE Morondava ($1 \stackrel{\circ}{ }, 1 \mathrm{ot} ; 1 \mathrm{o}^{\circ}$,

Figure 72. Collecting localities of Tachysphex bruneiceps and buyssoni. MRAC), Ranobe at $23^{\circ} 02.30^{\prime} \mathrm{S} 43^{\circ} 36.58^{\prime} \mathrm{E}(1 \quad$ ㅇ) , St. Augustin area ($1 \stackrel{\circ}{+}, \mathrm{BMNH}$), Taolanaro (1 우, MNHN),
 NAMIBIA: Okahandja District: Waldau River 17 km W Okahandja ($1 \mathrm{~d}^{*}$). Otjiwarongo District: Waterberg (2 ㅇ, CSE). Windhoek District: Aris ($1 \delta^{7}$, MS). SENEGAL: Dakar (1,+ FB), Ndangane 45 air km SE Mbour (1 + , FB). SOUTH AFRICA: Northern Province: Afguns (1 σ^{*}, AMG), Guernsey Farm 15 km NW Klaserie ($1+$ ㅇ, PMA). TANZANIA: Morogoro Region: Ruaha River bank 7 km S Mikumi (7 ; $; 2$ ㅇ, UDS). Tanga Region: Pangani River Camp 86 km NW Korogwe (1 ㅇ) . TOGO: Amaoudé 17 km N Sokodé (2 or $^{\circ}$),
 ($1 \sigma^{*}$, MRAC). ZAMBIA: Eastern Province: E side of Luangwa bridge ($1 \circ, 1 \circ^{*}$), 6-18 km SW Mfuwe (2 ㅇ)). Location unknown: Pakasa ($\boldsymbol{~}^{\boldsymbol{*}}$, BMNH), no specific locality ($1 \stackrel{\circ}{ }$, AMG). ZIMBABWE: Bubye River
 1923), Redbank at Kami River (7 σ^{*}), Sawmills ($2 \sigma^{\circ}$, AMG; 1 우, AMNH; 5 ㅇ, $12 \sigma^{*}$, SAM, including lecto-

Tachysphex buyssoni Morice

Figures 72, 73.
Tachysphex buyssoni Morice, 1897:307, 우, \boldsymbol{o}^{*}. Lectotype: 우, Egypt: Koubbeh near Cairo (OXUM), designated by Pulawski, 1971:295, examined before 1974.- nec Guiglia, 1932:475 (= Tachysphex costae); de Beaumont, 1940:164 (in revision of Egyptian Tachysphex); Honoré, 1942:55 (in checklist of Egyptian Sphecidae); de Beaumont, 1947a:158 (in revision of Egyptian Tachysphex), 1956a:196 (Chad: Tibesti), 1961c:4 (Iraq); Pulawski, 1971:293 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:10 (Israel); Bohart and Menke, 1976:273 (listed); Dollfuss, 1989:13 (type material in NHMW); Roche and Zalat, 1994:115 (Sinai Peninsula).

Recognition.- Tachysphex buyssoni is one of the species in which the labrum is conspicuously convex and markedly protruding from beneath the clypeus, and the galea is longer than wide in profile. It differs from all its congeners in having an unusually large mandibular notch (Figs. 73c, d).

Description.- Mandibular notch larger than in other Tachysphex, longer than distance that separates it from mandibular base (Figs. 73c, d). Labrum convex, protruding from beneath clypeus. Galea longer than wide in profile, closely microscopically punctured, as long as $0.8-0.9$ of

Figure 73. Tachysphex buyssoni Morice: a - female clypeus and mandible; b - male clypeus and mandible; c - female mandible, outer side; d - male mandible, outer side; e - volsella; f - penis valve.
scape in female, minimally more than scape in male. Scutal punctures minute, ill defined, less than one diameter apart. Mesopleuron as well as propodeal dorsum and side uniformly microsculptured; posterior surface with ill-defined ridges. Hindwing: crossvein cu-a either vertical or oblique (cubital end closer to wing base than anal end). Hindcoxal dorsum with inner margin carinate basally.

Setae appressed on postocellar area and scutum; about one midocellar diameter long on each side of oral fossa next to occipital carina; fully concealing mesopleural sculpture in female, largely so in male; setal pattern varying on propodeal dorsum, but apicomedian setae oriented posterad; and propodeal side all setose.

Head and thorax black in most specimens, but mandible (except apically) and clypeal bevel and lip yellowish red (all middle clypeal section in some males), and thorax dark reddish in a female from Iraq (de Beaumont, 1961c). Frontal setae silvery in female and some males, golden in most males. Wing membrane hyaline or nearly so, all veins yellowish brown. Femora varying from all black (except apically) to largely red; tibiae and tarsi red. Gaster all red or apex black (only middle terga black in some specimens). Terga I-V in female, I-III or I-IV in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 73a): bevel slightly longer than basomedian area; lip free margin arcuate, shallowly emarginate mesally, sinuous laterally. Width of postocellar area $0.7-0.8 \times$ length. Dorsal length of flagellomere I $2.5-3.5 \times$ apical width. Dorsal foretibial surface with three spines, outer surface with two or three spines. Forebasitarsus with nine or ten rake spines. Apical spines of hindtarsomere IV reaching claw bases. Tergum V evenly micropunctate and setose, including apical depression. Pygidial plate with punctures that average many diameters apart, interspaces microsculptured or unsculptured. Length $10.0-16.3 \mathrm{~mm}$.
σ^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 73b): bevel shorter to about as long as basomedian area; lip free margin arcuate, shallowly emarginate mesally, corner varying from well defined to ill defined; distance between corners $0.9 \times$ distance between corner and orbit; fine, oblique carina emerging from each lip corner. Width of postocellar area $0.8 \times$ length. Dorsal length of flagellomere I 2.3-2.7 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with six or seven rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Length 7.0-11.5 mm. Volsella and penis valve: Figs. 73e, f.

Collecting period.- The specimens from Mali were collected between 20 October and 2 November, that from Chad on 23 March, those from Egypt between 23 April and 22 May, and that from Revivim, Israel on 19 June.

Geographic distribution (Fig. 72).— Mali, Chad, Lower Egypt, Israel, Iraq.
Records.- CHAD: Enneri Meché in Tibesti Mountains (de Beaumont, 1956a). EGYPT (from Pulawski, 1971, or as indicated): Al Fayyum: Fayyum road (almost certainly Kom Osheim). Al Jizah (= Ghiza): Abu Rawash (2 \circ). Al Qahirah (= Cairo): Abbasiya (1 \& , NHMW), Gebel Asfar (1 \&), Heliopolis, Kubbah (Morice, 1897), Maadi (1 \&). Sina (= Sinai): Wadi um Mitla (1 ${ }^{\boldsymbol{r}}$). IRAQ: Muqdadia (de Beaumont, 1961c). ISRAEL: Revivim in Negev Desert (de Beaumont, Bytinski-Salz, and Pulawski, 1973). MALI: Tilemsi Valley N Gao ($1 \mathrm{o}^{\circ}, \mathrm{KMG}$), Timetrin in Tilemsi Valley ($1 \circ$, KMG).

Tachysphex caliban Arnold, new status

Figures 74-76.
Tachysphex panzeri var. caliban Arnold, 1923:169, \circ, $\overbrace{}^{\circ}$ (as Caliban, incorrect original capitalization; $\circ=$ Tachysphex pentheri). Lectotype: 0°, Zimbabwe: Sawmills (SAM), here designated, examined. - Arnold, 1930:4 (in checklist of Afrotropical Sphecidae), 1935a:497 (Botswana); Bohart and Menke, 1976:275 (as synonym of Tachysphex panzeri pentheri); Hancock, Chahwanda, and Mhlanga, 1995:40 (syntype in Bulawayo Museum).
Lectotype selection.- Arnold's syntypes of Tachysphex caliban are a mixture of two species. The male, which I have selected as the lectotype, belongs to this species, whereas the paralectotype female is Tachysphex pentheri.

Recognition.- The southern African caliban has the labrum convex and protruding beneath the clypeal free margin and the galea longer than wide in profile. Furthermore, the setae are appressed on the postocellar area, the female has an unsculptured apical depression of tergum V, and the male a well-developed foretarsal rake. Many species share these characters, but caliban differs in having well-defined scutal punctures that are two or more diameters apart on at least part of
the disk. The male also has a distinctive forefemoral notch whose bottom is densely, microscopically ridged, appearing dull under lower magnifications, without recognizable micropunctures (Figs. 75a, b). A subsidiary recognition feature of the female, a minute apical process of the forecoxa, is shared with calidus, socotrae, sycorax, and some undescribed forms.

Tachysphex socotrae, an endemic of Socotra, resembles caliban in having elongate mouthparts (including galea), the labrum convex and protruding from beneath the clypeus, and well-defined, sparse scutal punctures. Tachysphex caliban differs, in addition to the above features, in having genal setae no longer than midocellar diameter (more than one diameter in socotrae adjacent to the oral fossa) and the setae of the propodeal dorsum oriented posterad in the apical half or so (rather than all setae oriented anterad). Scutal punctures are also sparse in some males of georgii which differ in having an unsculptured or sparsely, microscopically punctured forefemoral notch.

Similar unassigned specimens.- Three males collected 97 km E Swakopmund on the road to Usakos (AMG) closely resemble caliban. In particular, their scutal punctures are well defined and the interspaces are shiny, almost unsculptured. They differ in having the bottom of the forefemoral notch minutely punctate. A female from 7 km NW Prince Albert, South Africa (CAS) has a shiny scutum, with well-defined punctures that are several diameters apart, but the clypeal lip is emarginate laterally and the mid- and hindtrochanteral venters are unsculptured, shiny.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea with numerous punctures, its length equal to $1.0-1.1$ of scape. Scutal punctures well defined, two to several diameters apart (depending on specimens) on at least part of the disk; interspaces varying from practically unsculptured to conspicuously microsculptured. Mesopleuron dull, conspicuously microsculptured, with minute, evanescent punctures. Propodeal dorsum evenly microareolate, side finely microsculptured, at most with dense, vestigial ridges next to metapleural sulcus. Hindcoxal dorsum with inner margin carinate basally.

Setae nearly appressed on postocellar area; about as long as midocellar diameter on each side of oral fossa next to occipital carina; on propodeal dorsum oriented obliquely anterad on basomedian portion, oriented exactly posterad along midline on apical half or more, and diverging posterolaterad on remaining surface.

Head and thorax black, mandible yellowish red (except apically). Frontal setae silvery in female, golden in male. Wing membrane nearly hyaline, yellowish in some females; forewing costal vein light brown, subcostal vein brown. Color of legs: see below. Gastral segments I and II or I-III red and remainder black, but gaster all black in many males (segments I and II with large, irregular black spots in one female from Hilton Farm, South Africa). Terga I-III silvery fasciate apically in most specimens, also tergum IV in some females (only terga I and II fasciate in some males, all fasciae nearly reduced in some others).

ㅇ.- Clypeus (Fig. 74a): bevel at least slightly longer than basomedian area; lip free margin arcuate, emarginate mesally, sinuous laterally in most specimens, not sinuous in some. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I 2.2-3.0 \times apical width. Forecoxa with minute apical projection. Dorsal foretibial surface with three spines, outer surface with two or three spines. Forebasitarsus with 6-8 rake spines. Apical depression of tergum V either impunctate and asetose or with several sparse punctures and associated setae. Pygidial plate with punctures that average many diameters apart; interspaces unsculptured or aciculate. Length $9.7-11.5 \mathrm{~mm}$. Femora varying from mostly red (black basodorsally) to mostly black (red apically), tibiae and tarsi red.
δ^{7}.- Mandible: trimmal carina with tooth, without cleft, reduced just distad of tooth in exceptional specimens. Clypeus (Fig. 74b): bevel not sharply delimited from basomedian area about as long as the latter; lip free margin arcuate, with well-defined corner; distance between corners $0.8 \times$ distance between corner and orbit. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of fla-

Figure 74. Tachysphex caliban Arnold: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.
gellomere I 2.0-2.2 \times apical width. Forefemoral notch densely, microscopically ridged, dull (Figs. $75 \mathrm{a}, \mathrm{b}$). Outer margin of forebasitarsus with five or six rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Hindfemoral venter with inner (= posterior) margin sharp in distal half. Several punctures of tergum VII, in some specimens, more than one diameter apart. Sternum VIII with apical margin shallowly emarginate apically, almost straight mesally in most specimens, but somewhat prominent mesally in some. Length $6.8-10.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 74c, d. Femora black (except apically) to largely red, tibiae and tarsi red (fore- and midtibiae darkened and hindtibia black in some males from Greyton).

Prev.- The female from De Aar, South Africa, is pinned with her prey, an acridine nymph (det. F.W. Gess).

Geographic distribution (Fig. 76).— Zimbabwe, Namibia, Botswana, South Africa.
RECORDS.- BOTSWANA: Kuke Pan ($1 \sigma^{\circ}$, BMNH). NAMIBIA: Gobabis District: Gobabis ($1 \mathrm{o}^{\circ}$, AMG). Grootfontein District: Grootfontein (180, AMG), 90 km NE Grootfontein ($1 \mathrm{o}^{\circ}, \mathrm{MS}$). Khorixas District: 117 km E Swakopmund on road to Usakos ($1 \mathrm{o}^{7}$, AMG). Mariental District: 5 km N Mariental (1
 MS). Rehoboth District: 7 km N Rehoboth ($1 \delta^{\circ}, \mathrm{MS}$), 23 km N Rehoboth ($1 \delta^{\circ} ; 2$ ơ $^{\circ}, \mathrm{MS}$), 9 km S Rehoboth (1 ㅇ, 1 ® $^{\text {o }}$). Swakopmund District: Kuiseb River near Gobabeb ($1 \delta^{\circ}$, PPRI). Windhoek District: Aris 25 km S Windhoek ($2 \delta^{\circ}$), Arnhem Farm 110 km E Windhoek at $22^{\circ} 41^{\prime} \mathrm{S} 18^{\circ} 08^{\prime} \mathrm{E}\left(1 \sigma^{\circ}\right.$, LACM), Bismarck River 30 km E Windhoek ($1 \boldsymbol{\sigma}^{\circ}$), Nam Lodge approximately $22.8^{\circ} \mathrm{S}$ 18.2 ${ }^{\circ} \mathrm{E}$ ($1 \sigma^{\circ}$, BMNH), Regenstein 32 [Farm] SE

Figure 75. Tachysphex caliban Arnold: a - bottom of forefemoral notch $(\times 930)$; bottom of forefemoral notch $(\times 2800)$.

2217 Ca [$=$ between $22^{\circ} 30^{\prime}$ and $22^{\circ} 45^{\prime} \mathrm{S}$ and $17^{\circ} 00^{\prime}$ and $17^{\circ} 15^{\prime} \mathrm{E}$] ($1 \mathrm{o}^{\circ}, \mathrm{NMN}$), 53 km E Windhoek ($1 \mathrm{o}^{\star \rightarrow}$, MS). SOUTH AFRICA: Eastern Cape Province: Algoa Bay (1 ơ, TMP), Colchester (3 o ${ }^{*}$), Elandsheuwels Farm 40 km W Steytlerville (1 ơ, USU), 18 km WNW Grahamstown: Hilton Farm ($2 \delta^{*} ; 4 \circ, 16 \delta^{\star}$, AMG), Willowmore (3 σ^{*}, TMP), 9 km E Willowmore ($1 \mathrm{o}^{\star}$), Wolwekraal Farm 28 km S Steytlerville ($1+$, USU). Northern Cape Province: De Aar (1 ¢, AMG), W Calvinia ($1{ }^{\star}$, OÖLM), SW Loeriesfontein (1 σ°, OÖLM), Melton Wold (1 σ^{\star}, SAM), Nossob in Kalahari Gemsbok National Park
 FSCA), Tanqua-Karoo [National Park] (1 ơ, SAM), Warrenton ($\left.1 \delta^{*}, S A M\right)$. Northern Province: 1 km W Boyne (1 o *), D’Nyala Nature Reserve (2 ㅇ, PPRI), Ellisras (2 $+\frac{\sigma^{7}}{}$, AMG), Turfloop at $23^{\circ} 53^{\prime} \mathrm{S} 29^{\circ} 46^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$, ZMAN). North-West Province: Vryburg ($1 \sigma^{\pi}$, SAM). Western Cape

Figure 76. Collecting localities of Tachysphex caliban. Province: Beaufort West District (1 σ^{7}, SAM), Bulshoek between Klawer and Clanwilliam (1 os, SAM), Cape of Good Hope Nature Reserve near Olifantbosbaai ($1 \delta^{*}$), Cape Town ($1 \stackrel{+}{ }$, USNM), Cape Town: Milnerton ($1 \sigma^{\circ}, \mathrm{BMNH}$), 60 km N Cape Town
 ($1 \sigma^{\circ}, \mathrm{BMNH}$), Clanwilliam Dam at $32^{\circ} 11.5^{\prime} \mathrm{S} 18^{\circ} 55.7^{\prime} \mathrm{E}\left(1 \sigma^{\circ}, \mathrm{AMG}\right)$, near Clanwilliam on road to Pakhuis Pass ($1 \sigma^{\circ}$, AMNH), Dikbome Farm on Merweville-Koup road ($1+$, SAM), Doringbos ($1 \sigma^{\star}$, OÖLM), Greyton

 including lectotype of caliban).

Tachysphex calidus Pulawski, sp. nov.

Figures 77-79.
DERIVATION OF NAME.- Calidus, Latin for warm, hot; with reference to the hot habitats where this species occurs.

Recognition.- Tachysphex calidus has the labrum markedly convex, protruding beyond the clypeal free margin, and the setae of the lower gena nonsinuous, erect or suberect, long (equal to $0.3-0.4$ of basal mandibular width). In addition, the propodeal dorsum is all setose and the side is uniformly microsculptured, the apical depression of female tergum V setose (glabrous mesally in some specimens), and the male foretarsus with a conspicuous rake. This combination is shared with cheops and males of dolosus.

Unlike cheops, the free margin of the lateral clypeal section is not unusually shallow (compare Figs. 77a, c and 91a, b). In the female, the inner mandibular margin has a well-developed subbasal tooth, whereas the tooth is reduced in cheops (compare Figs. 77a and 91a). In the male, the inner (= posterior) margin of the hindfemoral venter is sharp (rather than obtuse), the clypeal lip is narrower on average (distance between corners $0.7-1.0 \times$ distance between corner and the nearest orbit rather than 1.0-1.4); the obtuse, oblique carina emerging from each lip corner extends beyond the lip (not extending in cheops); the clypeal bevel is well defined (almost reduced in many cheops); and the basal volsellar setae are thickened (Fig. 78b) rather than uniformly thin. Also, the propodeal side of calidus is either glabrous anteriorly (most specimens) or the setae are fine, inconspicuous along the metapleural sulcus (most West African individuals), whereas in cheops the entire propodeal side is conspicuously setose.

The most distinctive character separating the males of calidus and dolosus is the shape of the volsella: the dorsal process is long, narrow in calidus (Fig. 78) while contrastingly low, wide in dolosus (Figs. 124b). Also, the forefemoral notch in calidus has minute but recognizable punctures at the bottom, whereas in dolosus the bottom is densely, uniformly microsculptured, dull, without recognizable punctures (Figs. 123f, g). Fresh specimens can be recognized by the setal pattern of the propodeal dorsum: in calidus, at least the preapical setae are oriented posterad (Fig. 78a), whereas all setae are oriented anterad or anterolaterad in dolosus (Fig. 124a). Setae, however, are altered or lost in many specimens, so that the character is not often reliable.

Another similar species is panzeri which ranges south to central Mali and central Sudan and whose male has a low, wide dorsal volsellar process (Fig. 271). There is no single character to differentiate all females, but in the overlap area (West Africa, possibly Somalia) both sexes can be recognized, though with some difficulty, by the length of setae on the lower gena. These setae are about one midocellar diameter long in panzeri, but are more than one midocellar diameter long in calidus from Kenya, Ethiopia, and West Africa.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea uniformly, closely micropunctate, as long as scape in female, as 1.2 of scape in male. Scutal punctures moderately well defined. Mesopleuron uniformly microsculptured, without recognizable punctures. Propodeal dorsum uniformly microareolate, side uniformly microsculptured. Hindcoxal dorsum with inner margin not carinate or carinate basally. Apical spines of hindtarsomere IV reaching claw bases or nearly so.

Setae appressed on postocellar area and scutum (suberect on scutum anterolaterally in some specimens); erect or nearly so on each side of oral fossa next to occipital carina (setal length 0.3-0.4 basal mandibular width); oriented mostly anterad or mostly posterad on propodeal dorsum, but at least preapical setae oriented posterad; one common pattern is that most setae are oriented anterad except preapical setae diverge radially from a pair of vortices (Fig. 78a).

Head and thorax black, but clypeal lip yellow (female) or reddish yellow (male) and mandible reddish yellow (except apically). Frontal setae silvery in female and smallest males, golden in most males. Wing membrane slightly infumate; costal vein of forewing light yellowish (Namibia) to brown, subcostal vein brown, but both veins reddish in single male from Mali. Femora red except black basodorsally, largely to all black in some South African specimens; tibiae and tarsi red. Gaster

Figure 77. Tachysphex calidus Pulawski, sp. nov.: a - female clypeus and mandible ($\times 32$); b - apex of female forecoxa ($\times 84$); c clypeus and mandible of male from Namibia ($\times 37$); d - clypeus and mandible of male from Ethiopia ($\times 52$); $\mathrm{e}-$ lower head of male from Namibia showing genal seta $(\times 27)$; $\mathrm{f}-$ lower head of male from Ethiopia showing genal seta $(\times 32)$.
in female largely red (only segment IV or segments IV and V black) to largely black (specimens from Bredasdorp, South Africa, in which only sterna II and III partly and segment VI are red); red basally in male (segments I and II or I-III) with remainder black, but all black in specimens from Bredasdorp. Terga I-III or I-IV silvery fasciate apically (see Variation below).

ㅇ.- Clypeus (Fig. 77a): bevel varying from slightly shorter to slightly longer than basomedi-

Figure 78. Tachysphex calidus Pulawski, sp. nov.: a - propodeal dorsum showing typical setal pattern; b-volsella; c - penis valve.
an area; lip free margin arcuate, slightly emarginate mesally, shallowly concave laterally. Width of postocellar area $0.6-0.7 \times$ length. Dorsal length of flagellomere I $2.7-3.2 \times$ apical width. Forecoxa with short apicomedian process (Fig. 77b). Dorsal foretibial surface with two or three spines, outer surface with three spines. Forebasitarsus with seven or eight rake spines. Tergum V uniformly, densely micropunctate throughout, including apical depression (impunctate and glabrous mesally in some specimens). Pygidial plate aciculate, with minute punctures that average several to many diameters apart. Length $9.8-14.2 \mathrm{~mm}$.
σ^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 77c, d): bevel shorter than basomedian area; lip free margin arcuate (inconspicuously emarginate mesally in many specimens), with moderately well-defined corner; distance between corners $0.7-1.0 \times$ distance between corner and orbit (see Geographic Variation below). Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I 2.2-2.6 \times apical width. Forefemoral notch microscopically setose. Hindfemoral venter with inner (= posterior) margin sharp in distal half. Outer margin of forebasitarsus with five or six rake spines; outer apical spine of foretarsomere II markedly longer than tarsomere III. Length $5.4-9.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 78b, c.

Geographic Variation.- Specimens from various geographic areas differ in length of genal setae, extension of setae on the propodeal side, width of the male clypeal lobe, and number of silvery tergal fasciae, as discussed below.

Genal setae. The longest setae of the lower gena (near the meeting point of the occipital and hypostomal carinae) are shorter in specimens from Namibia and South Africa (Fig. 77e, about 0.4 of the basal mandibular width) than in those from Ethiopia, Kenya, Tanzania, and West Africa (Fig. 77 f , about 0.3 of the basal mandibular width).

Propodeal side. The propodeal side is glabrous anteriorly except all setose in many West African specimens (setae fine, inconspicuous anteriorly).

Male clypeal lip. The lip is on average narrower in specimens from Namibia and South Africa (distance between lip corners equal to $0.7-0.8$ of distance between a corner and nearest orbit) than in specimens from Ethiopia, Kenya, and Tanzania (same ratio equals $0.8-1.0$).

Tergal fasciae. Only terga I-III are fasciate apically in specimens from Namibia, Botswana, and South Africa (also female tergum IV or IV and V each has an ill-defined fascia), whereas fasciae are present on terga I-IV in Ethiopian, Kenyan, and West African specimens (female tergum V with ill-defined fascia).

Geographic distribution (Fig. 79).- Tachysphex calidus is known from three separate
areas: one includes Namibia, Botswana, and western South Africa, another Ethiopia, Kenya, and Tanzania, and the third Burkina Faso, Mali, Mauritania, and Senegal. The gap between southern Africa and Kenya is not likely to be a collecting artifact, as some of the intermediate areas (e.g., Zimbabwe) have been thoroughly collected, with no calidus ever found there.

Records.- Holotype: 0^{7}, NAMIBIA: Karibib District: Khan River 23 km N Karibib at $21^{\circ} 47^{\prime} \mathrm{S}$ 15${ }^{\circ} 57^{\prime} \mathrm{E}$, 20-21 Feb 1996, WJP (CAS). Paratypes: BOTSWANA: Kuke Pan, 14-15 Apr 1972, [British Museum] Southern African Expedition ($1 \mathrm{o}^{7}$, BMNH). BURKINA FASO: 1 km NE Gorom Gorom at $14^{\circ} 27.3^{\prime} \mathrm{N} 0^{\circ} 13.1^{\prime} \mathrm{W}$, 29 July 2004, Sidiki Konaté and WJP (2 ¢) ; 4 km NW Ouahigouya at $13^{\circ} 37.0^{\prime} \mathrm{N} 2^{\circ} 27.6^{\prime} \mathrm{W}, 6-7$ Aug 2004, Sidiki Konate and WJP ($1 \delta^{\circ}$). ETHIOPIA (all col-

Figure 79. Collecting localities of Tachysphex calidus. lected by Veronica Ahrens, Emiru Seyoum, and WJP in 1997): Harerge: 43 km SE Jijiga, 27 Aug ($2 \mathrm{o}^{\text {º }}$). Shoa: 8 km W Nazret, 8 Aug 1997 ($\mathbf{1}^{\text {o }}$). Sidamo: 13 km
 KENYA: Coast Province: Kitani Lodge in Tsavo West National Park, 29 Dec 1969, M.E. Irwin and E.S. Ross ($\left.1 \begin{array}{c}\text { of }\end{array}\right) ; 11 \mathrm{mi}$ S Maktau, 2 Nov 1957, E.S. Ross and R.E. Leech (1 子 ${ }^{\prime}$); Taita Discovery Centre, 30 Sept 2001, E. Selempo ($1 \delta^{\circ}$), $13-14$ Dec 2002, M.A. Prentice (2 \& \uparrow) and WJP ($1 \delta^{\circ}$); Taita Discovery Centre: Galla Hill area, 2 June 2000, M.H. Bourbin, V.F. Lee, and WJP (2 of); Tsavo National Park, Aug 1977, D. Quicke (1 ํ, BMNH); Voi, Milan Halada, 8-18 Nov 1996 (3 ㅇ, 26 ở, OÖLM), $_{22}$ Nov-2 Dec 1996 (7 ơ, OÖLM); 2 km S Voi, 16 Dec 2002, M.A. Prentice (1 ¢) ; Voi area, 23 Mar- 4 Apr 1997, Marek Halada (2 ㅇ, 8 of, OÖLM). Eastern Province: near Ewaso Ng'iro River opposite Archer's Post, M.A. Prentice, 2-8 Dec 2002
 1 ® $^{\circ}$); 5 km NNE Isiolo, 8-10 June 2000, M.H. Bourbin, V.F. Lee, and WJP (2 ㅇ, 3 º $^{\circ}$), WJP, 1 Dec 2002 (1 ه ${ }^{\circ}$), 18 Dec 2002 (1 q); Laisamis, 11 Dec 1969, M.E. Irwin and E.S. Ross (1 \&); 94 km E Thika, 5 July 1999, WJP and J.S. Schweikert (1 o, $5 \boldsymbol{o}^{\boldsymbol{*}}$). Rift Valley Province: Archer's Post at Ewaso Ng'iro River, M.E. Irwin and E.S. Ross, 6 Dec (2 f) and 12 Dec 1969 (1 f); 33 km N Lodwar, 23 Nov 2002, M.A. Prentice

 2002, M.A. Prentice ($\mathbf{~}^{\circ}$); near Mpala Research Centre at 0.30° N 36.91° E, R.R. Snelling, 26 and 27 Jan 2000 ($2 \sigma^{\star}$, LACM), 9 Feb $2000\left(1 \sigma^{\pi}\right.$, LACM), 10 Feb 2000 ($2 \sigma^{*}$, LACM); Olorgesailie, WJP and J.S. Schweikert,

 Mopti, 9 Aug 1991, WJP (1 \& $)$; 100 km NE San, 21 Aug 1991, WJP ($1 \delta^{\circ}$), Tilemsi at $20^{\circ} \mathrm{N}$, 20 Oct-2 Nov 1981, G. Popov (1 ค, KMG). MAURITANIA: Lake Aleg 30 km W Aleg, 28 Oct 1993, WJP (2 q); Tamouret Naaj ca 30 air km NE Moudjéria, 30 Oct 1993, WJP (1 \&) . NAMIBIA: Bethanien District: Riverside 135 [Farm], 23-16 [sic] Oct 1971, collector unknown (1 ơ, NMN). Gobabis District: $10-40 \mathrm{~km}$ W Gobabis, 3 Mar 1977, J.G. Rozen (1 \& , AMNH). Karasburg District: Groenrivier 265 [Farm], SE 2718 Bd [= between $27^{\circ} 15^{\prime}$ and $27^{\circ} 30^{\prime}$ S and $18^{\circ} 45^{\prime}$ and $19^{\circ} 00^{\prime} \mathrm{E}$, 25 Apr 1972, collector unknown (18°, NMN); Karasburg,
 Karibib, 13 Jan 1993, J. Gusenleitner (3 σ°, MS) and MS ($4 \sigma^{\text {or }}$, MS); 15 km W Karibib, 5 Apr 1998, FSG
 Keetmanshoop, 20 Dec 1977, H. Empey (2 ㅇ, 1 ơ, AMG); Welverdiend Farm No. 3281 km W Mata Mata at $25^{\circ} 47^{\prime} \mathrm{S} 19^{\circ} 59^{\prime} \mathrm{E}, 15$ and 16 Oct 1972, C.L. Hogue (2 ㅇ, LACM). Khorixas District: 4 km E Khorixas,

25 Feb 1996, WJP (1 d $^{\text {o }}$). Mariental District: 65 km S Mariental, 10 Feb 1990, WJP (2 or $^{\text {t }}$); 71 km E Stampriet, 27 Mar 2000, FSG ($1 \delta^{\boldsymbol{r}}$, AMG); 20 km S Stampriet, 19 Jan 1988, R. Miller and L. Stange (10^{π}, FSCA). Okahandja District: Leeu River 9 km W Okahandja, 13 Feb 1996, WJP (2 o $^{\circ}$); 25 km S Okahandja, 14 Mar
 between Omaruru and Wilhelmstal, 3 Apr 1998, FSG ($1 \mathrm{o}^{\circ}$, AMG). Rehoboth District: 7 km N Rehoboth,
 Windhoek, 4 Feb 1990, MS ($1 \overbrace{}^{\star}$, MS); 8 km S Windhoek, 20 Jan 1988, R. Miller and L. Stange (10^{7}, FSCA). SENEGAL: Ndangane, 7 Apr 1988, F. Borgato (20°, FB); 25-35 km S Richard Toll, 14 Aug and 2 Sept 1989,

 18 July 1991, WJP (1 ㅇ). SOUTH AFRICA: (ISP = M.E. Irwin, E.I Schlinger, and F.D. Parker): Eastern Cape Province: Elandsheuwels Farm 40 km W Steytlerville, 18-22 Nov 1999, ISP (1 \uparrow, USU); Grootrivierberg Range 37 km NW Willowmore, 19-24 Nov 1999, ISP ($1 \mathrm{o}^{7}$, USU); 6 km N Steytlerville, ISP (3 ㅇ, USU); 43 km NE Willowmore: Plessierivier, 18-22 Nov 1999, ISP (1 ㅇ, USU). Free State: 30 km N Colesberg at Orange River, 25 Nov 2002, Marek Halada ($1 \sigma^{\circ}$, OÖLM). Northern Cape Province: Aggeneys, 9 Nov 1990, R. Miller and L. Stange (1 \& +2 o $^{\circ}$, FSCA); Anenous at $29^{\circ} 14.5^{\prime}$ S $17^{\circ} 34.7^{\prime}$ E, $11-13$ Oct 1988 , FSG (1 $\stackrel{+}{ }$, CSE); Augrabies Falls National Park, 11 Dec 1974, H. Empey (${ }^{\circ}{ }^{\circ}$, AMG); Kalahari Gemsbok National Park: Nossob at $25^{\circ} 30^{\prime}$ S $20^{\circ} 37^{\prime}$ E, 3 Nov 1989, M.W. Mansell (5 ㅇ, 8 o $^{\prime}$, PPRI), Nossob Camp at $25^{\circ} 25^{\prime} \mathrm{S} 20^{\circ} 36^{\prime}$ E, 31 Oct-2 Nov 1990, M.W. Mansell (3 o $^{\circ}$, PPRI), 20 km S Nossob Camp, 8 Mar 1990, FSG ($1 \sigma^{\top}$, AMG); Olifantshoek, 26 Nov 1990, R. Miller and L. Stange (1 ơ $^{\circ}$, FSCA) and 10 Dec 1978, H. Empey (10°, AMG); Olifantshoek at $27^{\circ} 57^{\prime} \mathrm{S} 22^{\circ} 48^{\prime} \mathrm{E}, 20 \mathrm{Feb}$ 1990, CDE (1 \& , PPRI) and 26 Nov 1990, R. Miller and L. Stange (2 \&, $1 \sigma^{\circ}$, FSCA); Onseepkans, 13 Dec 1974, H. Empey ($1 \sigma^{\circ}$, AMG); Twee Rivieren, M.W. Mansell, $18-29$ Oct 1989 at $26^{\circ} 25^{\prime} \mathrm{S} 20^{\circ} 37^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right.$, PPRI) and $29-30$ Oct 1990 at $26^{\circ} 28^{\prime} \mathrm{S} 20^{\circ} 37^{\prime} \mathrm{E}\left(10^{\prime \prime}\right.$, PPRI). Western Cape Province: Beaufort West District, Feb 1958, S[outh] A[frican] M[useum Staff] (4 or 7, SAM); Cape of Good Hope Nature Reserve near Olifantbosbaai, 7 Jan 1997, WJP (1 ® $^{\circ}$); Ceres: upper sources Olifants River, Dec 1949, S[outh] A[frican] M[useum] Exp[edition] (1 ㅇ, SAM); 40 km E Clanwilliam: Sevilla, 27-28 Nov 1999, ISP ($1 \sigma^{7}$, USU); Dikbome Farm on Merweville-Koup road, Jan 1953, H. Zinn ($10^{\text {º }}$, SAM); Graafwater, 15 Nov 1990, R. Miller and L. Stange (10°, FSCA); Karoo National Park at $32^{\circ} 20^{\prime}$ S $22^{\circ} 30^{\prime}$ E, CDE, 13 Dec 1988 (1 \& 5 o $^{\text {* }}$, PPRI) and 13 Feb 1991 (ơ $^{\circ}$, PPRI); Karoo National Park: Mountain View, 14 Dec 1988, M.W. Mansell (1 ํ, PPRI); Kliprand 60 km WNW Loeriesfontein, 31 Oct 1999, Marek Halada (1 đ̋, OÖLM); S of Lambert's Bay, 28 Oct 1999, M. Snižek (2 ơ, OÖLM); 40 km S Lambert's Bay, 30 Oct 1999, Marek Halada (4 ơ, OÖLM); Matjiesfontein, 14-27 Nov 1928, R.E. Turner (1 甲, BMNH); Mossel Bay, Jan and Feb 1922, R.E. Turner (2 ${ }^{\text {or }}$, BMNH); Pearly Beach, Dec 1958, S[outh] A[frican] M[useum Staff] (4 \& 13 o *, SAM); Swartrivier 7 km NW Prince Albert, 31 Dec 1996, WJP (1 or $^{\circledR}$); Wellington: Rooshoek, Dec 1973, P.M.F. Verhoeff ($1 \overbrace{}^{\circ}$, RMNH). TANZANIA: Kilimanjaro Region: Kisiwani 27 km SE Same, 14 Jan 2003, WJP (1 \&). Tanga Region: 73 km NW Korogwe, Omary S. Haji and WJP, 11-12 July
 M.A. Prentice, 26 and 29-31 Dec 2002 (o $^{\circ}$) and 13 Jan 2003 ($1 \delta^{\star}$); same locality, WJP, 29-31 Dec 2002 (1 o^{\top}) and 13 Jan 2003 (1 o $^{\top}$); Pangani River Camp 86 km NW Korogwe, 19 July 2000, Omary S. Haji and WJP (1 ㅇ) . YEMEN: Sanaa, 2 and 3 Jan 1975, K. Vegter (2 ơ, RMNH).

Tachysphex camptopygus Pulawski, sp. nov.

Figures 80-83.
Derivation of name.- Camptopygus, a combination of the Greek words kamptos, bent, curved; and pyge, rump, buttocks. An allusion to the apically downcurved pygidial plate of the female.

ReCOGNITION.- Tachysphex camptopygus, known only from Namibia, is one of those species in which the convex labrum (protruding beyond the clypeal free margin) and elongate galea (equal to $0.8-0.9$ of scape) are combined with a uniformly microsculptured propodeal side. Also, the entire propodeal dorsum is setose, the setae forming a complicated pattern (Fig. 80b): the lateral ones are

Figure 80. Tachysphex camptopygus Pulawski, sp. nov.: a - female clypeus and mandible ($\times 39$); b - propodeal dorsum of female showing setal pattern ($\times 36$); c - pygidial plate of female dorsally $(\times 72)$; $\mathrm{d}-$ same in lateral oblique view $(\times 72)$.
oriented posterolaterad, the adlateral ones are oriented posteromesad and joining apically, and the central setae are oriented toward the midline (anteromesad anteriorly, posteromesad posteriorly).

The female of camptopygus has a distinctive pygidial plate, slightly broader than in similar species and with the apex slightly curving ventrad (Figs. 80c, d), as in ruber. Additional recognition features are: setae almost entirely concealing integument of scutum but not of mesopleuron, femora and gaster all or largely red, and apical depression of tergum V impunctate and asetose.

The male is characterized by a black gaster (apex reddish in many specimens) and a broad, relatively short clypeal lobe (Fig. 81a) whose maximum length equals $0.7-0.8$ of the distance between the corners; the corners are further apart from each other than from the respective orbit. The most significant recognition feature, the shape of the trimmal carina, can be seen only when the mandibles are open: the distal margin of the tooth forms a right to obtuse angle with the remaining mandibular margin (Fig. 81a), and the trimmal carina is obtuse distad of tooth (but contrastingly sharp near apex). A similar mandible is found in sahelensis and taita, but the male of camptopygus has a well-developed foretarsal rake (rake absent in sahelensis), sternum VIII tridentate apically or with a median, obtuse prominence (sternum VIII simple between lateral prongs in the other two species), and gaster all black (red basally in taita). The reddish labrum and contrastingly black clypeus are subsidiary recognition characters of camptopygus.

DeSCRIPTION.- Labrum convex, markedly protruding from beneath clypeus. Galea aciculate, with minute punctures that are several diameters apart; length equal to 0.8 of scape in female, 0.9

Figure 81. Tachysphex camptopygus Pulawski, sp. nov.: a - male clypeus and mandible ($\times 45$); b - male sternum VIII ($\times 180$); c - base of male forefemur showing notch $(\times 120)$; $\mathrm{d}-$ bottom of male forefemoral notch $(\times 420)$; e - integument of male forefemoral notch showing pores $(\times 4200)$.
in male. Scutal punctures minute, ill defined, less than one diameter apart. Mesopleuron microsculptured. Propodeal dorsum and side evenly microsculptured, not ridged (side with minute, short ridges next to metapleural suture in some females); posterior surface ridged in most specimens, but ridges evanescent or absent in some. Hindcoxal dorsum with inner margin carinate basally.

Setae nearly appressed on each side of oral fossa next to occipital carina, appressed on posto-
cellar area and scutum, largely obscuring scutal integument in female; lateral setae of propodeal dorsum oriented posterolaterad, adlateral setae oriented posteromesad and joining apically (Fig. 80b), admedian setae oriented toward midline (anteromesad anteriorly, posteromesad posteriorly).

Head and thorax black, mandible (except apically) and labrum yellowish red, also clypeal bevel in female; pronotal lobe yellowish posteriorly in some females. Frontal setae with golden tinge in females and smallest males, golden in most males. Wing membrane almost hyaline; forewing costal vein yellowish, subcostal vein brown. Color of legs and gaster: see below. Terga I-III silvery fasciate apically.

ㅇ.- Clypeus (Fig. 80a): bevel longer than basomedian area; lip free margin arcuate, with or without median emargination, laterally incised or entire. Width of postocellar area $0.7-0.8 \times$ length. Dorsal length of flagellomere I 2.2-2.3 \times apical width. Dorsal foretibial surface with two or three spines, outer surface with two or three spines. Forebasitarsus with eight or nine rake spines. Apical depression of tergum V impunctate, asetose. Pygidial plate shiny, with well-defined punctures that range from less than one to many diameters apart, with apex slightly broader than in most other species, truncate or nearly so, and slightly curving ventrad (Figs. 80c, d). Length $8.9-10.7 \mathrm{~mm}$. Femora all red or with black dorsum, black both basally and dorsally in some specimens. Tibiae and tarsi red. Gaster red or terga with irregular, black spots.
δ^{7}.- Mandible: trimmal carina with asymmetrical tooth (Fig. 81a) whose proximal margin is regularly curved and distal margin contrastingly straight (forming right to obtuse angle with remaining mandibular margin), obtuse distad of tooth, but contrastingly sharp preapically. Clypeus (Fig. 81a): bevel longer than basomedian area; lip free margin almost straight except emarginate mesally, corner not prominent; distance between corners 1.3-1.4 \times distance between corner and orbit. Width of postocellar area $0.6-0.8 \times$ length. Dorsal length of flagellomere I 1.8-1.9 \times apical width. Forefemoral notch with microscopic, erect setae (Figs. 81c-e) and minute pores that are visible only under high magnifications (Fig. 81e). Outer margin of forebasitarsus with 4-6 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Punctures of tergum VII, in some specimens, several diameters apart mesally. Sternum VIII tridentate (Fig. 81b) or middle tooth reduced to broad, round projection. Length $5.5-8.6 \mathrm{~mm}$. Volsella and penis valve: Fig. 82. Femora and gaster black or tergum VII and sternum VIII red. Tibiae and tarsi red or midtibia partly and hindtibia largely darkened.

Geographic distribution (Fig. 83).Namibia.

Records.- Holotype: io namibia:
Karibib District: Khan River 23 km N Karibib, 20-21 Feb 1996, WJP (CAS). Paratypes: NAMIBIA: Gobabis District: 40 km W Witvlei, 16 Feb 1990, WJP (3 of). Grootfontein District: 40 km NE Grootfontein, 16 Jan 1993, MS (1 ㅇ, MS). Karasburg District: Warmbad: Koanoveld, Feb 1925,

Figure 82. Tachysphex camptopygus Pulawski, sp. nov.: volsella and penis valve. [South African] Museum Expedition (1 ${ }^{\text {ot }}$, SAM). Karibib District: Ameib Farm 19 mi NW Karibib, 31 Jan-2 Feb 1972, [British Museum] Southern African Expedition (1 ơ, BMNH); 43 km E Karibib, 20 Feb 1990, MS
 1990, MS (1 ㅇ, MS), WJP (2 ㅇ); 15 km W Karibib, 26 Feb 1990, WJP ($1 \circ^{*}$); Khan River 23 km N Karibib, 20-21 Feb 1996, WJP (12 $\stackrel{+}{ }$, 5 or *); Khan River 5 mi N Usakos, 30-31 Jan 1972, [British Museum] Southern African Expedition (2 ㅇ, BMNH); 55 km SW Usakos, 25 Feb 1990, MS (1 ơ, MS $^{\circ}$); 12-18 km W Usakos,

5 Mar 1977, J.G. Rozen (1 ํ, AMNH). Khorixas District: 4 km E Khorixas, 25 Feb 1996, WJP (1 o $^{\text { }}$). Mariental District: Onze Rust 192 [Farm], 17-18 May 1973, C. Jacot-Guillarmod (1 ㄴ, AMG). Okahandja District: Leeu River 9 km W
 1996 (1 ơ); Okahandja, H. Empey, 27 Dec 1977 (4 ơ, AMG) and 29 Dec 1978 (1 ơ, AMG); Okahandja, 2-4 Feb 1972, [British Museum] Southern African Expedition (2,+ 1 ơn $^{\text {a }}, \mathrm{BMNH}$); Waldau River 17 km W Okahandja, 19 Feb 1990, MS (1 \&, $1 \sigma^{*}$, MS), WJP ($1 \sigma^{*}$); same locality, WJP, 13-14 Feb 1996 (2 0^{*}) and 12 Dec 1996 (1 0^{*}). Omaruru District: Otjikoko Süd Farm 33 mi ENE Omaruru, 10-13 Feb 1972, [British Museum] Southern African Expedition (1 ㅇ, 2 ơ', BMNH); * Otjikoko-Süd 61 [Farm, 40 km ESE Omaruru], 10-13 Feb 1972, collector unknown (2 ㅇ, NMN). Otjiwarongo District: 18 km NE Kalkfeld, 22 Feb 1996, WJP (1 ㅇ, 2 of); 25 km NE Kalkfeld, 27 Feb

Figure 83. Collecting localities of Tachysphex camptopy- gus. 1996, WJP (1 ơ); Osire, 24 Dec 1974, H. Empey (10^{*}, AMG); Waterberg, 23 Dec 1995, C. Schmidt-Egger ($10^{\text {ơ }}$, CSE). Outjo District: 5 km S Kamanjab, 24 Feb 1996, WJP (2 ơ); 31 km SE Kamanjab, 5 Mar 1990,
 Ugab River 12 km SE Outjo, 23 Feb 1996, WJP ($1+1 \circ^{*}$). Rehoboth District: 15 km N Kalkrand, 13 Feb
 Kalkrand, 18 Feb 1990, WJP (2 or *); 23 km N Rehoboth, 6 Feb 1990, MS (3 ơ, MS), WJP (12 o *); same local-

 9 Feb 1990, MS (1 ठ ${ }^{\top}$, MS); same locality, 14 Feb 1990, WJP (3 o $^{\text {r }}$). Rundu District: Rundu, 18 Jan 1993, J. Gusenleitner (1 ㅇ, MS), MS (2 ㅇ, MS); same locality, MS, 20 Jan 1993 (ơ, MS $^{\circ}$). Swakopmund District: between Kuiseb and Gaub passes at $23^{\circ} 24^{\prime}$ S $15^{\circ} 50^{\prime}$ E, date unknown, FSG ($1 \stackrel{\circ}{\uparrow} 1 \sigma^{\circ}$, AMG). Tsumeb District: Onguma Farm 55 mi NW Tsumeb, 17-19 Feb 1972, [British Museum] Southern African Expedition (1 ơ, BMNH); 10 km SE Tsumeb, 8 Mar 1990, MS (3 ơ, MS); 25 km SE Tsumeb, 15 Jan 1993, J. Gusenleitner (1 ㅇ, MS). Windhoek District: 2 km S Aris, 15 Feb 1990, WJP (2 or *); Bismarck River 30 km E Windhoek, 4 Feb 1990, WJP ($5 \sigma^{\top}$); 4 km ESE Seeis, 16 Feb 1977, J.G. and B.L. Rozen (1 ơ $^{\text {th }}$, AMNH); Windhoek, 20 Dec 1974, H. Empey ($1 \sigma^{\star}$, AMG); Windhoek, 30 Dec 1983, R. Oberprieler (3 ơ, PPRI); 36 km E Windhoek, 16
 FSCA).

Tachysphex capensis (de Saussure)

Figures 84-87.
Tachytes capensis de Saussure, 1867:71, δ^{7}. Lectotype: \boldsymbol{o}^{7}, South Africa: Western Cape Province: Cape of Good Hope: no specific locality (NHMW), here designated, examined.- Kohl, 1885:400 (listed). - As Tachysphex capensis: Dalla Torre, 1897:678 (new combination, in catalog of world Hymenoptera); Arnold, 1923a:174 (listed); Bohart and Menke, 1976:273 (listed); Dollfuss, 1989:13 (type in NHMW).
Tachysphex tuckeri Arnold, 1923:172, ơ (as Tuckeri, incorrect original capitalization). Holotype: 0^{*}, South Africa: Western Cape Province: Montagu (SAM), examined. New synonym.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:277 (listed).

RECOGNITION.- Tachysphex capensis can be recognized by the sparsely punctate posteroventral surface of the fore- and midfemora (Fig. 85b), in combination with the dark brown thoracic
vestiture. In the female, black frontal and clypeal setae are also distinctive. The following also help in identification: setae of propodeal dorsum erect or oriented posterad, terga not fasciate, female trochanteral venters almost impunctate on all legs, and male sterna III-VI with suberect setae.

Justification of new synonymy.- The lectotype of capensis and the holotype of tuckeri are certainly conspecific. These two names are therefore synonyms.

Description.- Scutal punctures sexually dimorphic (see below). Mesopleural punctures minute, several diameters apart (except anteriorly), interspaces microsculptured, dull. Punctures of mesothoracic venter varying, averaging $2-3$ to several diameters apart. Episternal sulcus complete. Propodeal dorsum all or partly ridged or rugose, remainder uniformly microsculptured; side ridged (coarsely to minutely so) except ridges evanescent or effaced along metapleuron. Hindcoxal dorsum with inner margin carinate basally.

Setae nearly appressed, shorter than midocellar diameter on postocellar area and scutum; suberect, equal to about 0.3 of basal mandibular width on each side of oral fossa next to occipital carina; erect or slightly inclined posterad on propodeal dorsum.

Head and thorax black, mandible all black or reddish mesally. Frontal and clypeal setae black in female, golden in male. Wing membrane infumate, slightly so in many males; forewing costal vein red brown, subcostal vein dark brown. Femora black, color of tibiae sexually variable (see below). Gastral segments I-III red in most specimens (I-IV in some males), reddish in one male from Het Kruis; remaining segments black (reddish brown in a male from Goegap area); but all gaster black in single female from Pakhuis Pass, one from Leipoldtville area, and a male from Mowers. Thoracic setae dark brown. Terga without silvery, apical fasciae.

ㅇ.- Labrum shallowly emarginate mesally. Clypeus (Fig. 84a): bevel about as long as basomedian area to markedly longer, with several large, conspicuous punctures; lip free margin arcuate, with one or two lateral incisions on each side. Width of postocellar area $1.0-1.3 \times$ length. Dorsal length of flagellomere I 2.6-2.8 \times apical width. Scutum: discal punctures varying from about 1-2 to many diameters apart. Trochanteral venters (on all legs) shiny, with a few, sparse punctures. Fore- and midfemoral venters and posteroventral surfaces with large, sparse punctures (Fig. 85b); interspaces unsculptured, shiny, to dull, uniformly microsculptured. Dorsal foretibial surface with three to five spines, outer surface asetose, with several spines; midtibial dorsal surface asetose between spines. Forebasitarsus with 15-18 rake spines. Length of hindtarsomeres IV about equal to width; hindtarsomeres V and claws somewhat elongate (Fig. 85c), venter with several long, erect setae, apicoventral margin slightly arcuate (Fig. 85d). Tergum V: punctures averaging many diameters apart, apical depression impunctate. Pygidial plate rounded apically (Fig. 85a). Length

Figure 84. Tachysphex capensis (de Saussure): a - female clypeus ($\times 28$); b - male clypeus ($\times 36$).

Figure 85. Tachysphex capensis (de Saussure): a - pygidial plate of female ($\times 90$); b-female forefemur, posterior view $(\times 30)$; $\mathrm{c}-$ female hindtarsomeres IV and V dorsally $(\times 45)$; d - female hindtarsomere V ventrally ($\times 120$); e - male forefemur, posterior view $(\times 40)$; $\mathrm{f}-$ base of male forefemur showing notch $(\times 120)$.
12.5-14.0 mm. Foretibia all black to largely red; mid- and hindtibiae black or midtibia partly red.
δ^{*}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 84b): bevel about as long as basomedian area; lip free margin arcuate, mostly with small, prominent projection mesally, with well-defined corner; distance between corners $0.9 \times$ distance between corner and orbit. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I $2.2-2.6 \times$ apical width. Scutum:
discal punctures averaging 1-2 diameters apart, with several punctures up to $4-5$ diameters apart in most specimens. Posterior surface of fore- and midfemora with all or most punctures several to many diameters apart; forefemoral notch setose (Figs. 85e, f). Outer margin of forebasitarsus without preapical spines or with one such spine next to apical one; outer apical spine of foretarsomere II shorter than tarsomere III. Sternal punctures becoming larger toward gastral apex, sterna III-VI with suberect setae whose length is up to $0.3 \times$ basal mandibular width. Length $9.4-13.1 \mathrm{~mm}$. Volsella and penis valve: Fig. 86. Fore- and midtibiae all red or foretibial outer surface and midtibia largely black; hindtibia varying from all black to largely red.

Geographic distribution (Fig. 87).Namaqualand and southwestern South Africa).

Records.- SOUTH AFRICA: Northern Cape Province: Arkoep Farm 6 km N Kamieskroon at $30^{\circ} 19^{\prime} \mathrm{S} 17^{\circ} 56^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$, PPRI), Bouwesdorp in Namaqualand (1 of, SAM), Calvinia: Augustusfontein ($1 \delta^{*} ; 1$ ㅇ, 1 ơ $^{\circ}$, SAM), W Calvinia ($1 \delta^{7}$, OÖLM), Dassiefontein Farm (1 \& , 2 đ̛, PPRI), Droë River in Namaqualand ($1 \mathrm{o}^{\prime}, \mathrm{SAM}$), Garies ($1 \circ$,

 PPRI), Goegap Nature Reserve: near Kraaiwater at $29^{\circ} 37^{\prime} \mathrm{S} 18^{\circ} 00^{\prime} \mathrm{E}\left(10^{\circ} ; 4 \mathrm{o}^{\circ}\right.$, AMG) and windmill at $29^{\circ} 37^{\prime} \mathrm{S} 17^{\circ} 59^{\prime} \mathrm{E}$ ($4 \mathrm{o}^{\circ}$, AMG), Groen River 40 km SW Garies (1 ơ; 2 ơn $^{\pi}$, OÖLM), Groenriviersmond (10 ơ, OÖLM), 25 km E Hondeklipbaai (2 ㅇ; 2 ㅇ, $5 \overbrace{}^{\star}$, OÖLM), Kamieskroon ($4 \AA^{\star}, \mathrm{SAM}$), 50 km W Loeriesfontein ($2 \delta^{*} ; 3 \delta^{\pi}$, OOLM), Nariep ($1 \delta^{\pi}$, AEI), Nieuwoudtville: Skuinshoogte Pass at $31^{\circ} 16^{\prime} \mathrm{S} 19^{\circ} 08^{\prime} \mathrm{E}\left(20^{\circ} ; 70^{\circ}\right.$, AMG), 23 km E Port Nolloth at $29^{\circ} 18.3^{\prime} \mathrm{S} 17^{\circ} 06.3^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right), 40 \mathrm{~km}$ N Port Nolloth at $28^{\circ} 54.3^{\prime} \mathrm{S} 16^{\circ} 44.3^{\prime} \mathrm{E}\left(1 \mathrm{o}, 3 \mathrm{o}^{\circ}\right)$, Taaiboskraal/ Anegas at $30^{\circ} 07^{\prime} \mathrm{S} 18^{\circ} 01^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\prime}\right.$, AMG), Voëlklip at $29^{\circ} 45^{\prime} \mathrm{S} 17^{\circ} 22^{\prime} \mathrm{E}$ (20°, AMG), Wallekraal ($1 \mathrm{o}^{\circ}, \mathrm{SAM}$), 7 km NW Wallekraal ($1+$, AMG). Western Cape Province: Botterkloof Pass 56 km NE Clanwilliam at $31^{\circ} 48^{\prime} 46^{\prime \prime} \mathrm{S}$ $19^{\circ} 15^{\prime} 14^{\prime \prime} \mathrm{E}\left(1 \delta^{\circ}, \mathrm{CSE}\right)$, Bulshoek between Klawer and Clanwilliam (2 + , SAM), Cape of Good Hope (10^{7}, NHMW, lectotype of capensis), Citrusdal to Clanwilliam ($1+1 \delta^{\circ}$, SAM), 5 km S Clanwilliam at $32^{\circ} 11.4^{\prime} \mathrm{S}$
 SAM), Knersvlakte 20 km N Vanrhynsdorp at $31^{\circ} 26.4^{\prime} \mathrm{S} 18^{\circ} 41.8^{\prime} \mathrm{E}\left(18^{\circ}\right)$ and 48 km N Vanrhynsdorp at $31^{\circ} 14^{\prime} \mathrm{S} 18^{\circ} 32^{\prime} \mathrm{E}\left(3 \sigma^{\circ}, \mathrm{AMG}\right.$), Lambert's Bay at $32^{\circ} 04^{\prime} \mathrm{S} 18^{\circ} 20^{\prime} \mathrm{E}\left(1 \sigma^{\circ} ; 2\right.$ o $^{\circ}$, PPRI), S Lambert's Bay ($3 \sigma^{\circ}$, OÖLM), Leipoldtville to Eland's Bay ($1 \stackrel{\circ}{ } \quad \sigma^{*} ; 3 \sigma^{*}, S A M$), Montagu ($2 \sigma^{*}$, including holotype of tuckeri,

 JS).

Tachysphex carinatus Pulawski, sp. nov.

Figures 87, 88.
Derivation of name.- The name carinatus refers to the conspicuously carinate sternum I, the main recognition character of this species.

RECOGNITION.- Tachysphex carinatus is unique in having a markedly prominent median carina on sternum I (Fig. 88c). Subsidiary recognition features are: supraantennal swelling densely punctate (almost like the adjacent frons), clypeal bevel ill defined to absent, tarsi shortened (length of midtarsomere III about $1.0 \times$ apical width in female and $1.2 \times$ in male), and in the female flagellomeres III-X flattened laterally and with characteristic sensory areas and the pygidial plate punctatorugose.

Description.- Labrum slightly convex, slightly protruding from beneath clypeus. Galea shiny, sparsely punctate, slightly longer than wide, as long as 0.6 of scape. Supraantennal swelling densely, uniformly punctate and setose, almost like adjacent frons. Scutal and mesopleural punctures well defined, one diameter or less apart; interspaces shiny. Propodeal dorsum rugose, in some specimens also with irregular, longitudinal ridges; side coarsely rugose or longitudinally ridged. Hindcoxal dorsum with inner margin carinate, carina somewhat expanded basally. Sternum I with

JK \& CS
Figure 88. Tachysphex carinatus Pulawski, sp. nov.: a - female clypeus and mandible; b-male clypeus and mandible; c - gastral base; d-volsella; e - penis valve.
longitudinal carina that is conspicuously prominent apically (Fig. 88c).
Setae appressed on postocellar area and scutum; suberect on each side of oral fossa next to occipital carina, about as long as midocellar diameter; most setae on propodeal dorsum oriented obliquely anterad, but lateral setae oriented posterad and joining apicomesally.

Head and thorax black, mandible either all black or dark reddish preapically. Frontal setae silvery in both sexes. Wing membrane yellowish brown; costal vein of forewing reddish brown, subcostal vein dark brown. Femora, tibiae, and tarsi black in most specimens (hindtibia reddish basally in some), but all tibiae and tarsi red in male from 17 km E Chalinze (except inner surface of foretibia black), and hindfemur apically and all tibiae and tarsi red in single female from Zimbabwe. Gastral segments I-III mostly red, but gaster all black in some males. Terga I-III silvery fasciate apically (fasciae golden in female from Zimbabwe).

ㅇ.- Clypeus (Fig. 88a): bevel not differentiated, median section finely punctate and with several larger punctures in ventral half; lip free margin arcuate, with two lateral incisions on each side. Width of postocellar area $1.2 \times$ length. Dorsal length of flagellomere I $1.6 \times$ apical width; flagellomeres III-X flattened laterally, with characteristic sensory areas. Dorsal foretibial surface with a few inconspicuous bristles, outer surface with two fine bristles, its punctures and setae less dense than on remaining surface. Tarsi short: length of fore- and midtarsomeres II about 1.3 and $1.4 \times$ apical width, respectively; of midtarsomere III 1.0 apical width; of fore-, mid-, and hindtarsomere IV about $1.0,0.9$, and $1.0 \times$ apical width, respectively. Forebasitarsus with nine or ten rake spines. Apical depression of tergum V densely punctate except unsculptured along posterior margin. Pygidial plate punctatorugose, its apex truncate. Length $9.3-10.5 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 88b): bevel rudimentary or not differentiated, middle clypeal section finely punctate, in ventral half also with several larger punctures; lip free margin arcuate, with well-defined corner; distance between corners 1.1-1.2× distance between corner and orbit. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I $1.1-1.2 \times$ apical width, equal to 0.7 of II. Forefemoral notch with microscopically setose bottom. Length of midtarsomeres II and III $1.7-1.8$ and $1.2 \times$ apical width, respectively. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Sternum VIII tridentate apically. Length $7.5-9.2 \mathrm{~mm}$. Volsella and penis valve: Figs. 88d, e.

Geographic distribution (Fig. 87).— Tanzania to Zimbabwe.
Records.- Holotype: 우, TANZANIA: Coast Region: 17 km E Chalinze at $6^{\circ} 39.2^{\prime} \mathrm{S} 38^{\circ} 30.2^{\prime} \mathrm{E}$, 21 July 2001, Omary S. Haji and WJP (CAS). Paratypes: TANZANIA: Coast Region: 17 km E Chalinze, 28 June 2001, M.H. Bourbin and WJP ($1 \mathrm{o}^{\circ}$); 60 km ENE Morogoro, 14 June 2001, M.H. Bourbin and WJP (18). Morogoro Region: 48 km W Morogoro, M.H. Bourbin and WJP, 6 June 2001 (1 $\mathrm{o}^{\mathrm{*}}$), 11 June 2001
 60 road km SW Morogoro, 5 June 2001, M.H. Bourbin and WJP ($1 \mathrm{o}^{\boldsymbol{\circ}}$). ZIMBABWE: Lake Kyle Recreational Park [shore of Lake Mutirikwi near Masvingo], 16 Apr 1985, J. Gusenleitner (1 \&).

Tachysphex cavatus Pulawski, sp. nov.

Figures 89, 90.
Derivation of name.- Cavatus, Latin masculine adjective meaning hollow or arched inward; with reference to the unusual scutellum of this species.

Recognition.- Tachysphex cavatus, an endemic of Madagascar, is instantly recognized by its unique, thickened and raised scutal flange and deeply sunken lateral scutellar portion (Figs. 89b, c). The short but conspicuous longitudinal ridges next to the scutal hindmargin help in recognition.

Description (based on male only).- Supraantennal swelling lower than average for the

Figure 89. Tachysphex cavatus Pulawski, sp. nov.: a - male clypeus and mandible; b - male thorax in dorsal view; c - male thorax in lateral oblique view; d - volsella; e - penis valve.
genus, finely, uniformly microsculptured, dull, but asetose and thus contrasting with surrounding surface. Scutal and mesopleural punctures well defined, conspicuous, less than one diameter apart; interspaces unsculptured, shiny. Scutum with several short but conspicuous, longitudinal ridges next to hindmargin; scutal flange becoming raised and unusually thick posterad, its apex protruding beyond scutal hindmargin (Figs. 89b, c). Scutellar lateral area and axillar posterolateral surface conspicuously, deeply sunken (Figs. 89b, c). Mesopleural flange expanded, subalar fossa deeper than in most other Tachysphex. Propodeal dorsum rugose and at least partly ridged; side punctate (interspaces confluent into ill-defined ridges), ridged anteriorly. Hindcoxal dorsum with inner margin carinate basally.

Setae erect on postocellar area, suberect on scutum, no longer than midocellar diameter; about $0.5 \times$ basal mandibular width on each side of oral fossa next to occipital carina; on propodeal dorsum diverging obliquely anterad from midline.

Head, thorax, gaster and legs black, mandible reddish preapically. Frontal setae silvery. Wing membrane slightly infumate; costal and subcostal veins of forewing black. Terga I-IV silvery fasciate apically.

ㅇ.- Unknown.

8゚.- Mandible: trimmal carina with tooth and cleft (Fig. 89a). Clypeus (Fig. 89a): bevel not differentiated, clypeal middle section setose to lip base; lip free margin evenly arcuate, with well-defined corner; distance between corners equal to that between corner and orbit. Width of postocellar area 2.0-2.2 \times length. Dorsal length of flagellomere I $1.5-1.6 \times$ apical width. Forefemoral notch with microscopically setose bottom. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Venter of tarsomeres V with one preapical spine. Sternal punctures well defined. Apical margin of sternum VIII with median projection. Length $7.6-8.1 \mathrm{~mm}$. Volsella and penis valve: Figs. 89d, e.

Geographic distribution (Fig. 90).Fourth Series, Volume 58, Supplement I

Figure 90. Collecting locality of Tachysphex cavatus and ampijoroa

Madagascar.
RECORDS.- Holotype: σ^{\top}, MADAGASCAR: Mahajanga Province: Parc National d'Ankarafantsika: Ampijoroa Station Forestière 40 km NW Andranofasika at $16^{\circ} 19^{\prime} 15^{\prime \prime} \mathrm{S} 46^{\circ} 48^{\prime} 38^{\prime \prime} \mathrm{E}, 26$ March-1 Apr 2001, B. Fisher, Ch. Griswold, et al. (CAS). Paratypes: same data as holotype ($3 \mathrm{o}^{7}$), same data but 18.3 km NE Tsaramandroso at $16^{\circ} 13^{\prime} 41^{\prime \prime} \mathrm{S} 46^{\circ} 08^{\prime} 37^{\prime \prime} \mathrm{E}, 2-8$ Apr 2001 (1 o°).

Tachysphex cheops de Beaumont

Figures 91, 92.
Tachysphex cheops de Beaumont, 1940:163, \circ, \mathcal{O}°. Holotype: \uparrow, Egypt: Cairo-Suez road (originally A. Mochi collection, now Entomological Society of Egypt[?]), not examined. - Honoré, 1942:55 (in checklist of Egyptian Sphecidae); de Beaumont, 1947a:158 (in revision of Egyptian Tachysphex), 1950b:17 (Egypt), 1953a:175 (Mauritania), 1966:212 (Egypt); Pulawski, 1971:291 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:10 (Israel); Bohart and Menke, 1976:273 (listed); Krombein and Pulawski, 1994:64 (Pakistan); Roche and Zalat, 1994:115 (Egypt: Sinai Peninsula).
As Tachysphex panzeri: Guiglia, 1940:289, fig. 1 (Libya), corrected to Tachysphex cheops by Pulawski, 1971:291.

ReCognition.- Tachysphex cheops has the labrum markedly convex and protruding beyond the clypeal free margin (Figs. 91a, b), galea about as long as the scape, the propodeal side uniformly microsculptured (not ridged), and the setae of lower gena suberect but not sinuous, those adjacent to the hypostomal carina markedly longer than the midocellar diameter ($0.3-0.4 \times$ basal mandibular width). It differs from other such species in having the free margin of the lateral clypeal lobe only shallowly concave (Figs. 91a, b), the trimmal carina in the female with an unusually low subbasal teeth (Fig. 91a), the male clypeus with an oblique carina emerging from each lip corner but not extending beyond the lip itself, and the bevel shorter than basomedian area to nearly reduced. Subsidiary recognition features include: setae, next to occipital carina on each side of the carina's dorsal midpoint, suberect and longer than midocellar diameter; propodeal side setose throughout (also setose in many West African calidus, but setae fine and inconspicuous anteriorly); female tergum V sculptured and setose throughout; and male clypeus averaging broader than in calidus (distance between corners 1.0-1.4 \times distance between corner and orbit rather than $0.7-1.0$).

Figure 91. Tachysphex cheops de Beaumont: a - female clypeus and mandible; b - male clypeus and mandible; c - female head in lateral view showing genal setae; d - volsella; $\mathrm{e}-$ penis valve.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea densely punctate (except anteriorly), punctures about one diameter apart, as long as 1.0-1.1 of scape. Free margin of lateral clypeal section less deeply concave than in most other species (Figs. 91a, b). Scutal punctures fine, shallow, nearly contiguous. Mesopleuron dull, uniformly micropunctate. Propodeal dorsum and side evenly microareolate, not ridged. Hindcoxal dorsum with inner margin not carinate.

Setae appressed on postocellar area and scutum, suberect next to occipital carina along its entire length (Fig. 91c), erect on each side of oral fossa next to occipital carina (here about 0.3-0.4 \times basal mandibular width), largely concealing integument of scutum and mesopleuron. Setae of propodeal dorsum arranged in various patterns: oriented posterad along midline and obliquely posterolaterad on sides in some specimens; in others, parts of setae pointing anterad (patterns poorly preserved in most museum specimens); propodeal side setose throughout.

Head and thorax black, but the following are yellow or yellowish red: mandible (except apically), labrum, clypeal bevel and lip, and pronotal lobe posteriorly (flagellar venter reddish in single female from Nouakchott area, Mauritania). Frontal setae silvery in both sexes. Wing membrane nearly hyaline; forewing costal and subcostal veins light brown. Femora red, black basally and/or
dorsally (all femora black except apically in single male from Masirah Island, Oman), tibiae and tarsi red. Gaster all red in Pakistani and several Mauritanian specimens, tergum V more or less darkened in most African females, and segments I-III red and remainder brown or reddish in most African males and that from Masirah Island. Terga I-IV (I-III in Egyptian males) silvery fasciate apically.

ㅇ.- Mandible: trimmal carina with unusually low subbasal teeth (Fig. 91a). Clypeus (Fig. 91a): bevel shorter than basomedian area; lip free margin arcuate, shallowly emarginate mesally, broadly and shallowly sinuous laterally; free margin of lateral section shallowly concave. Width of postocellar area $0.6 \times$ length. Dorsal length of flagellomere I $2.5-3.6 \times$ apical width. Forecoxa with small apical prominence. Dorsal foretibial surface with two or three spines, outer surface with two or three spines. Forebasitarsus with eight or nine rake spines. Apical spines of hindtarsomere IV reaching claw bases. Apical depression of tergum V densely punctate and setose throughout. Pygidial plate: apex emarginate, surface microsculpture inconspicuous to well defined, hence integument varying from shiny to dull. Length $10.0-14.0 \mathrm{~mm}$.
σ^{π}.- Mandible: trimmal carina obtusely angulate near midlength, without cleft. Clypeus (Fig. 91b): bevel shorter than basomedian area, almost all reduced in some specimens; lip free margin arcuate, emarginate mesally in most specimens; corner rectangular to rounded; distance between corners $1.0-1.4 \times$ distance between corner and orbit; oblique carina emerging from lip corner obtuse, not extending onto bevel. Width of postocellar area $0.6-0.9 \times$ length. Dorsal length of flagellomere I $2.1-2.5 \times$ apical width. Forefemoral notch dull, microsculptured, microscopically setose. Outer margin of forebasitarsus with five or six rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Length $6.7-11.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 91d, e.

Geographic distribution (Fig. 92).— Libya, Egypt, and Israel, south to Mauritania, Niger, and Somalia, east to Arabian Peninsula and Pakistan.

Records.-EGYPT: Al Buhayrah: Sahara Inn Hotel 117 km SE Alexandria (3 ㅇ, 5 ơ 7, FSCA). Al Fayyum: Karanis ($3 \delta^{\circ} ; 1 \delta^{\circ}$, MSNT), Kom Osheim (5 \& $9 \delta^{\circ}$), Wadi Rayyan at $29^{\circ} 02^{\prime} 57^{\prime \prime} \mathrm{N} 30^{\circ} 18^{\prime} 11^{\prime \prime} \mathrm{E}$ (1 $\frac{+}{}, 1 \mathrm{o}^{\circ}$, AMNH). Al Iskanderiyah (= Alexandria): Agami (de Beaumont, 1966), 50 km SSW Alexandria ($1 \sigma^{\prime}$, MSNT). Al Jizah (= Ghiza): Abu Rawash (4 ㅇ, $12 \sigma^{\circ}$), 42 km NW Cairo (Pulawski, 1971), Dahshur
 Beaumont, 1940). Al Wadi al-Jadid: Sitra in Siwa oasis at $28^{\circ} 42^{\prime} 48^{\prime \prime N} 26^{\circ} 51^{\prime} 12^{\prime \prime}$ E (10°, AMNH). As

Figure 92. Collecting localities of Tachysphex cheops.

Sharquiyah: Serapeum (1 a^{*}). Matruh: Wadi Natrun (Pulawski, 1971). Sina (= Sinai): Al Arish (de Beaumont, 1940), Ras Sudr (Roche and Zalat, 1994), Wadi Ghaib 50 km SSE Nuweiba (1 ${ }^{\text {o }}$), Wadi Sudr 50 air km SE Suez ($1 \sigma^{\star}$), 15 km NNW Tor ($1 \sigma^{\star}$, MSNT). Location unknown: Sialah ($1 \stackrel{\circ}{ }+$ CU). ISRAEL: Bat Yam (1 ㅇ, 1 o $^{\top}$), 32 km SE Beersheba ($1 \sigma^{*}$, CSE), Haifa: Hishon river sand flats (de Beaumont, Bytinski-Salz, and Pulawski, 1973). LIBYA: Cyrenaica: Benghazi (de Beaumont, 1947a), Jalu (Guiglia, 1940, as Gialo). MAURITANIA: Akjoujt (de Beaumont, 1953a), Fdérik (de Beaumont, 1953a), 70 km SE Nouakchott (1 ㅇ), Oued Henné ca 50 air km NE Moudjéria (2 ㅇ, MSNT), Oued Tayart 30 air km NW Atar ($2 \sigma^{*}$), Rachid 40 km W
 1 ㅇ, KMG). NIGER: Agadez Region: 30 km S Agadez at $16^{\circ} 39.0^{\prime} \mathrm{N} 7^{\circ} 58.4^{\prime} \mathrm{E}$ (2 ${ }^{\circ}$). OMAN: 5 km N Daghmar at $23^{\circ} 12.9^{\prime} \mathrm{N} 58^{\circ} 55.8^{\prime} \mathrm{E}\left(1 \mathrm{o}\right.$) , Hail al Ghaf at $23^{\circ} 09.7^{\prime} \mathrm{N} 58^{\circ} 55.5^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$, OHL), Masirah Island: RAF camp ($\left.10^{\circ}, \mathrm{KMG}\right), 250 \mathrm{~km} \mathrm{~S}$ Nizwa $=100 \mathrm{~km}$ SE Ghaba Hotel ($1 \mathrm{o}, \mathrm{CSE}$), Wadi Qitbit at $19^{\circ} 09.4^{\prime} \mathrm{N}$ $54^{\circ} 30.5^{\prime} \mathrm{E}\left(1+\circ, 5 \sigma^{\star}\right)$, Wahiba Sands $11 \mathrm{~km} \mathrm{~S} \mathrm{Al} \mathrm{Qabil} \mathrm{at} 22^{\circ} 31.0^{\prime} \mathrm{N} 58^{\circ} 41.2^{\prime} \mathrm{E}\left(4 \sigma^{*}\right)$, Wahiba Sands 22 km S Al Qabil $22^{\circ} 22.6^{\prime} \mathrm{N} 58^{\circ} 38.7^{\prime} \mathrm{E}(1 \quad$ ㅇ) $)$. PAKISTAN: Karachi (2 ㅇ, 5 o $^{\circ}, \mathrm{BMNH}$), Sandspit Beach near Karachi
 (1 ơ $^{\circ}$, BMNH). UNITED ARAB EMIRATES: Abu Dhabi ($1+$, KMG), Suweihan 105 km from Abu Dhabi ($1+$, KMG). COUNTRY UNKNOWN: Khor Erkuk ($1 \circ$, BMNH).

Tachysphex chephren de Beaumont

Figures 93, 94.
Tachysphex chephren de Beaumont, 1940:164, 우, \boldsymbol{o}^{*}. Holotype: ㅇ, Egypt: Wadi Hof near Cairo (originally A. Alfieri coll., now USNM), not examined.- de Beaumont, 1947a:165 (in revision of Egyptian Tachysphex); Pulawski, 1971:311 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:11 (Israel); Bohart and Menke, 1976:273 (listed); Roche and Zalat, 1994:115 (Egypt: Sinai Peninsula).

Recognition.- Tachysphex chephren, known from Lower Egypt and Israel, has a convex labrum (protruding beyond the clypeal free margin) and an elongate galea (length equal to 1.1 of scape). The species is further characterized by a densely punctate scutum (punctures minute, about one diameter apart), the setae adjacent to the hypostomal carina straight and about $1.5 \times$ midocellar diameter long, appressed on the postocellar area and scutum. In addition, it has an infumate wing membrane, all black gaster (tergum II reddish basomedially in some males), and all black mid- and hindtibiae (midtibia reddish basally in some males). In the female, the clypeal lip is evenly arcuate (emarginate mesally), without lateral incision of sinuosity. In the male, the forebasitarsus has no rake spines, and the outer apical spine of foretarsomere II is markedly shorter than foretarsomere III.

The species is similar to liviformis and notogoniaeformis. Unlike most specimens of these species, the midfemoral venter of chephren is slightly compressed to form an obtuse crest (rather than evenly rounded). Unlike notogoniaeformis, the propodeal dorsum is all setose, with the median setae oriented anterad or anterolaterad (rather than glabrous apicomesally), and in the male the setae of the postocellar impression are appressed (rather than being erect, about $0.5 \times$ midocellar diameter long). Unlike liriformis, terga I-III are silvery fasciate apically.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea densely micropunctate, longer than wide in profile, its length equal to 1.1 of scape. Scutal punctures minute, about one diameter apart. Mesopleuron evenly microsculptured, dull. Propodeal dorsum and side evenly microsculptured, but side ridged in some females. Hindcoxal dorsum with inner margin carinate basally. Midfemoral posterior surface somewhat flattened, resulting in obtuse crest on venter.

Setae erect, about $1.5 \times$ midocellar diameter long, on each side of oral fossa next to occipital carina; appressed on postocellar area and scutum; median setae of propodeal dorsum oriented anterad or obliquely anterad, adlateral setae oriented posterad and joining apicomesally.

CS \& JK
Figure 93. Tachysphex chephren de Beaumont: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.

Head and thorax black, mandible reddish mesally. Frontal setae silvery in female, golden (except ventrally) in male. Wing membrane infumate; costal vein of forewing brown, subcostal vein dark brown to black. Femora black; tibiae black except foretibia brown or reddish, at least on inner surface; also midtibia reddish basally in some males; tarsi reddish at least apically. Gaster black, tergum II reddish basomedially in some males. Terga I-III silvery fasciate apically.

ㅇ.- Clypeus (Fig. 93a): bevel longer than basomedian area; lip free margin arcuate, emarginate mesally, neither incised nor sinuous laterally. Width of postocellar area $0.7-0.8 \times$ length. Dorsal length of flagellomere I 3.3-3.8 \times apical width. Dorsal foretibial surface with two or three spines, outer surface with two

Figure 94. Collecting localities of Tachysphex chephren, claripes, and clypeatus.
spines. Forebasitarsus with eight or nine rake spines. Apical depression of tergum V varying: either densely micropunctate and setose or microsculptured but impunctate and asetose. Pygidial plate with punctures that are many diameters apart; interspaces unsculptured to alutaceous. Length $10.0-13.0 \mathrm{~mm}$.
σ^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 93b): bevel longer than basomedian area, delimited anterolaterally by oblique carina that emerges from lip corner; lip free margin arcuate, with well-defined corner; distance between corners $0.9-1.1 \times$ distance between corner and orbit. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I 2.7-3.4 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Hindfemoral venter with inner (= posterior) margin sharp in distal half except dull in smallest specimens. Length 7.8-11.0 mm. Volsella and penis valve: Figs. 93c, d.

Geographic distribution (Fig. 94).— Lower Egypt, Israel.
Records.- EGYPT: Al Qahirah (= Cairo): Wadi Hof (2 \& $+1 \mathrm{~d}^{\circ}$). Sina: Wadi Ghaib 50 km SSE Nuweiba ($1 \mathrm{o}^{\circ}$), Wadi Malhaq 50 air km N Sharm el Sheikh (2 o°), Wadi Sudr 50 air km SE Suez ($1 \mathrm{~d}^{\mathrm{o}^{*}}$). Location unknown: Wadi Amraga (Pulawski, 1971). ISRAEL: En Boqeq (1 \&), En Gedi (2 o $^{\text {º }}$), En Zeelim at Dead Sea at $31^{\circ} 23^{\prime} \mathrm{N} 35^{\circ} 20^{\prime} \mathrm{W}\left(1 \delta^{\circ}\right)$, Wadi Raman 70 km S Beersheba (Pulawski, 1971).

Tachysphex claripes Arnold, new status

Figures 94, 95.
Tachysphex diabolicus var. claripes Arnold, 1924:51, \uparrow, \mho°. Lectotype: \circ, Zimbabwe: Bulawayo (SAM), here designated.-Arnold, 1930:3 (in checklist of Afrotropical Sphecidae).- As Tachysphex diabolicus claripes: Bohart and Menke, 1976:273 (new status, listed).
Tachysphex diabolicus var. trifasciatus Arnold, 1924:51, i, or $^{\circ}$. Lectotype: \circ South Africa: Eastern Cape Province: Algoa Bay near Port Elizabeth (TMP), here designated, examined. New synonym.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae).- As Tachysphex diabolicus trifasciatus: Bohart and Menke, 1976:273 (new status, listed).

Lectotype selection.- According to Arnold's original description of claripes, all the specimens examined (1 ㅇ, $4 \boldsymbol{\sigma}^{\circ}$) came from Bulawayo. In fact, only the female (SAM, designated by Arnold as type) and a male (TMP) are labeled Bulawayo, whereas the male designated as type (and a male designated as paratype, both SAM) originated from Forest Valley. No additional male specimen is labeled as a paratype. I have selected the female as the lectotype of claripes, and Arnold's male type as the paralectotype.

Recognition.- Tachysphex claripes has the labrum convex and protruding beyond the clypeal free margin (flat and not protruding in many males), galea almost as long as the scape, propodeal dorsum with a glabrous apicomedian area that is several midocellar diameters wide (Fig. 95c), gaster all black or reddish apically, and at least terga I and II (mostly I-III or I-IV) silvery fasciate apically. In addition, the setae of the episcrobal area are erect or nearly so and at least as long as midocellar diameter (nearly appressed and shorter than midocellar diameter in lacertosus). In the male, the clypeal lobe has a well-defined corner (corner rudimentary or absent in psilonotus). The female of psilonotus is morphologically identical to claripes, and the two can be distinguished only by association with topotypical males; claripes, however, is widely distributed in Angola, Namibia, Zimbabwe, and South Africa, whereas psilonotus has been found only in a few localities in southern South Africa; sympatric occurrence of these species is unknown. Tachysphex diabolicus also resembles claripes, but it lacks tergal fasciae and the male clypeal lobe is mostly narrower (distance between corners $0.5-0.8 \times$ distance between corner and orbit, while $0.8-1.1$ in claripes).

Figure 95. Tachysphex claripes Arnold: a - female clypeus and mandible; b-male clypeus and mandible; c - propodeal dorsum showing setal pattern; d-f - volsella; g - penis valve.

JUSTIFICATION OF NEW SYNONYMY.- Two varieties of diabolicus described by Arnold (1924), claripes and trifasciatus, differ only in the number of the tergal fasciae and color of the legs and wings, none of which is constant (see Variation below for details). I do not feel that these forms warrant a formal nomenclatural status, and I regard them as synonyms. Acting as first reviser, I
select the former name as valid and the latter as its junior synonym (claripes and trifasciatus were proposed in the same publication on the same page).

Status of the species.- Tachysphex claripes is markedly variable in leg and wing color as well as the shape of the volsella and may actually be a complex of cryptic species. Tachysphex diabolicus is similar and could be considered a form of claripes in which the tergal fasciae are fully reduced (the color variation is almost identical in the two). However, I have not observed intergradation from fasciate to nonfasciate terga, and the clypeal lobe of the male of claripes is usually wider than in diabolicus (see Recognition above). These facts suggest that claripes and diabolicus are separate species, and I treat them as such, at least provisionally.

Description.- Labrum convex and protruding from beneath clypeus (but less so than in panzeri or pentheri), flat and not protruding in many males, its free margin only slightly arcuate mesally. Galea with punctures that average several diameters apart, longer than wide in profile, as long as 0.8 of scape. Scutal punctures about one diameter apart, but up to several diameters apart in many specimens (especially males). Mesopleuron dull, conspicuously, evenly microsculptured, with vestigial, shallow micropunctures. Episternal sulcus complete in some specimens. Propodeal dorsum evenly microsculptured; side ridged in female and some males, partly ridged or evenly microsculptured in many males. Hindcoxal dorsum with inner margin carinate, carina slightly expanded basally. Sternum I of many specimens apically with rudimentary, longitudinal carina.

Setae erect and slightly longer than midocellar diameter on each side of oral fossa next to occipital carina, appressed on postocellar area and scutum; propodeal dorsum with nearly appressed, inconspicuous setae that are oriented posterad, apicomesally with glabrous area that is several midocellar diameters wide (Fig. 95c).

Head and thorax black, mandible reddish at least mesally. Frontal setae silvery to golden in female, golden in male. Wing membrane and costal and subcostal veins varying in color (see Variation below). Legs varying from red to black (see Variation below). Gaster black except female segments V and VI red in single female from Bulawayo, Zimbabwe, and tergum VII red in some males from that country. Terga I-III or I-IV silvery fasciate apically (only I and II in some specimens).

ㅇ.- Clypeus (Fig. 95a): bevel longer than basomedian area; lip free margin arcuate or emarginate mesally, incised laterally. Width of postocellar area $0.5-0.9 \times$ length. Dorsal length of flagellomere I $2.4-3.0 \times$ apical width. Dorsal foretibial surface with two or three spines, outer surface with one or two spines, in many specimens with sparse micropunctures (that are several diameters apart). Forebasitarsus with 6-8 rake spines (mostly seven). Apical depression of tergum V varying from punctate and setose throughout to partly or all impunctate and asetose. Pygidial plate alutaceous to unsculptured between punctures (but markedly, uniformly microsculptured in single female from Aus, Namibia); punctures averaging several diameters apart, but many punctures about one diameter apart near margin. Length $10.4-13.0 \mathrm{~mm}$.
0^{*}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 95b): bevel as long or longer than basomedian area; lip free margin evenly arcuate, obtusely pointed, or emarginate mesally, with well-defined corner and short carina emerging from each corner; distance between corners $0.9-1.1 \times$ distance between corner and orbit in most specimens, $0.8-0.9$ in some. Width of postocellar area $0.4-0.8 \times$ length. Dorsal length of flagellomere I $1.6-2.3 \times$ apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with 3-6 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Sternum VIII varying from nearly straight between lateral prongs to tridentate. Length $7.7-11.6 \mathrm{~mm}$. Volsella and penis valve: Figs. 95d-e.

Variation.- Tachysphex claripes varies in the shape of the male hindfemur, setation of the male sterna, color of wings and legs, and in the number of tergal fasciae, as described below.

Male hindfemur: the inner margin of the hindfemoral venter is either dull or sharp in distal half (sharp in many South African specimens). Both form may occur within the same population, e.g., in Richtersveld National Park, South Africa.

Male sterna: the apical depressions of sterna IV-VI have suberect setae that are up to one midocellar diameter long in specimens from Angola, Namibia (Aroab to Koës, Kalkrand area), Zimbabwe, and South Africa: Arkeop Farm, Goegap Nature Reserve, E Kamieskroon, Koup Siding to Laingsburg, Letaba Reserve, Nieuwoudtville, Ratelfontein area, Richtersveld National Park, and some from Springbok area; these setae are nearly appressed in Namibian males from Okahandja area, in South African males from Algoa Bay, Ceres, 20 km N Citrusdal, Grahamstown area, Groenkloof, Kenton-on-Sea, Mbazwana, and some from Springbok area; and appressed in South African specimens from Bains Kloof, Kamieskroon, Kamieskroon to Sors Sors, S Lambert's Bay, Martindale Forest Reserve, Oudtshoorn, Paleisheuwel, Port Alfred District, Swartberg Pass, Voëlklip, and Wellington.

Color of wings:
(a) wing membrane yellow, costal and subcostal veins reddish brown: specimens from Angola, Namibia (Okahandja area), Zimbabwe, and the following South African localities: Algoa Bay, Bains Kloof, 20 km N Citrusdal, Durban, 20 km S Emanguzi, Grahamstown area, Kenton-on-Sea, Knersvlakte, Letaba Reserve, Martindale Forest Reserve, Mbawana, Oudtshoorn, Port Alfred District, Ratelfontein area, Stellenbosch, Swartberg Pass, Uniondale, Vlakwater, and Wellington;
(b) wing membrane yellow, costal vein brown, subcostal vein black: males from Groenkloof, E Kamieskroon, Kamieskroon to Sors Sors, Nieuwoudtville, Richtersveld National Park, and Springbok area;
(c) wing membrane slightly infumate, costal vein light brown, subcostal vein dark brown: Angola, Namibia (Kalkrand area, Mariental to Keetmanshoop), and South African specimens: females from Die Berg, Elisabethfontein, Kamiesberg area, Kamieskroon, and Voëlklip, and males from Citrusdal area, Goegap Nature Reserve, Koup Siding to Laingsburg, Lambert's Bay area, Richtersveld National Park, and Vioolsdrif area;
(d) wing membrane infumate, costal and subcostal veins reddish brown: female from Swartberg Pass, male from Ceres (membrane slightly infumate);
(e) wing membrane infumate, costal vein brown and subcostal vein almost black: single female from Aus, Namibia; South African females from Cape Town, Hilton Farm, Hondeklipbaai area, Olifantsrivier, Olifantsrivier upper sources, Paleisheuwel; South African males from Arkoep Farm and Keimos to Lutzputz; and females and males from Lambert's Bay.

Color of female legs:

(a) femora, tibiae, and tarsi red (except femora black basally): specimens from Zimbabwe and South African specimens from Cape Town, Hilton Farm, and Olifantsrivier;
(b) femora black (except apically), tibiae and tarsi red: females from Algoa Bay, Kenton-on-Sea, Knersvlakte, Uniondale, and Vlakwater, all South Africa;
(c) femora and tibiae black except foretibial inner surface red in females from the following South African localities: Elisabethfontein, Lambert's Bay area, Paleisheuwel, Swartberg Pass, Voëlklip (also midtibial venter in a female from Algoa Bay, Durban, and some females from Clanwilliam area, S Lambert's Bay, and Paleisheuwel);
(d) legs all black: single female from Aus, Namibia, two females from 20 km S Emanguzi, South Africa.

Color of male legs:
(a) femora red except black basally or fore- and midfemora black except red apically, tibiae and tarsi red: specimens from Namibia, Zimbabwe and South Africa: Goegap Nature Reserve, E Kamieskroon, Keimos to Lutzputz, Letaba Reserve, Nieuwoudtville, Richtersveld National Park, Springbok area, and Vioolsdrif area;
(b) femora black (except apically), tibiae and tarsi red: specimens from Algoa Bay, Kamieskroon to Sors Sors, Kenton-on-Sea, Martindale Forest Reserve, Mbazwana, Oudtshoorn, Port Alfred District, and Richtersveld National Park; the single male from Angola is similar but has the midfemoral venter red in the apicoventral half;
(c) femora and hindtibia black, fore- and midtibiae largely red to largely black (only foretibial outer surface and midtibial apex red in some): South African specimens from Bains Kloof, Ceres, 20 km N Citrusdal, Groenkloof, Kamieskroon, S Lambert's Bay, Paleisheuwel, Ratelfontein area, Swartberg Pass, Voëlklip, and Wellington.

Tergal fasciae. The only female examined from Zimbabwe has terga I-III silvery fasciate apically, and a rudimentary fascia on tergum IV. Terga I-IV are fasciate in most males from that country, but tergum IV is nonfasciate in some (the number of fasciae may vary among specimens from the same locality, e.g., in specimens from Kami collected the same day on the same site). Only terga I-III are fasciate in most South African specimens and the males from Angola and Namibia, but the fasciae are evanescent in the female from Hondeklipbaai area, the fascia of tergum III is evanescent in a male from Algoa Bay, and only terga I and II are fasciate in a female from Knersvlakte and one from Vlakwater (fasciae rudimentary), in one of the two males from Arkoep Farm, one from Ceres, one from Goegap Nature Reserve, and some from Richtersveld National Park.

Floral records.- Specimens from Keimos to Lutzputz, South Africa, were collected on flowers of Zygophyllum simplex L. (Zygophyllaceae), that from Mariental to Keetmanshoop, Namibia, on flowers of Galenia sp. (Aizoaceae), as recorded by F.W. and S.K. Gess, the collectors.

Geographic distribution (Fig. 94).- Angola, Namibia, Zimbabwe, South Africa.
Records.- ANGOLA: Tundavala $8-10 \mathrm{mi}$ NW Sa da Bandeira ($1 \sigma^{\circ}$, BMNH). NAMIBIA: Keetmanshoop District: 102 km road from Aroab to Koës ($2 \mathrm{o}^{\circ}$, AMG). Lüderitz District: Aus (1 of, BMNH). Mariental District: Mariental to Keetmanshoop at $24^{\circ} 54^{\prime} \mathrm{S} 17^{\circ} 55^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$, AMG). Okahandja District: ca 30 km W Okahandja ($1 \mathrm{o}^{7} ; 1 \mathrm{o}^{7}$, OHL). Rehoboth District: 15 km N Kalkrand ($1 \mathrm{c}^{\text {o }}$). SOUTH AFRICA: Eastern Cape Province: Algoa Bay ($1+2 \boldsymbol{\sigma}^{\circ}$, TMP, including lectotype and paralectotype of trifasciatus), 2 mi ESE Grahamstown ($1 \mathrm{ơ}^{\circ}, \mathrm{AMG}$), 18 km WNW Grahamstown: Hilton Farm ($1 \circ ; 2$ ํ, AMG;
 NNE Uniondale at $33^{\circ} 27^{\prime}$ S $23^{\circ} 19^{\prime} \mathrm{E}$ (1 \circ), Port Alfred District (o°, AMG), Vlakwater 27 air km NW Grahamstown ($1+$, AMG). Kwazulu-Natal: Durban: Burman Bush ($1 \circ$, AMG), 20 km S Emanguzi (2 ㅇ, OÖLM), Mbazwana (10°, OÖLM). Northern Cape Province: Arkoep Farm 6 km N Kamieskroon at $30^{\circ} 19^{\prime} \mathrm{S}$ $17^{\circ} 56^{\prime}$ E ($2 \delta^{\star 7}$, PPRI), Garies: Klip Vlei ($1 \stackrel{+}{ }$, SAM), Goegap Nature Reserve ($7 \mathrm{o}^{\circ}$, AMG), Groenkloof at $30^{\circ} 22^{\prime} \mathrm{S} 18^{\circ} 07^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{AMG}\right), 25 \mathrm{~km}$ E Hondeklipbaai (1 P , OÖLM), Kamiesberg to Sors Sors at $30^{\circ} 11^{\prime} \mathrm{S}$ $18^{\circ} 01^{\prime} \mathrm{E}$ (1 ㅇ, AMG), Kamieskroon: Bakleikraal at $30^{\circ} 13^{\prime} \mathrm{S} 18^{\circ} 03^{\prime} \mathrm{E}\left(2 \mathrm{o}^{\circ}\right.$, AMG), Kamieskroon ($1 \mathrm{o}^{\circ}$, OÖLM), Kamieskroon to Sors Sors (10°, AMG), Keimos to Lutzputz at $28^{\circ} 28^{\prime} \mathrm{S} 21^{\circ} 15^{\prime} \mathrm{E}$ (20°, AMG), Nieuwoudtville: Skuinshoogte Pass at $31^{\circ} 16^{\prime} \mathrm{S} 19^{\circ} 08^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{AMG}\right)$, Richtersveld National Park: 1.5 km from Helskloof gate at $28^{\circ} 18^{\prime} \mathrm{S} 16^{\circ} 57^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{AMG}\right)$, Richtersveld National Park: Koeroegabvlakte at $28^{\circ} 11^{\prime} \mathrm{S}$ $17^{\circ} 03^{\prime} \mathrm{E}\left(2 \sigma^{\circ}, \mathrm{AMG}\right)$, at $28^{\circ} 18.9^{\prime} \mathrm{S} 16^{\circ} 58.3^{\prime} \mathrm{E}\left(27 \delta^{\circ} ; 5 \sigma^{\circ}\right.$, BMNH), and at $28^{\circ} 08.7^{\prime} \mathrm{S} 17^{\circ} 00^{\prime} \mathrm{E}\left(3 \sigma^{\circ}\right), 90 \mathrm{~km}$ ENE Springbok at $29^{\circ} 20.1^{\prime} \mathrm{S} 18^{\circ} 44.3^{\prime} \mathrm{E}\left(5 \sigma^{\circ}\right), 29 \mathrm{~km} \mathrm{~N}$ Springbok at $29^{\circ} 27^{\prime} \mathrm{S} 17^{\circ} 51^{\prime} \mathrm{E}\left(1 \delta^{\circ}, \mathrm{AMG}\right), 40 \mathrm{~km} \mathrm{~S}$ Vioolsdrif at $29^{\circ} 02^{\prime} 59^{\prime \prime} \mathrm{S} 17^{\circ} 50^{\prime} 32^{\prime \prime} \mathrm{E}\left(10^{\circ}, \mathrm{CSE}\right)$, Voëlklip at $29^{\circ} 45^{\prime} \mathrm{S} 17^{\circ} 22^{\prime} \mathrm{E}\left(1 \circ+1 \delta^{\circ}\right.$, AMG). Northern Province: Letaba Reserve at $23^{\circ} 51^{\prime} \mathrm{S} 31^{\circ} 35^{\prime} \mathrm{E}$ (3 ${ }^{\circ}$ ', AMG). Western Cape Province: Bains Kloof in Wit River Valley ($2 \sigma^{\circ} ; 5 \sigma^{*}$, SAM), Cape Town ($1 \stackrel{\circ}{\circ}$, SAM), Ceres ($1 \sigma^{\circ}, \mathrm{BMNH}$), 20 km N Citrusdal ($3 \sigma^{\circ}$, OÖLM), 5 km W Clanwilliam ($1+\frac{\circ}{}$, AMG), Clanwilliam Dam at $32^{\circ} 12^{\prime} \mathrm{S} 18^{\circ} 54^{\prime} \mathrm{E}(1+\circ$, AMG), Die Berg in Clanwilliam District at $32^{\circ} 10-16^{\prime}$ S $18^{\circ} 49^{\prime} \mathrm{E}(1 \mathrm{o}$, AMG), Elisabethfontein 19 km NE Clanwilliam at
 SAM), 9 km ENE Lambert's Bay at $32^{\circ} 04^{\prime} 30^{\prime \prime} \mathrm{S} 18^{\circ} 23^{\prime} 30^{\prime \prime} \mathrm{E}\left(1 \circ ; 1\right.$ ค, CSE), S Lambert's Bay (1 ㅇ, 3 o $^{\circ}$;
 7 ㅇ, 2 o $^{\circ}$, SAM), Ratelfontein to Oloff Berghfontein at $32^{\circ} 02-15^{\prime} \mathrm{S} 18^{\circ} 35-31^{\prime} \mathrm{E}$ ($10^{\circ} ; 40^{\circ}$, AMG),
 SAM, erroneously labeled by G. Arnold as paratype), Wellington: Rooshoek ($1 \sigma^{\circ}$, RMNH). ZIMBABWE:

Bulawayo ($1 \uparrow$, SAM, lectotype of claripes; $1 \overbrace{}^{*}$, TMP), Bulawayo: Forestvale ($5 \sigma^{*}$ SAM, including paralectotype and paratype of claripes; $1 \sigma^{*}$, TMP), Kami Ruins (12 σ^{*}), Redbank at Kami River ($1 \sigma^{*}$, SAM), Sanyati Valley ($6 \sigma^{7}$, SAM).

Tachysphex clypeatus Arnold

Figures 94, 96.
Tachysphex clypeatus Arnold, 1947:147, \odot, \circ^{*}. Lectotype: $\circ+$ Northern Rhodesia: Abercorn, now Zambia: Mbala (SAM), here designated, examined.— Bohart and Menke, 1976:273 (listed).

RECOGNITION.- Tachysphex clypeatus has the labrum convex and markedly protruding beyond the clypeal free margin, propodeal dorsum glabrous apicomesally (glabrous area markedly larger than midocellus), and at least terga I-III silvery fasciate apically. Several species are similar, but clypeatus has a distinctive femoral sculpture: in the female, the fore- and midfemoral posteroventral surface (at least near the apex) is unsculptured or aciculate, with only a few, sparse punctures; in the male, the forefemoral posteroventral surface is sparsely punctate between notch and apex (punctures several diameters apart near the femoral midlength), and the midfemur is closely punctate throughout (interspaces about 1-2 diameters apart) except sparse apicoventrally.

Description.-Labrum convex, markedly protruding from beneath clypeus. Galea with large, sparse punctures, longer than wide in profile, as long as scape. Scutal punctures well defined, on disk about 1-2 diameters apart in female, up to several diameters apart in male; interspaces shiny, unsculptured. Mesopleuron dull, evenly microsculptured and with ill-defined punctures that are several diameters apart. Propodeal dorsum either evenly microareolate or (specimen from Zaire) irregularly rugose except longitudinally ridged basally; side ridged but ridges evanescent anteriorly in male. Hindcoxal dorsum with inner margin carinate basally.

Setae suberect, about as long as midocellar diameter, on each side of oral fossa next to occipital carina; appressed on postocellar area, scutum, and midfemoral venter; propodeum with glabrous apicomedian area that is about two thirds length of dorsum in female and about one third in male; setae oriented posterad adjacent to glabrous area.

Head and thorax black, mandible reddish mesally. Frontal setae golden or with golden tinge in female, golden in male. Wing membrane conspicuously yellow; costal and subcostal vein of forewing reddish brown. Femora red except black basally, tibiae and tarsi red. Gaster color varying: segments I and II red and remainder black in specimens from Zambia, also segment III red in specimen from Zaire, and gaster black except segment VI red in females from Namibia. Terga I-III in female, I-IV in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 96a): bevel longer than basomedian area; lip free margin arcuate, shallowly emarginate mesally, incised laterally. Width of postocellar area $0.7 \times$ length. Dorsal length of flagellomere I $2.5 \times$ apical width. Fore- and midfemoral posteroventral surface, at least near apex, unsculptured except for a few, sparse punctures. Dorsal foretibial surface with two spines, outer surface asetose, with two spines. Forebasitarsus with eight rake spines. Apical spines of hindtarsomere IV nearly reaching claw bases. Tergum V punctate and setose throughout in lectotype, including apical depression, but apical depression impunctate, glabrous in other specimens. Pygidial plate with well defined punctures that range from about one to several diameters apart; interspaces aciculate in most specimens, unsculptured apically in lectotype. Length $13.1-15.5 \mathrm{~mm}$.
$\delta^{\boldsymbol{\pi}}$.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 96b): bevel longer than basomedian area, delimited anterolaterally by oblique carina that emerges from lip corner; lip free margin arcuate, slightly emarginate mesally, with well-defined corner; distance between corners 1.1 \times distance between corner and orbit. Width of postocellar area $0.9 \times$ length. Dorsal length of flagel-

FIGURE 96. Tachysphex clypeatus Arnold: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.
lomere I $2.0 \times$ apical width. Forefemoral posteroventral surface sparsely punctate between notch and apex, punctures several diameters apart near femoral midlength; notch microscopically punctate and setose, punctures and setae sparser than in most other species. Midfemur closely punctate (punctures about 1-2 diameters apart) except sparser apicoventrally. Outer margin of forebasitarsus with six rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Length 14.3 mm . Volsella and penis valve: Figs. 96c, d.

Collecting Period.- 2, 18, and 25 August, 11 September.
Geographic distribution (Fig. 94).— Zaire, Zambia, northern Namibia.
RECORDS.- NAMIBIA: Rundu District: Andara ($1 \circ ; 1+$, NMN). ZAIRE: Shaba: Lubumbashi: Kipopo (1 ค, FSAG). ZAMBIA: Northern Province: Mbala (1 \&, $1 \delta^{\circ}$, SAM, lectotype and paralectotype of clypeatus).

Tachysphex congoensis Arnold, new status

Figure 105.
Tachysphex ambiguus var. congoensis Arnold, 1924:53, ํ. Holotype: \uparrow, Zaire: Elisabethville, now Lubumbashi (SAM), examined.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Schouteden, 1930:91 (Zaire: Lubumbashi).— As Tachysphex ambiguus congoensis: Bohart and Menke, 1976:272 (new status, listed).

Recognition.- Tachysphex congoensis, an all black species, has the scutal and mesopleural punctures well defined, labrum flat and galea shorter than wide in profile, hindwing crossvein
cu-a vertical, setae of propodeal dorsum diverging anterad from the midline, and tarsi unspecialized (length of midtarsomere II more than twice width, length of hindtarsomere IV greater than width, apical tarsomeres without spines on venter or lateral margins).

The female resembles consocius and diversilabris in having the middle clypeal section convex and the clypeal lip incised laterally (as in Fig. 97a). Unlike consocius, most mesopleural setae of congoensis are sinuous (rather than straight), and unlike diversilabris the apical depression of tergum V is impunctate and asetose.

The male of congoensis resembles consocius in having a dorsal, longitudinal sulcus on flagellomeres III-IX that separates two variously setose areas (see Figs. 98c-f), although the sulcus is faint, and the clypeal lobe has a corner on each side. Unlike consocius, most mesopleural setae of congoensis are sinuous (rather than straight). As in some consocius, the trimmal carina is reduced and obtuse just distad of tooth, and the cleft is absent (as in Fig. 98b).

Status.- Although described as a variety of ambiguus, congoensis is actually closer to consocius and diversilabris. I regard it as a full species at this time, but perhaps it is just an extreme form of consocius (see Dimorphic Males under that species). Its status cannot be ascertained at this time, given the limited material available for study.

Description.- Scutal punctures well defined, most punctures on disk more than one diameter apart. Mesopleural punctures well defined, several diameters apart below scrobe; interspaces unsculptured, shiny. Propodeal dorsum irregularly ridged longitudinally; side ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae erect on postocellar area (setal length about $1.5 \times$ midocellar diameter), suberect on scutum; suberect, slightly sinuous on each side of oral fossa next to occipital carina (setal length almost $2.0 \times$ midocellar diameter); most mesopleural setae sinuous; midfemoral setae suberect on venter (greatest setal length $2.0 \times$ midocellar diameter); inclined obliquely anterad on propodeal dorsum.

Head, thorax, gaster, and legs black, mandible dark reddish mesally, tarsal apex reddish. Frontal setae silvery in both sexes. Wing membrane infumate; costal and subcostal vein of forewing brown. Terga I-IV silvery fasciate apically.

ㅇ.- Clypeus (as in Fig. 97a): bevel longer than basomedian area; lip free margin slightly sinuate, incised laterally. Width of postocellar area $1.5 \times$ length. Dorsal length of flagellomere I $2.2-2.4 \times$ apical width. Dorsal foretibial surface with two thin spines, outer surface with one thin spine or without spines or suberect bristles. Forebasitarsus with seven rake spines. Apical depression of tergum V impunctate, asetose. Pygidial plate with punctures averaging many diameters apart except a few punctures near margin about one diameter apart; interspaces shiny, unsculptured. Length 8.8-8.9 mm.
0^{7}.- Mandible: trimmal carina with tooth, without cleft, conspicuously emarginate between tooth and apex (as in Fig. 98b). Clypeus (as in Fig. 98a): bevel ill defined but shorter than basomedian area; lip free margin minimally arcuate, almost straight, with well-defined corner; distance between corners $1.4 \times$ distance between corner and orbit. Width of postocellar area $2.0 \times$ length. Dorsal length of flagellomere I $1.7 \times$ apical width. Flagellomeres III-IX with ill-defined dorsal, longitudinal groove that separates two differently setose areas. Forefemoral notch glabrous; outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Sternum VIII tridentate apically. Length 6.1 mm . Volsella and penis valve as in consocius, volsellar process as in upper left outline in Fig. 99.

Collecting dates: 10-18 June and 3 July 1920.
Geographic distribution (Fig. 105).- Known from one locality in Zaire.
 Arnold); Kimilolo River, Lubumbashi ($1 \circ^{\star}$).

Tachysphex consocius Kohl

Figures 97-100.
Tachysphex consocius Kohl, 1892:217, ㅇ. Holotype: \uparrow, Azerbaijan: Helenendorf, now Khanlar (NHMW), examined before 1971.—Pulawski, 1971:185 (in revision of Palearctic Tachysphex); Erlandsson, 1974:71 (Italy); Bohart and Menke, 1976:273 (listed); Kazenas, 1978:121, 131 (in key to Sphecidae of Kazakhstan and Central Asia); Pulawski, 1978:218, 221 (in key to Sphecidae of European USSR); Guichard, 1980:227 (Oman); Pagliano, 1980:128 (Italy); Rodgers and Homewood, 1982:233 (Tanzania); Schmidt and Westrich, 1983:123 (Greece); Gayubo, 1984a:84 (Spain), 1984b:363 (Portugal); Scobiola-Palade, 1985:96 (Romania); Gayubo, 1986a:32 (Spain); Gayubo and Sanza, 1986:44 (Spain); Islamov, 1986:526 (Uzbekistan); Gayubo and Mingo, 1988:77 (Spain); Asís, Gayubo, and Tormos, 1989:236 (nest and prey); Pádr in Šedivy, 1989:168 (Czechoslovakia); Gayubo, Asís, and Tormos, 1990:17 (Spain); Pagliano, 1990:103 (Italy); Gayubo, Borsato, and Osella, 1992:281 (France: Corse); Torregrosa, Gayubo, Tormos, and Asís, 1993:18 (Spain); Krombein and Pulawski, 1994:10 (nest and prey), 28 (in revision of Sri Lankan Tachysphex); Tormos, Asís, and Gayubo, 1994:188, 204 (Spain); Negrisolo in Minelli, Ruffo, and La Posta, 1995b:9 (in catalog of Italian fauna); Minoranskiy and Shkuratov, 1996:81 (Russia: Rostov Oblast'); Dollfuss, Gusenleitner, and Bregant, 1998:515 (Austria); Nazarova, 1998:40 (Tajikistan:); Gayubo, García, Torres, and González, 1999:89 (Spain); Gayubo, González, and Torres, 2000:185 (Spain); Shkuratov, 2000:58 (Russia: Rostov Oblast'); Ivanov and Ljubomirov, 2001:21 (Bulgaria); Kazenas, $2001: 28$ (in checklist of Sphecidae of Kazakhstan and Central Asia); Ljubomirov, 2001b:49 (Bulgaria); Schmidt and Bitsch in Bitsch et al., 2001:241 (in Sphecid Fauna of Western Europe); Kazenas, 2002:66 (Kazakhstan); Shkuratov, 2002:140 (Russia: Rostov Oblast'); Gayubo, Özbek, and Yildirim, $2003: 88$ (Turkey); González et al., 2003:61 (Spain); Nieves-Aldrey et al., 2003:42 (Spain); Gayubo, Nieves-Aldrey, González, Tormos, Rey del Castillo, and Asís, 2004:108 (Spain: Madrid: Monte de el Pardo); Cruz-Sánchez et al., 2005:220 (Spain); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).
Tachysphex cabrerai Mercet, 1909:196, 오, ơ (as Cabrerai, incorrect original capitalization). Syntypes: Spain: Madrid (MNCN), not examined. Synonymized with Tachysphex consocius by Pulawski, 1971:185.Mercet, 1910:165 (listed from Spain); de Beaumont, 1936a:209 (in revision of French Tachysphex), 1940:176 (in revision of Egyptian Tachysphex); Honoré, 1942:55 (in checklist of Egyptian Sphecidae); Giner Marí, 1943:138 (in Sphecid Fauna of Spain); de Beaumont, 1947a:201 (in revision of Egyptian Tachysphex), 1947b:393 (Cyprus); de Andrade, 1949:15 (Portugal); de Beaumont, 1950d:20 (Egypt); Pittioni, 1950:25 (Cyprus); de Beaumont, 1954a:59 (Italy), 1954b:91 (Italy); Grandi, 1954:238 (Italy, partly as cabrerai var. ?); de Beaumont, 1955:184 (Morocco); Ceballos, 1956:376 (listed from Spain); de Beaumont, 1956a:199 (Libya); Grandi, 1957:389 (Italy); Nouvel and Ribaut, 1958:13 (France); Pulawski, 1958a:181 (Bulgaria); Diniz, 1959:29 (Portugal); Suárez, 1959:58 (Spain); de Beaumont, 1960a:19 (Greece: Rhodes), 1960b:239 (Libya), 1961a:50 (Greece: Crete), 1962:26 (Spain); Ceballos, 1964:90 (in supplement to catalog of Spanish Sphecidae); Diniz, 1964:29 (Portugal); Pulawski, 1964:95 (Egypt); de Beaumont, 1965:51 (Greece), 1966:212 (Egypt); Pulawski, 1967:408 (Turkey); de Beaumont, 1970a:401 (Afghanistan); Georghiou, 1977:192 (Cyprus); Dollfuss, 1989:13 (type material in NHMW).
Tachysphex minutulus Arnold, 1923:160, \uparrow, ơ. Lectotype σ^{7}, Zimbabwe: Bulawayo (SAM), here designated, examined. Synonymized with Tachysphex consocius by Pulawski in Bohart and Menke, 1976:273.Arnold, 1924:57 (correction to original description), 1930:3 (in checklist of Afrotropical Sphecidae).
Tachysphex grandii de Beaumont, 1965a:51, ㅇ, ơ. Holotype: ${ }^{\pi}$, Italy: Bologna: Gaibola (Bologna Univ.), examined. Synonymized with Tachysphex consocius by Pulawski in Krombein and Pulawski, 1994:28.Pulawski, 1967:408 (Turkey), 1971:182 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:274 (listed); Kazenas, 1978:121, 131 (in key to Sphecidae of Kazakhstan and Central Asia); Pulawski, 1978:218, 221 (in key to Sphecidae of European USSR); Dollfuss, 1983:10 (Austria); Gayubo, 1984a:96 (Spain), 1984b:364 (Portugal: El Algarve Province), 1986a:33 (Spain); Gayubo and Sanza, 1986:45 (Spain); Islamov, 1986:526 (Uzbekistan); Dollfuss, 1987:21 (Austria); Gayubo, 1987:112 (Spain); Gayubo and Mingo, 1988:79 (Spain); Karsai, 1988:100 (Hungary); Pádr in Šedivy, 1989:168 (in checklist of Czechoslovak Sphecidae); Gayubo, Asís, and Tormos, 1990:17 (Spain); Day, 1991:xix (in summary of

European Endangered Hymenoptera Lists); Gusenleitner, 1992:685 (Austria); Dollfuss, 1994:100 (endangered in Austria); Minoranskiy and Shkuratov, 1996:81 (Russia: Rostov Oblast'); González, Gayubo, and Torres, 1998:72, 73 (Spain); Gayubo, García, Torres, and González, 1999:89 (Spain); Gayubo, González, and Torres, 2000:185 (Spain); González, Gayubo, and Torres, 1999:335 (Spain); Ljubomirov, 1999:49 (Bulgaria); Kazenas, 2001:29 (in checklist of Sphecidae of Kazakhstan and Central Asia); Kazenas and Esenbekova, 2001:134 (Kazakhstan); Zettel, Gross, and Mazzucco, $2001: 72$ (Austria: Wien); Kazenas, 2002:68 (Kazakhstan); Shkuratov, 2002:141 (Russia: Rostov Oblast'); Gayubo et al. 2004:131 (Spain). Species 1 (part) and 3 (part): van Noort, Prinsloo, and Compton, 2000:348 (Namibia), present correction.

Lectotype selection.-Arnold (1923) mentioned a single type in the original description of minutulus, but he designated as types a pair of specimens mounted on the same cardboard rectangle. I have designated the male as the lectotype and the female as the paralectotype.

RECOGNITION.- Tachysphex consocius is a widely distributed, commonly collected species that has a shiny mesopleuron with well-defined punctures (punctures minute in some specimens), the setae erect on the postocellar area, nearly so on the scutum and midfemoral venter (Figs. 32, 33), and inclined obliquely anterad on the propodeal dorsum. Other characters include: gaster, femora, and tibiae black; labrum flat, not emarginate; and tarsi unspecialized (length of midtarsomere II more than twice width, tarsomeres IV longer than wide apically, tarsomeres V without spines on the venter or lateral margins).

The female differs from other such species except diversilabris, congoensis, and some aterrimus (three rarely collected species) in having a sinuate, laterally incised clypeal lip (Fig. 98a), although the incisions are rudimentary in some specimens and may disappear in worn individuals. Unlike congoensis and diversilabris, the mesopleural setae of consocius are straight with apex angled (rather than sinuous at least anteriorly), and unlike diversilabris, the apical depression of tergum V is unsculptured and asetose. In addition, the setae of the postocellar area in consocius are 1.0-1.5 midocellar diameters long (2.0-3.0 diameters in diversilabris). The setae, however, are probably all straight in some diversilabris. Color details also help in recognition: the mandible is largely reddish mesally in most specimens, and the pygidial plate is reddish apically in many. In diversilabris, the mandible varies from all black to black with a reddish preapical zone, and the pygidial plate is all black. Unlike aterrimus, the middle clypeal section of consocius is convex, with a well-defined bevel (rather than flat, with ill-defined bevel). The female of saturnus also resembles consocius but has the clypeal lip with two lateral incisions (Fig. 332a) and a black pygidial apex.

In the male, sternum VIII is tridentate (Fig. 98g), but the middle tooth is rudimentary in small specimens. A subsidiary recognition character is a broad clypeal lobe (Figs. 98a, b) with welldefined corners (distance between corners 1.3-1.4× distance between corner and orbit). In most but not all specimens, flagellomeres III-XI have two longitudinal grooves (one dorsal and one ventral) that delimit two differently setose areas (Figs. 98c-f), a feature shared with diversilabris, omoi, and some saturnus. Unlike omoi, the tibiae of consocius are all black, and saturnus has a distinctive clypeus (see that species, p. 557).

Many (but not all) African and Yemeni specimens have an unsculptured area that extends from the supraantennal callosity to the orbit or nearly so (Fig. 97b), a feature unique within the genus.

Synonymy.- De Beaumont (1965) and Pulawski (1971) thought that consocius and grandii were separate species that differed in sculpture of the upper frons, setal length, and thickness of male flagellum. Pulawski in Krombein and Pulawski (1994) demonstrated that these differences intergraded and were not correlated with each other, and synonymized these two names.

Tachysphex consocius mookonis Tsuneki, 1972, described from Mongolia, is a junior synonym of nitidissimus de Beaumont, 1952, as shown by Krombein and Pulawski, 1994:29.

Figure 97. Tachysphex consocius Kohl, female: a - clypeus ($\times 47$); b - head of sub-Saharan specimen showing unsculptured supraantennal area $(\times 36)$; $\mathrm{c}-$ midfemur of a specimen from Spain $(\times 60)$; d - midfemur of a specimen from Bulgaria ($\times 58$).

Description (see also Dimorphic Males below).- Scutal punctures well defined, on disk varying from nearly contiguous to many diameters apart. Mesopleuron punctate, with shiny interspaces (see Variation below for details). Punctures of mesothoracic venter averaging one diameter apart or nearly so, but up to two or three diameters apart in specimens from southwestern Europe. Propodeal dorsum ridged (ridges evanescent posteriorly in some specimens); side ridged. Hindcoxal dorsum with inner margin carinate, carina not expanded basally.

Setae erect on postocellar area, suberect on scutum and midfemoral venter (Figs. 97c, d), inclined anterad on propodeal dorsum, varying in length both geographically and individually (see Variation below).

Head, thorax, legs, and gaster black except mandible reddish mesally (nearly black in some African specimens); apical tarsomeres reddish in many specimens and pygidial plate reddish apically in most Palearctic and many sub-Saharan females. Wing membrane almost hyaline with brown veins in most populations, but slightly yellowish, with yellowish veins, in Sri Lankan specimens. Frontal vestiture silvery in both sexes. Terga I-III or I-IV in female, I-IV or I-V in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 97a): bevel longer than basomedian area; lip sinuate, incised laterally (incisions varying from deep, narrow, to broad, shallow, or rudimentary). Dorsal length of flagellomere I $1.5-2.2 \times$ apical width. Width of postocellar area $1.5-1.7 \times$ length. Dorsal foretibial surface with a few fine bristles, outer surface with one thin spine or without spines. Forebasitarsus with six or

Fourth Series, Volume 58, Supplement I

FIGURE 98. Tachysphex consocius Kohl, male: a - clypeus ($\times 67$); b - clypeus and unusual mandible ($\times 72$); c - flagellomeres IV-XI ($\times 60$); d - flagellomeres V-VII in lateral view ($\times 120$); e - same in dorsal view ($\times 120$); f - portion of flagellomere V in dorsal view $(\times 900)$; g - apical portion of sternum VIII $(\times 360)$.
seven rake spines. Pygidial plate shiny, sparsely punctate. Length $6.0-9.4 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth and in most specimens with rudimentary, widely open cleft. Clypeus (Figs. 98a, b): bevel shorter than basomedian area in most specimens, longer than basomedian area in some; lip free margin arcuate, not pointed to prominently pointed mesally (slightly pointed in most specimens), with well-defined corner; distance between corners 1.3-1.4×
distance between corner and orbit. Flagellum in live specimens partly pectinate ventrally: flagellomeres V-IX acutely projected apicoventrally, with conspicuous gaps between articles (Fig. 98e), but gaps closed and flagellum buckling up in dried specimens; flagellomeres III-XI of most (but not all) specimens with two longitudinal grooves (one dorsal and one ventral) that delimit two differently setose

Figure 99. Tachysphex consocius Kohl: volsella and penis valve with outlines showing variation. areas (Figs. 98c-f). Dorsal length of flagellomere I 1.5-2.1 \times apical width. Width of postocellar area 1.9-2.2 \times length. Forefemoral notch glabrous, compressed but not crest-like. Forebasitarsus without preapical spines on outer margin; outer apical spine of foretarsomere II markedly shorter than foretarsomere III. Sternum VIII tridentate apically (Fig. 98g), median tooth rudimentary in small individuals. Length 4.3-7.9 mm . Volsella and penis valve: Fig. 99.

Dimorphic males.- Not included in the Description above are many African males in which the trimmal carina is broadly reduced distad of the tooth (but contrastingly sharp in the apical third or so), without cleft, and the tooth itself is prominent (Fig. 98b). I could not correlate this unusual mandible with any other feature. Specimens with reduced trimmal carina mostly have a non-thickened flagellum with a rudimentary rather than well-defined sulcus, and the unsculptured area of the lower frons does not extend orbit to orbit, but both conditions are also found in the main form. Their mandibles may be nearly all black, but they are reddish mesally in some specimens, just as in the main form. In addition, the two males from Niakaramandougou, Ivory Coast, are somewhat intermediate in shape. The associated females are morphologically identical to those of the main form but differ by their darker mandibles. These specimens occur in Ethiopia (35 km N Moyale), Ivory Coast (all specimens examined), Kenya (40 km S Kajiado, Kakamega Forest, Karen, Magadi road 25 air km SW Nairobi, 5 km N Namanga), and Zimbabwe (Chimanimani). They were found together with the main form 40 km S Kajiado and on Magadi road. I conclude that they are just an individual variation of consocius.

This variety closely resembles congoensis except that the mesopleural setae are straight (angled apically). In congoensis, most mesopleural setae are sinuous, and I have not observed intergradation.

Variation.- Tachysphex consocius varies in frontal and mesopleural sculpture, setal length, and setation of the male antenna. Variation is partly geographic and partly individual.

Frons sculpture. The frons has well-defined punctures above the antennal socket; the upper frons is punctate in most specimens, with the interspaces ridged or conspicuously microsculptured. In some specimens, however, either the punctures of the upper frons are evanescent or the microsculpture between them is reduced. These types are found throughout most of the species range, and all three are found simultaneously in many localities.

Sculpture of lower frons. The lower frons, in most specimens, is sculptured as average for the genus. Many southern and eastern African specimens, and also some from Mali, have an unsculptured area that extends from the supraantennal swelling to orbit (Fig. 97b). The size of the unsculptured area varies within the same population. For example, it is rudimentary in a female from

Seronera, Tanzania, and extends almost to orbit in another.
Mesopleural punctures. Mesopleural punctures are either nearly as large as scutal punctures or markedly smaller, minute. They are large anteriorly and fine posteriorly in many specimens and all minute in most specimens from southwestern Europe. Large punctures are about one diameter apart and smaller punctures up to several diameters apart.

Setal length, expressed as a fraction of midocellar diameter, is $1.0-1.5$ on postocellar area, $1.0-1.2$ on scutum anterolaterally, and $0.3-1.5$ on midfemoral venter. Specimens with short setae are relatively common in the Mediterranean basin east to Turkmenistan and Tajikistan. Specimens with both short and long femoral setae (Figs. 97c, d) may occur within the same population, e.g., near Samba Dia, Senegal.

Male antennae. Flagellomeres II-V are mostly thicker than VII-XI, but the difference is minimal in small specimens from most areas and in medium-size specimens from Kenya. The dorsal groove of flagellomeres III-XI (separating two differently setose areas) is well defined in most specimens (Figs. 98c-e), but the groove is rudimentary in some specimens and absent in many males from Kenya (in which the flagellum is uniformly setose).

Nesting behvior.- Nesting habits of consocius were studied by Asís, Gayubo, and Tormos (1989) in Spain and by Krombein (in Krombein and Pulawski, 1994) in Sri Lanka. Nesting areas were horizontal, without vegetation or with sparse vegetation. The nests were unicellular and varied in length from 3 cm in Sri Lanka to $8-10 \mathrm{~cm}$ in Spain; they ended about 1.5 cm (Sri Lanka) to $3-4 \mathrm{~cm}$ (Spain) below the soil surface. The nest entrance was left permanently open during the provisioning period. Prey consisted of small acridid nymphs that were transported in flight; the only prey observed in Sri Lanka was Spathosternum prasiniferum Walker (Acrididae, Hemiacridinae). The Sri Lankan wasp entered the burrow headfirst, turned around inside, reached out of the burrow and, with some difficulty, dragged in the grasshopper nymph. One fully provisioned nest (Spain) contained eight prey (small acridid nymphs), another incompletely provisioned nest held three prey. An egg was found on the ventrolateral part of prey immediately behind the forelegs. Both males and females (Spain) spent the night in short galleries in the ground that they dug shortly before sunset. Additionally, a female from Grahamstown, South Africa (AMG), is pinned with her prey, a lentulid grasshopper (det. F.W. Gess).

Geographic distribution (Fig. 100).Entire continental Africa, Europe north to southern France, Czech Republic, and southern Russia (Volgograd area), southwestern Asia (Arabian Peninsula, Syria, Turkey, Iran), Kazakhstan (north to Oral), Transcaspia (Uzbekistan north to Tashkent, Turkmenistan, Tajikistan), Afghanistan, Mongolia, India, Nepal, and Sri Lanka.

Records.- AFGHANISTAN: Herat: Bala

Figure 100. Collecting localities of Tachysphex consocius.

Murghab (de Beaumont, 1970a). ALGERIA: Biskra ($1 \stackrel{+}{ }$, CU), Bou Hanifia ($1 \stackrel{\circ}{ }$, CU). ANGOLA: Bruco (3 ํ, BMNH), Roçadas ($1+$, BMNH), 3 mi N Sanga Comba ($3 \stackrel{\circ}{\circ}, 1$ ơ $^{7}, \mathrm{BMNH}$), Tundavala 8-10 mi NW Sa da Bandeira ($1 \sigma^{\top}$, BMNH). ARMENIA: Erivan area (Pulawski, 1971). AUSTRIA: Burgenland (Dollfuss, Gusenleitner, and Bregant, 1998:map79). Niederösterreich: Piesting (Pulawski, 1971), Stammersdorf
(Pulawski, 1971), St. Christofen (Dollfuss, 1987). Steiermark: Therme Loipersdorf at $46^{\circ} 59^{\prime} \mathrm{N} 16^{\circ} 07^{\prime} \mathrm{E}$ (Gusenleitner, 1992). Wien: Donau-Auen, Türkenschanze (Zettel, Gross, and Mazzucco, 2001). AZERBAIJAN: Khanlar (1 of, NHMW, holotype of consocius), Kuduly in Nukha District (Pulawski, 1971). BOTSWANA: Kuke Pan ($\boldsymbol{o}^{\circ}, \mathrm{BMNH}$), Lake Ngami 12 mi NE Sehithwa (2 ㅇ, BMNH), Linyanti Marsh ($1 \circ+1 \overbrace{}^{\boldsymbol{*}}$, BALDOCK), Moremi Wildlife Reserve 50 km N Maun ($1 \circ$, OHL), Serowe ($5 \circ+16$ o $^{\circ}$), Serowe:
 near Sofia ($1 \delta^{\circ}$), Kresna Gorge at $41^{\circ} 48^{\prime} \mathrm{N} 23^{\circ} 10^{\prime}$ E (Ivanov and Ljubomirov, 2001), Mt. Vitosha near Sofia

 BMNH). CONGO: Brazzaville ($1 \mathrm{o}^{\star}$, MSNT), Djoué 17 km W Brazzaville ($4 \stackrel{\circ}{ }$, $1 \mathrm{o}^{\star}$, MSNT). CROATIA: Uglian Island: Preko (Pulawski, 1971). CYPRUS: Akrotiri Bay (Pulawski, 1971), Cherkes (de Beaumont,
 Beaumont, 1947b). CZECH REPUBLIC: Modrany (Pulawski, 1971). EGYPT: Al Fayyum: Kom Osheim (3 ㅇ, 7 of). Al Iskanderiyah (= Alexandria): Amrye (de Beaumont, 1966). Al Jizah (= Ghiza): Abu Rawash
 Fadl (de Beaumont, 1940), Doqqui: Orman Park (1 \&, FSCA), Gebel Asfar (de Beaumont, 1940), Helwan (de
 1 ㅇ, SCHL). Al-Wadi al-Jadid: Khamissa, Kharga oasis: Al-Kharga (1 ㅇ); Sitra, Siwa oasis (de Beaumont, 1950b). As Suways (= Suez): 18-25 km W Suez (Pulawski, 1971). Aswan: Aswan (5 \&, 6 o $^{\text {º }}$). ETHIOPIA:

 Rock Valley near Harer (1 ㅇ, USNM). Shewa: Langano (1 ㅇ, 1 ơ $^{\circ}$, OHL), Ziway (2 ㅇ) . Sidamo: 35 km N Moyale ($1 \mathrm{o}^{7}$). FRANCE (from Bitsch et al., 2001, or as indicated): Corse: Ajaccio (1 $\mathrm{o}^{\text {º }}$), Bastia Pineto (Gayubo, Borsato, and Osella, 1992), Calvi, Propriano (de Beaumont, 1936a). Drôme: Dieulefit (Pulawski, 1971). Gard: Grau-du-Roi. Hérault: Sérignan-plage. Lozère: Saint-Etienne. Pyrénées-Orientales: Baillaurie (Nouvel and Ribaut, 1958), Banyuls-sur-Mer (de Beaumont, 1936a). Var: Gonfaron, La Môle, Ollioules, Saint-Aygulf (Pulawski, 1971), Toulon. Vaucluse: Carpentras (4 ㅇ, 3 8 $^{\text {² }}$), Roussillon. GABON: Nzogbour

 (de Beaumont, 1960a). Ionian Islands: Corfou (de Beaumont, 1965). Kriti (= Crete): Ayia Varvara (de Beaumont, 1961a), Heraklion (de Beaumont, 1965), Karteros (1 \ddagger), Knossos (1 \&), Sitia (de Beaumont, 1965). Pelopónnisos (de Beaumont, 1965): Corinth, Kalamata, Mega Spileon, Zachlorou. Thrace: Komnina Stavropoulis W Xanti (Schmidt and Westrich, 1983). HUNGARY: Kiskunság National Park (Karsai, 1988), Simontornya (de Beaumont, 1965). INDIA: Andra Pradesh: 9 km E Palmaner ($1 \mathrm{c}^{\circ}$). Karnataka: Bangalore
 (Pulawski, 1971). Mazanderan: coastal plain between Chalus and Shahsavar (2 $_{\text {\& }}$, $1 \mathrm{o}^{\circ}$). ISRAEL: 135 km N Elat Iddan (5 of, $2 \sigma^{\circ}$, CSE), Hazeva in Arava Valley at $30^{\circ} 46.88^{\prime} \mathrm{N} 35^{\circ} 14.56^{\prime} \mathrm{E}\left(1 \sigma^{\circ}\right.$, CSE), Hazeva Field
 Botanical Garden (1 ㅇ, UCD), Moshaav Hazeva at $30^{\circ} 46.33^{\prime} \mathrm{N} 35^{\circ} 16.32^{\prime} \mathrm{E}\left(1\right.$ ㅇ, 2 of $^{\circ}$, CSE), Shizaf Nature Reserve near Hazeva in Arava Valley (2 ㅇ, CES). ITALY: Calabria: Capo Spulico (Pagliano, 1990). Campania: Porto d’Ischia (Erlandsson, 1974). Emilia-Romagna: Collina di Pistoia (de Beaumont, 1965), Gaibola (de Beaumont, 1965), Grizzana (de Beaumont, 1954a), Montetortore (Grandi, 1954), Rimini (de Beaumont, 1954a), Ronzana (de Beaumont, 1965). Lazio: Campo Ascolano (Pagliano, 1980), Pontecorvo (Pulawski, 1971), Roma (Pagliano, 1990), Tor Vajanica (Pagliano, 1980). Piemonte: Ceva (Pagliano, 1990). Puglia: Gargano (Grandi, 1957). Sicilia: Gela (Pulawski, 1971). Toscana: Isola d'Elba (de Beaumont, 1954b). IVORY COAST: Abidjan: Cocody (1 \& , MSNT), Adiopodoumé ($1 \stackrel{\circ}{ }$, ZMAN), Bouaké ($1 \stackrel{\circ}{ }$, RMNH; 1 ơ, UCD), Bouaké: Foro-foro (2 ㅇ, UCD), $30-35 \mathrm{~km}$ N Korhogo (14 우, 11 of $^{\circ}$, ZMAN), 56 km N

 P = Pulawski, 1971): Almaty: $10 \mathrm{~km} \mathrm{~S}, 12-16 \mathrm{~km}$ SW, and 20 km W Almaty (K), Almatinskiy Nature Reserve (Kazenas and Esenbekova, 2001), Altynemel' Range 80 km SSE Taldy-Kurgan (K), Arkharly Range at about $44.3^{\circ} \mathrm{N} 77.5^{\circ} \mathrm{E}(\mathrm{K})$, Bakanas (K), 20 km W and 45 SW Chundzha (K), Kaskelen River 50 km N Almaty (1 of, 2 o $^{\circ}$), mouth of Kurty River (K). Astana: 26 km NE Astana (K), $20-60 \mathrm{~km}$ N Derzhavinsk at about $51.5^{\circ} \mathrm{N}$ $66^{\circ} \mathrm{E}(\mathrm{K})$, Ishim River (K), 40 km SE Kökshetaū (K), 15 km S Priozernoye (K), Tersakkan River near Kökshetaū W Astana (1 \&) , Zhaksy at about $52^{\circ} \mathrm{N} 67.5^{\circ} \mathrm{E}$ (K). Aqtöbe: 30 km SW Yrghyz (K). Atyraū: Kharkin 180 km N Atyraū ($1 \mathrm{c}^{\top}$). East Kazakhstan: Aktogai $100 \mathrm{~km} \operatorname{SW}$ Ayaguz (K), 5 km N and 38 km SE Aktogai (K), 46 km E, 20 km N, $5 \mathrm{~km} \mathrm{~S}, 9-40 \mathrm{~km} \mathrm{~W}$, and 33-96 km SW Ayaguz (K), 13 km NW village Dolon' (K), 15 km NW Gheorghievka at about $49.5^{\circ} \mathrm{N} 81^{\circ} \mathrm{E}(\mathrm{K}), 75 \mathrm{~km}$ SW Gheorghevka (K), 90 km N and $46-54 \mathrm{~km}$ NE Kaynar (K), 40 km S Kyzil-Kesik 120 E Ayaguz (K), 47 km SW Öskemen (K), $7-10 \mathrm{~km} \mathrm{~N}$ and 8 km NW Semey (K), 5 km SW and 20-25 km NW Tansyk (K), 33 km NE and 40 km S Tarbagatay (K), 15 km E and 20 km S Zaysan (K). North Kazakhstan: 40 km SE Kökshetaū (K), Ruzaevka (K), Stavropolka (K), 23 km NW Stepnyak (K), 10 km NW Yesil (K). Pavlodar: 70 km SW Bayan-Aul (K), Lebyazhe (K), 70 km N Lebyazhe (K), Shcherbakty (K). Qaraghandy: 110 km NE Balqash (K), $22-55 \mathrm{~km}$ SW Karkaralinsk (K), Koksenghir near Zhana-Arka $=$ Atasuskiy (1 \&), $6-8 \mathrm{~km}$ NW Kyzylzhar (1 \&), Lake Koskol’ at about $49.5^{\circ} \mathrm{N}$ $67^{\circ} \mathrm{E}(\mathrm{K})$, Taly Manak shores S Zhana-Arka (P), Ulytau at about $48.7^{\circ} \mathrm{N} 67^{\circ} \mathrm{E}$ (1 9), 20 and 53 km W Zhanaarka $=$ Atasuskiy (K), 60 km E Zhezqazghan (K), 150 km E Zhesqazghan (P). Qostanay: AmanKaragay 100 km SSE Qostanay (K), 150-180 km E Qostanay (K), 10 km NE Qostanay (K), Semiozernoye (K), 25 km SE Semiozernoye (K), Shili at about $50^{\circ} \mathrm{N} 66^{\circ} \mathrm{E}(\mathrm{K})$. Qyzylorda: 6 km W village Amanotkel' on Syr-Darya River at about $46^{\circ} \mathrm{N} 61.5^{\circ} \mathrm{E}(1$ \& $)$, Balamurun near Dzhulek (P), Dzhulek $=$ Chiili (K, P), 15 km S Kazalinsk (K), 3 km S Yany-Kurgan (K). South Kazakhstan: 30 km W Bairkum at about $42^{\circ} \mathrm{N} 67^{\circ} \mathrm{E}$ (K), Koksu at about $41.5^{\circ} \mathrm{N} 68^{\circ} \mathrm{E}(\mathrm{K}), 30 \mathrm{~km}$ W Koksu (K), 5 km E Novostroyevka at about $42^{\circ} \mathrm{N} 70^{\circ} \mathrm{E}(\mathrm{K})$, Otrar at about $43^{\circ} \mathrm{N} 67^{\circ} \mathrm{E}(\mathrm{K}), 15 \mathrm{~km}$ S Pervomayskoe 70 km SE Chimkent (K), 4 km W Sary-Agach (K), 30 km NE Suzak (K), 3 km S Yany-Kurgan (K). West Kazakhstan: Yanvartsevo 65 km N Oral ($1 \mathrm{~d}^{\circ}$). Zhambyl: 18-27 km Akyr-Tube (K), 30 km SW Chu (K), $60-70 \mathrm{~km} \mathrm{~N}, 4 \mathrm{~km}$ NE, and $50-90 \mathrm{~km}$ NW Furmanovka (K), 40 km NW Karatau on Koktal River at about $43.5^{\circ} \mathrm{N} 70^{\circ} \mathrm{E}(\mathrm{K})$, Togusken at $43^{\circ} 36^{\prime} 16^{\prime \prime} \mathrm{N} 67^{\circ} 24^{\prime} 14^{\prime \prime} \mathrm{E}(\mathrm{K})$, 50 km SW Ulanbel' village in Muyun-Kum sands ($1 \delta^{\circ}$), 5 km SE and 64 km W Zhambyl (K), Zhanatas at $43^{\circ} 34^{\prime} 00^{\prime \prime} \mathrm{N} 69^{\circ} 45^{\prime} 00^{\prime \prime} \mathrm{E}(\mathrm{K})$. Location unknown: Lugovoy (K), 12 km N Sary-Ozek (K). KENYA: Central
 Karacha forest in Kilifi District ($2 \delta^{\circ}$), Mombasa ($1 \delta^{\circ}$, USU), Taita Discovery Centre (1 o, $1 \delta^{\circ}$), ca 10 km N
 OÖLM), Wundanyi (4 , 3 ở $^{\text {º }}$, OÖLM). Eastern Province: near Ewaso Ng' iro River opposite Archer's Post

 Kajiado at $2^{\circ} 09.1^{\prime} \mathrm{S} 36^{\circ} 47.2^{\prime} \mathrm{E}\left(3 \delta^{\circ}\right)$, Magadi road 25 air km SW Nairobi (1 \&, $5 \delta^{\circ}$), Magadi road 46 air km

 Njabini 25 km E Naivasha (1 ค, ZMAN). Western Province: Kakamega Forest Reserve (2 of, 7 o $^{\text {o }}$).
 ($10^{\boldsymbol{A}}$, AMG). LIBYA: Cyrenaica: Wadi Derna (de Beaumont, 1960b). Tripolitania (de Beaumont, 1956a): Gargaresc, Giado, Jefren, Tagiura. MALAWI: Monkey Bay 35 km SE road to Mangochi ($1+$, PMA), Mulanje Mountain in Likabula River Valley ($1+$, PMA). MALI: 30 km N Bamako (2 우; 1 우, MS), 60 km SW Ségou ($1 \mathrm{o}^{7}$, MS). MOROCCO (Pulawski, 1971, or as indicated): Agadir (de Beaumont, 1955), 32 km S Ain Leuh ($1{ }^{\circ}, \mathrm{CSE}$), Asni, Azemmour, Casablanca, Fedhala, Goulimine (de Beaumont, 1955), Ijoukak (de Beaumont, 1955), Kenitra, Marrakech: Oued Tensift (1 \&), Mehdia near Kenitra (de Beaumont, 1955), Mhamid 80 km S Zagora in Draa Valley (1 \& $1 \mathrm{o}^{\circ}$, CSE), Oued Adoudou, Tafraout (de Beaumont, 1955), Tinerhir, Tiznit: Oued Massa, Val du Riz. MOZAMBIQUE: Inhaca Island at $26^{\circ} 01^{\prime} \mathrm{S} 32^{\circ} 58^{\prime} \mathrm{E}(1 \mathrm{q}$, PPRI). NAMIBIA: Gobabis District: 40 km N Witvlei (1 ㅇ) . Grootfontein District: Meteorite (1 ㅇ, MS). Karibib District: Ameib Farm
 Brandberg: Hungorob Valley at $21^{\circ} 11.40^{\prime} \mathrm{S} 14^{\circ} 31.69^{\prime} \mathrm{E}\left(10^{\circ}, \mathrm{SAM}\right)$, Messum Valley ($1 \circ 2 \mathrm{o}^{\circ}$, SAM), and

Wasserfallfläche at $21^{\circ} 10.77^{\prime} \mathrm{S} 14^{\circ} 32.87^{\prime} \mathrm{E}(1+$ ，SAM，determined as Species 1 and 3 by van Noort，Prinsloo， and Compton，2000）， 117 km from Swakopmund on road to Usakos（ $1 \circ$ ，AMG）．Mariental District： 65 km S Mariental（1 \circ ）．Okahandja District：Okahandja（ $1 \quad \circ$ ，MS），ca 30 km W Okahandja（ $1 \mathrm{o}^{\circ}$ ，OHL）． Otjiwarongo District：Okosongomingo Farm 50 km ESE Otjiwarongo（ 1 \＆，LACM）， 20 km NE Otjiwarongo （ $1 \circ$ ，MS）．Rehoboth District：Kalkrand（ $1 \circ$ ，FSCA）， 23 km N Rehoboth（ $1 \circ ; 1 \circ$ ，MS）， 9 km S Rehoboth （1 \circ ）．Rundu District：Takuasa（ $1 \circ$ ，NMN）．Swakopmund District：Kuiseb River at Gobabeb（ $1 \circ$ ，PMA）， Namib Desert Research Station（1 $\stackrel{+}{ }$ ，USU）．Tsumeb District：Halali in Etosha National Park（2 9 ， 2 of，
 MS）．Windhoek District： 2 km S Aris（ $1 \mathrm{o}^{\top}$ ），Regenstein 15 mi SSW Windhoek（ 1 of，BMNH），Windhoek （ $1 \stackrel{\circ}{\circ}, \mathrm{BMNH}$ ）， 8 km S Windhoek（ $1 \stackrel{\circ}{ }+\mathrm{FSCA}$ ）， 60 km E from road C14 on C26（ $1 \stackrel{\circ}{\circ}$ ，AMG）．NEPAL： Chitwan District：Sauraha in Chitwan National Park at $27^{\circ} 34^{\prime} \mathrm{N} 84^{\circ} 29^{\prime} \mathrm{E}(1$ ㅇ，CSE）．NIGER：Diffa Region： 12 km ENE Nguigmi at $14^{\circ} 18.9^{\prime} \mathrm{N} 13^{\circ} 13.2^{\prime} \mathrm{E}\left(1\right.$ ㅇ）．NIGERIA：Ibadan（ 1 ㅇ， $1 \delta^{\circ} ; 1$ ㅇ， 9 o $^{\circ}$ ，BMNH； 5 우，
 （ 1 ㅇ，USNM）．OMAN：Al Khuwayr at $23^{\circ} 36^{\prime} \mathrm{N} 58^{\circ} 26^{\prime} \mathrm{E}$（ 2 ค， 2 o $^{\circ} ; 5$ 오， 2 o $^{\circ}$ ，PMA），Masirah Island （Guichard，1980），Rostaq（Guichard，1980），Tinaf（ 1 \＆，KMG）．PORTUGAL：Cascais（Diniz，1959），Lisboa （Diniz，1959），Paço de Rei（Diniz，1959），Resende（Pulawski，1971），Setubal（Pulawski，1971），Trafaria near Lisboa（2 ${ }^{\circ}$ ）．El Algarve Province（Gayubo，1984）：Aldeia da Tor，Aljezur，Bensafrim，Olhão，Porta de Lagoa， S．Bartolomeu de Messines．ROMANIA：C．A．Rosetti in Danube delta（Scobiola－Palade，1985）．RUSSIA： Rostov Oblast＇（Minoranskiy and Shkuratov，1996）：Beglitskaya Kosa，Migulinskaya，Nedvigovka， Rostovskiy Nature Reserve at $46^{\circ} 27^{\prime} \mathrm{N} 42^{\circ} 41^{\prime} \mathrm{E}$（Shkuratov，2002），Vëshenskaya village area at $49^{\circ} 37^{\prime} \mathrm{N}$ $41^{\circ} 45^{\prime} \mathrm{E}$（Shkuratov，2000）．Volgograd Oblast＇：Kamyshin near Sarepta（Pulawski，1971），Sarepta，now

 Algoa Bay（ 2 早，TMP），Aliwal North（ 4 ㅇ， $1 \circ^{\circ}$ ，BMNH； 1 早， 10° ，PPRI），NNW Bedford at $32^{\circ} 33^{\prime} \mathrm{S} 26^{\circ} 00^{\prime} \mathrm{E}$ （ 18° ），Belmont Valley 10 km E Grahamstown at $33^{\circ} 19^{\prime} \mathrm{S} 26^{\circ} 38^{\prime} \mathrm{E}$（ 6 o 2 o $^{\circ}$ ，AMG）， 7 km S Cradock（ 10° ， OÖLM），Elandsheuwels Farm 40 km W Steytlerville（ 10 ，+ ，USU），Goodehoop Farm 16 km W Steytlerville
 2 mi NW Grahamstown（1 \＆），Grahamstown：Burnt Kraal（ 1 ค，AMG）， 18 km WNW Grahamstown：Hilton Farm（13 ํ， 11 o $^{\pi}$ ，AMG），Howison＇s Poort 6 km WSW Grahamstown（ 6 ㅇ， 4 o $^{\boldsymbol{\circ}}$ ，AMG），Katberg（ 1 o $^{\pi}$ ， BMNH），Kenton－on－Sea（ 5 \＆，AMG），Kirkwood（ 2 \＆， $2 \sigma^{\circ}$ ，OÖLM），Komga（ $1 \delta^{\circ}$ ，PPRI），Olifantskop Pass 30 km W Grahamstown（ $1 \stackrel{\circ}{ }, 10$ ơ $^{\circ}$ ，OÖLM）， 20 km W Paterson（ $1 \circ$ ，OÖLM），Pearston（ $1+$ ，AMG）， Retrivier Mtn．near Port Alfred（ $1+$ ，AMG），Rietbron（ $1 \stackrel{\circ}{ }$ ，AMG），Rooikrans Dam 30 km NW King William＇s Town（2 of，OÖLM），Somerset East（ 1 \＆，AEI），Steynsburg Division（ 1 \＆，SAM）， 2 km N
 USU）， 16 km W Steytlerville：Goodehoop Farm（ $1 \mathrm{o}^{\circ}$ ，USU）， 28 km S Steytlerville：Wolwekraal Farm（7 우， 20 ơ $^{\circ}$ ，USU），Strowan Farm 5 air km W Grahamstown（ $5 \circ+5 \mathrm{c}^{\star}$ ，AMG），Table Farm 10 km NW Grahamstown （ 3 ㅇ， 10 o $^{\circ}$ ，AMG），Umtata（ 1 ㅇ，BMNH），Waaipoort Pass 19 km ENE Steytlerville at $33^{\circ} 14.8^{\prime} \mathrm{S} 24^{\circ} 19.8^{\prime} \mathrm{E}$ （ $1 \circ ; 1$ \＆，USU），Willowmore（ $5 \circ+1 \delta^{\circ}$, TMP）， 43 km NE Willowmore：Plessierivier（ $2 \circ+1 \mathrm{o}^{\circ}$ ）， 37 km NW Willowmore in Grootrivierberg Range（ $2 \sigma^{\circ} ; 51$ ㅇ， $68 \mathrm{o}^{\circ}$ ，USU）， 6 km S Willowmore at $33^{\circ} 20^{\prime} \mathrm{S} 23^{\circ} 27^{\prime} \mathrm{E}$
 Bethulia and Aliwal North（ $1 \circ$ ，SAM），Clocolan（ $1 \circ$ ，AMG），Harrismith（ 2 ㅇ，BMNH），Kroonstad（ 1 ㅇ，
 $1 \circ, 2 \delta^{\circ}$ ，AMG； $4 \sigma^{\circ}$ ，AEI； $1 \quad$ 古，PPRI），Pretoria Botanical Garden（ $1 \delta^{\circ}$ ），Pretoria：Faerie Glen at $25^{\circ} 46^{\prime}$ S $28^{\circ} 17^{\prime} \mathrm{E}\left(1\right.$ \＆），Pretoria：Gardens of Union Buildings at $25^{\circ} 45^{\prime} \mathrm{S} 28^{\circ} 12^{\prime} \mathrm{E}\left(7\right.$ of， 100°, PPRI），Pretoria：Hennops Park at $25^{\circ} 55^{\prime} \mathrm{S} 28^{\circ} 09^{\prime} \mathrm{E}\left(1 \mathrm{o}, \mathrm{PPRI}\right.$ ），Pretoria：Lynnwood at $25^{\circ} 48^{\prime} \mathrm{S} 28^{\circ} 22^{\prime} \mathrm{E}\left(1\right.$ ㅇ， $1 \mathrm{o}^{\circ}, \mathrm{PPRI}$ ），Rietvlei （ $=$ van Riebeck）Nature Reserve at $25^{\circ} 52^{\prime} \mathrm{S} 28^{\circ} 16^{\prime} \mathrm{E}\left(\begin{array}{l}\circ \\ \circ\end{array}\right.$ ， $1 \mathrm{o}^{\circ}$ ），Roodeplaat（ $1 \quad \circ$ ，PPRI），Roodeplaat Horticultural Research Station at $25^{\circ} 37^{\prime}$ S $28^{\circ} 20^{\prime}$ E（ $2 \sigma^{\circ}$ ，PPRI），Schoemansville（ $1 \circ$ ，AMG），Struben＇s Valley
 AMG），Giant＇s Castle National Park in Drakensberg Mts．（ $1+$ ，CSE），Hluhluwe Game Reserve（ 1 \＆， 2 ơ $^{\circ}$ ，

AEI; 6 ㅇ, 2 đ $^{\boldsymbol{*}}$, PMA), Karkloof near Howick (1 ㅇ, AEI), Kloof (1 ㅇ, BMNH), Kuleni Farm near Hluhluwe
 Reserve ($4 \circ$ ค PMA), Natal National Park ($1 \sigma^{*}$, AEI), Ndumu Game Reserve ($1 \sigma^{\circ}$, PMA; $2 \delta^{\circ}$, UCD, USU), Pietermaritzburg (2 우, 5 ơ $^{\circ}$, UCD), Pietermaritzburg: Townbush (1 ㅇ, PMA), 5 km W Port Shepstone (1 ค, USNM), Santa Lucia ($1 \stackrel{+}{ }$, ZMAN), St. Lucia Estuary ($1 \delta^{\circ}$, AEI), St. Lucia: Fannies Island Camp at $28^{\circ} 10^{\prime}$ S

 Mpumalanga: Barberton (18 ơ, PPRI), Bergvliet Forest Reserve at $25^{\circ} 05^{\prime} \mathrm{S} 30^{\circ} 54^{\prime} \mathrm{E}\left(4 \mathrm{o}, 5 \mathrm{o}^{\circ}\right.$, PPRI), Loskop Dam Nature Reserve (13 ㅇ, $17 \delta^{\circ}$, PPRI), Mariepskop at $24^{\circ} 35^{\prime} \mathrm{S} 30^{\circ} 52^{\prime} \mathrm{E}\left(1 \delta^{\circ}\right.$, PPRI), Middelburg ($1 \circ$, PPRI), 11 km E (1 ơ, PMA) $^{\circ}$) and 11 km SE Pilgrim's Rest ($2 \circ$, 3 o $^{\circ}$, PMA), Pretoriuskop in Kruger National Park (1 \& , USNM), Satara in Kruger National Park (4 o $^{\circ}$, PMA), Skukuza in Kruger National Park
 PPRI). Northern Cape Province: Arkoep Farm 6 km N Kamieskroon at $30^{\circ} 19^{\prime} \mathrm{S} 17^{\circ} 56^{\prime} \mathrm{E}$ (1 \& $+3 \mathrm{o}^{\circ}$, PPRI),
 Doringrivier N Nieuwoudtville at $31^{\circ} 18^{\prime} \mathrm{S} 19^{\circ} 07^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right.$, PPRI), Garies (1 \& \uparrow, $2 \mathrm{o}^{\circ}$, AEI), 5 km E Garies at $30^{\circ} 37^{\prime} 27^{\prime \prime} \mathrm{S} 17^{\circ} 59^{\prime} 45^{\prime \prime} \mathrm{E}\left(10^{\circ}, \mathrm{CSE}\right)$, Goegap Nature Reserve 10 mi E Springbok (1 of, 50°, AMG), 25 km E Hondeklipbaai ($1 \delta^{\circ}$, OÖLM), SW Loeriesfontein (σ°, OÖLM), Olifantshoek at $27^{\circ} 57^{\prime} \mathrm{S} 22^{\circ} 48^{\prime} \mathrm{E}\left(1+9,1 \mathrm{o}^{\circ}\right.$, PPRI), Richtersveld National Park at $28^{\circ} 10^{\prime} \mathrm{S} 17^{\circ} 02^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$, AMG), Sors Sors 9 km NE Kamieskroon (1 q, AMG), Springbok ($1 \circ$, KU), Upington ($2 \circ$, AMG), Vioolsdrif ($1 \circ$, AMG), Witsand Farm near Roaring Sands at $28^{\circ} 32^{\prime} \mathrm{S} 22^{\circ} 30^{\prime} \mathrm{E}\left(2\right.$ of, 2 ơ $^{\circ}$, PMA). Northern Province: Altyddroog Farm 13 km W Beitbridge at

 PPRI), Fanie Botha Nature Reserve near Tzaneen at $23^{\circ} 50^{\prime} \mathrm{S} 30^{\circ} 10^{\prime} \mathrm{E}\left(1\right.$ 早, $1 \mathrm{o}^{\circ}$, PPRI), Gravelotte 20 km NW

 Reserve at $23^{\circ} 40^{\prime}$ S $30^{\circ} 39^{\prime} \mathrm{E}$ (10°, PPRI), Langjan Nature Reserve (50°, PPRI), Modjadji Nature Reserve
 $8 \delta^{\circ}$, PPRI), Nylsvley Nature Reserve ($1 \delta^{\circ} ; 2$ ㅇ, $2 \delta^{\circ}$, PPRI), Pafuri (7 ㅇ, $15 \delta^{\circ}$, PPRI; 1 ㅇ, $1 \delta^{\circ}$, PMA),
 Warmbad ($1 \quad$ ㅇ, USNM), Wylliespoort at $22^{\circ} 58^{\prime} \mathrm{S} 29^{\circ} 57^{\prime} \mathrm{E}$ (3 우, 5 ơ $^{\circ}$, PPRI). North-West Province: Lichtenburg ($1 \sigma^{\circ}$, TMP), Rustenburg Nature Reserve ($2 \sigma^{\circ} ; 10 \stackrel{+}{\circ}$, $13 \sigma^{\circ}$, PPRI), Swartruggens ($1 \circ+2$ ㅇ, $1 \sigma^{\circ}$, AMG), VanWyksfontein 8 km W Norvalspont ($4+3 \mathrm{o}^{\circ}$, AMG). Western Cape Province: Barrydale (1 우, OÖLM), Beaufort West at $32^{\circ} 20^{\prime} \mathrm{S} 22^{\circ} 30^{\prime} \mathrm{E}\left(3 \circ+30 \delta^{\circ}\right.$, PPRI), Bergville ($1 \mathrm{o}^{\circ}$, OÖLM), Biedouw Valley at $32^{\circ} 08^{\prime} \mathrm{S} 19^{\circ} 14^{\prime} \mathrm{E}\left(20^{\circ}\right.$, PPRI), Cape Peninsula: Camps Bay ($1 \stackrel{\circ}{+}$, BMNH), Cape Town including Milnerton ($1 \circ ; 1 \circ$, BMNH; 7 ㅇ, USNM), Cape Town: Constantia ($1 \circ+$ USU), Cape Town: Constantiaberge, 640 m alt., at $34^{\circ} 02^{\prime} \mathrm{S} 18^{\circ} 23^{\prime} \mathrm{E}\left(2 \circ, 1 \delta^{\prime}, \mathrm{SAM}\right)$ and Constantiaberge above Tokai Forest and Donkerboskloof, 460

 Ladysmith (1 ㅇ, $1 \delta^{\circ}$, AMG), S Lambert's Bay (4 ㅇ, 4 of $^{\boldsymbol{*}}$, OÖLM), Langberg (1 ㅇ, OÖLM), Matjiesfontein ($1 \mathbf{o}^{\circ}$), Mossel Bay ($4+9$ or $^{\circ}$, BMNH), Pakhuis Pass 13.5 km ENE Clanwilliam at $32^{\circ} 08^{\prime} 18^{\prime \prime} \mathrm{S} 19^{\circ} 01^{\prime} 14^{\prime \prime} \mathrm{E}$ (1 ㅇ, CSE), Plettenberg Bay ($1 o^{*} ; 1 \quad \uparrow$, USNM), Raubenheimer Dam near Oudtshoorn (1 ㅇ, AMG), Sewenweekspoort in Ladysmith District (1 ㅇ, 1 ở; $^{\prime} 1$ ㅇ, UCD), Stellenbosch (1 ㅇ) , Stellenbosch: Jonkershoek (14 ㅇ, $15 \sigma^{\circ}$, PMA), Swellendam (10°, FSCA), 30 km NE Vanrhynsdorp at $31^{\circ} 26.7^{\prime} \mathrm{S} 18^{\circ} 58.4^{\prime} \mathrm{E}$ (2 ㅇ) ,
 Worcester (1 ơ $^{\boldsymbol{T}}, \mathrm{USU}$). SPAIN: Albacete (Tormos, Asís, and Gayubo, 1994): Alatoz, Jardín. Alicante (Torregrosa, Gayubo, Tormos, and Asís, 1993, or as indicated): Benidorm (Pulawski, 1971), Crevillente, La Barranca, Muchamiel, Muro del Comtat, Novelda, San Vincente del Raspeig. Almería: Laujar (Suárez, 1959). Burgos: Fuentespina (Gayubo and Sanza, 1986). Cáceres (Gayubo, Asís, and Tormos, 1990): Jarandilla de la Vera, Santa Cruz. Cádiz: Jerez de la Frontera ($1 \nrightarrow 2$ ơ), Jimena de la Frontera (Pulawski, 1971). Ciudad

Real (Gayubo, 1987): Los, Picón, Pozuelos. Gerona: Rosas (2 ơ). Jaen: La Carolina (Pulawski, 1971). Madrid (Gayubo and Mingo, 1988, or as indicated): Aranjuez (Giner Marí, 1943), Cercedilla, El Escorial ($1+1$ ơ, TMP), Estación Biogeólogica de El Ventorrillo in Sierra de Guadarrama (Nieves-Aldrey et al., 2003; Gayubo et al., 2004), Los Molinos, Madrid (Mercet, 1909), Montarco (Giner Marí, 1943), Monte de el Pardo (Gayubo, Nieves-Aldrey, González, Tormos, Rey del Castillo, and Asís, 2004), Ribas de Jarama. Málaga: Marbella (de Beaumont, 1962), Ronda (Pulawski, 1971). Salamanca (Gayubo, 1984, or as indicated): Hinojosa de Duero (Gayubo, Asís, and Tormos, 1990), Las Arribes del Duero (Gayubo, González, and Torres, 2000), Saldeana, San Martín del Castañar (Cruz-Sánchez et al., 2005), Valverdón, Villaflores. Segovia: Coca at $41^{\circ} 13^{\prime} \mathrm{N} 4^{\circ} 31^{\prime} \mathrm{W}\left(1+9,1\right.$ o $^{\circ}$, SCHL), San Rafael (Gayubo and Mingo, 1988), Segovia (10°, SCHL). Soria (Gayubo, García, Torres, and González, 1999): Aliud, Añavieja, Carabantes, Diones, Morón de Almazán, Rabanera del Campo, Tardajos de Duero, Tejado, Torralba del Moral, Zamajón; also Chavaler (González et al., 2003). Toledo: Alberche (Gayubo and Mingo, 1988), Toledo (11 ํ, 26 o $^{\boldsymbol{*}}$). Valencia: El Palmer (Pulawski, 1971), El Plá (Pulawski, 1971), El Saler ((1 ơ, SCHL), Malvarrosa (Gayubo and Mingo, 1988), Valencia (Gayubo and Mingo, 1988). Valladolid: Viana de Cega (Gonzáles, Gayubo, and Torres, 1998, 1999). Zamora (Gayubo, 1986a): Fresno de la Ribera, Jambrina, Mayalde, Peñausende, Perilla de Castro, Zamora. Location unknown: Sierra Morena: no specific locality (Pulawski, 1971). SRI LANKA: Anuradhapura District: Hunuwilagama near Wilpattu National Park (1 , , $1 \sigma^{7}$, USNM). Hambantota District: Palatupana Tank ($1 \mathrm{~J}^{\star}$, USNM). Mannar District: Kokmotte Bungalow 0.5 mi NE Wilpattu National Park ($3 \stackrel{\circ}{ }, 1$ ơ 7, USNM). Trincomalee District: Trincomalee: China Bay Ridge Bungalow ($2 \circ ; 4 \circ$, USNM). SWAZILAND: Usutu Forest ($1 \stackrel{\circ}{ }$, ZMAN). SYRIA (Pulawski, 1971, or as indicated): Damascus area (Ibn Mefis, Mezzé, Wadi el Kern), Rankus 40 km N Damascus ($1 \delta^{*}$, OÖLM), Wadi Raqqad. TAJIKISTAN: Djilikul and Kabadian (Pulawski, 1971), Dushanbe (1 ㅇ), Tigrovaya Balka Nature Reserve (Nazarova, 1998). TANZANIA: Arusha Region: Arusha National Park: Ngurdoto Crater (1 o ${ }^{*}$), Lake Manyara National Park:
 17 km E Chalinze (1 ㅇ, $1 \delta^{*}$), Pugu Forest near Kisarawe (1 \&). Iringa Region: 92 km ENE Iringa ($1 \mathrm{o}^{*}$). Kilimanjaro Region: Kisiwani 27 km SE Same (1 ค) , Mkomazi Game Reserve: Ibaya (4 ㅇ, 15 o 7, SAM) and

 (1 δ^{\top}). Tanga Region: 11 km SW Korogwe ($1 \mathrm{o}^{*}$), 33 km SW Korogwe ($1 \mathrm{o}^{\star}$), 62 km SW Korogwe ($1 \mathrm{o}^{*}$), 10 km WNW Mabokweni ($1+2 \sigma^{*}$), 2 km NE Mkomazi ($3 \sigma^{*}$), Mombo ($1+$ 아) , Pangani River Camp 86 km NW

 15 km W Nefta at $33^{\circ} 50^{\prime} \mathrm{N} 7^{\circ} 43^{\prime} \mathrm{E}$ ($3 \mathrm{o}^{\circ}$, CSE), Tozeur (Pulawski, 1971). TURKEY: Antalya: Yakacikköyü at $39^{\circ} 58^{\prime} \mathrm{N} 35^{\circ} 52^{\prime} \mathrm{E}$ (1 아). Erzurum: University campus (Gayubo, Özbek, and Yildirim, 2003). Hatay: Antakya (4 σ^{*}). Istanbul: Istanbul ($1 \delta^{*}$). Manisa: 10 km N Muradye ($1 \sigma^{7}$, OÖLM). Mersin: Tarsus (Pulawski, 1967). Sivas: Serafiye area (Pulawski, 1967). Tekirdag: 24 km on Malkara-Inecik road (Pulawski, 1967). TURKMENISTAN: Askhabad (3 ${ }^{\text {r }}$), Firuza 40 km W Askhabad (Pulawski, 1971), 40 km NE Mary (1 $\mathrm{o}^{\boldsymbol{r}}$). UGANDA: Lake Victoria ($1 \stackrel{\circ}{ }$, CNC). UKRAINE: Crimea: Karadagh (Pulawski, 1971). UNITED ARAB EMIRATES: Khor Fakkan ($1 \stackrel{+}{ }$, $1 \sigma^{*}$, KMG). Dubai: Nakhali ($2 \sigma^{*}$, UCD). UZBEKISTAN (Pulawski, 1971, or as indicated): Aksakata in Chatkal Range in Tashkent Oblast' (Islamov, 1986), Dzhuma 30 km W Samarkand, Khiva-Ravat ($1 \delta^{*}$), Tashkent area (Mayskoye, Vrevskaya), Yargak 30 km WNW Khatta-

 ($1 \stackrel{\circ}{ }$, MRAC), Uele: Bayenga in Wamba Territory ($1 \stackrel{\circ}{ }$, MRAC), Virunga National Park: N Talia River in

 Mumbwa ($1 \delta^{*}$, MSNT). Eastern Province: 32 km E Petauke ($1 \delta^{\circ}$). Lusaka Province: Chilanga 15 km S Lusaka (1 ¢) , ca 20 km E Lusaka International Airport (1 우). Northern Province: 60 km N Kasama (1 ㅇ) , 76 km S Kasama ($1 \mathrm{o}^{\star}$). Southern Province: 7 km SW Kalomo ($1 \mathrm{o}^{*}$). ZIMBABWE: Bubye River 80 km NE
 USNM), Bulawayo airport at $20^{\circ} 00^{\prime}$ S $28^{\circ} 38^{\prime} \mathrm{E}$ (2 +) , Bulawayo: Hillside (2 우), Bulawayo at Umguza River

 (2 ㅇ, AMG), Matetsi in Hwange District ($1 \stackrel{\circ}{ }$, AMG; $1 \stackrel{\circ}{\circ}$, ZMAN), Matobo (Arnold, 1923), Mavuradonha Wilderness area 15 km E Muzarabani (1 ơ, OÖLM), Mbizi Game Reserve (= Rocky Farm) 20 km SE Harare (1 ㅇ), Mt. Selinda 40 km S Chipinge (1 ơ, OÖLM), $_{11 \mathrm{~km} \text { NE Nyamandhlovu (2 }+ \text {), Redbank at Kami River }}$
 Umguza River ($1+$, TMP), Victoria Falls (6 ㅇ) .

Tachysphex costae (De Stefani Perez)

Figures 101-103.
Tachytes costae De Stefani Perez, 1882:42, 우 (as Costae, incorrect original capitalization). Syntypes: 우, Italy: Sicilia: Sciacca (depository unknown), not examined.- De Stefani Perez, 1895:226 (in catalog of Sicilian Hymenoptera). - As Tachysphex costae (often spelled costai between 1925 and 1976): Kohl, 1885:365 (new combination, revision); Dalla Torre, 1897:678 (in catalog of world Hymenoptera); Ferton, 1901b:680 (found in Marseille area, France, but not in Corsica); Antiga and Bofill, 1904:10 (in catalog of Catalonian Hymenoptera); de Gaulle, 1908:121 (listed from France); Mercet, 1910:165 (listed from Spain); Morice, 1911:102 (Algeria); Berland, 1925:120 (in Sphecid Fauna of France); von Schulthess, 1929:185 (Greece); Grandi, 1930:318 (nesting habits), 327 (description of mature larva), and 341 (Italy, 1931:47 (reference to previous observations); Guiglia, 1932b:475 (Libya); Nadig, 1933:78 (Morocco); Giner Marí, 1934:134 (Spain); Grandi, 1934:59 (prey, larva); Guiglia in Zavattari, 1934:304 (Libya); Nadig, 1934:32 (Corsica, Sardinia); Bernard, 1935:65 (France); de Beaumont, 1936a:198 (in revision of French Tachysphex), 1936c:8 (specimen in A. Costa collection), 1940:170 (in revision of Egyptian Tachysphex); Guiglia, 1940:291 (Libya), 1942b:234 (Libya); Giner Marí, 1943:140 (in Sphecid Fauna of Spain); Guiglia, 1943a:71 (Albania); Giordani Soika, 1944:9 (Sicily); Guiglia, 1944:27 (Italy); Deleurance, 1945:25 (nesting habits); Giner Marí, 1945b:360 (Morocco); de Beaumont, 1947a:175 (in revision of Egyptian Tachysphex), 1947b:391 (Cyprus); Guiglia, 1948:201 (Sardinia); de Andrade, 1949:15 (Portugal); Pittioni, 1950:25 (Cyprus); de Beaumont, 1954a:55 (Italy, diagnostic characters), 1954b:91 (Italy), 1955a:181 (Morocco); Ceballos, 1956:376 (listed from Spain); de Beaumont, 1956a:197 (Libya); Morel, Nouvel, and Ribaut, 1956:338 (France); de Beaumont, 1958:61 (Algeria); Nouvel and Ribaut, 1958:13 (France); Pulawski, 1958:180 (Bulgaria); de Beaumont, 1959:27 (Italy); Diniz, 1959:29 (Portugal); de Beaumont, 1960a:16 (Greece: Island of Rhodes), 1960b:238 (Libya), 1961a:49 (Greece: Crete); Grandi, 1961:194 (life history) and 506 (larva); de Beaumont, 1962:25 (Spain); Ceballos, 1964:90 (in supplement to catalog of Spanish Sphecidae); Diniz, 1964:29 (Portugal); de Beaumont, 1965:48 (Greece), 1966:212 (Egypt); Balthasar, Hrubant, and Hrubant, 1967:171 (Bulgaria); Pulawski, 1967a:397 (Turkey); Königsmann, 1971:106 (Spain); Pulawski, 1971:400 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:12 (Israel); Erlandsson, 1974:71 (France, Italy, Malta, Spain); Bohart and Menke, 1976:273 (listed); Simon Thomas, 1976:5 (France); Georghiou, 1977:192 (Cyprus); Guichard, 1978:271 (Greece); Kazenas, 1978:115, 127 (in key to Sphecidae of Kazakhstan and Central Asia); Pulawski, 1978:215, 220 (in key to Sphecidae of European USSR); Pagliano, 1980:128 (Italy); Steiner, 1981:329 (stinging sequence); Gayubo, 1984b:363 (Portugal), 1985a:168 (Spain), 1986a:32 (Spain); Gayubo and Tormos, 1986a:12 (Spain); Gayubo, 1987:111 (Spain); Asís and Jiménez, 1988:271 (Spain); Gayubo and Mingo, 1988:78 (Spain); Pagliano, 1990:103 (in catalog of Italian Sphecidae); Gayubo, Borsato, and Osella, 1991:401 (Italy); Gayubo and Torres, 1991:Table I (Spain); Schembri, 1991:180 (Malta); Gayubo, Borsato, and Osella, 1992:281 (Greece); Negrisolo in Minelli, Ruffo, and La Posta, 1995b:9 (in catalog of Italian fauna); Pagliano and Scaramozzino, 1995:731 (Italy); Wu and Zhou, 1996:89 (China); Gayubo, García, Torres, and González, 1999:89 (Spain); Gayubo, González, and Torres, 2000:185 (Spain); Kazenas, 2001:28 (in checklist of Sphecidae of Kazakhstan and Central Asia), 156 (review of known biology); Schmidt and Bitsch in Bitsch et al., 2001:244 (in Sphecid Fauna of Western Europe); Kazenas, 2002:66
(Kazakhstan); Generani, Pagliano, Scaramozzino, and Strumia, 2003:65 (Italy: Arcipelago Toscano); CruzSánchez et al., 2005:220 (Spain); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).
 examined. New synonym.-Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:274 (listed).
Tachysphex zarudnyi Gussakovskij, 1933:284, \odot. Holotype: \odot, Iran: Khorassan: Khulut-s-Langher (ZIN), examined before 1971. Synonymized with Tachysphex costae by Pulawski, 1971:400 and 404.
Tachysphex tadzhikus Gussakovskij, 1952:239, ㅇ. Holotype: ${ }^{\circ}$, Tajikistan: Stalinabad, now Dushanbe (ZIN), examined before 1971. Synonymized with Tachysphex costae by Pulawski, 1971:400 and 404.
Tachysphex costai canariensis de Beaumont, 1968a:261, ㅇ, $\overbrace{}^{7}$. Holotype: $;$, Canary Islands: Gran Canaria: Maspalomas (BMNH), examined before 1971. New synonym.- Pulawski, 1971:406 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:273 (listed); Báez and Ortega, 1978:192 (Canary Islands); Hohmann, La Roche, Ortega, and Barquín, 1993:232 (Canary Islands).
Tachysphex costai fertoni Pulawski, 1971:406, ㅇ, $\boldsymbol{\delta}^{\boldsymbol{*}}$. Holotype: ${ }^{\circ}$, Algeria: La Calle, now El Kala (MNHN), examined before 1971. New synonym. - Bohart and Menke, 1976:273 (listed).
As Tachysphex fluctuatus (corrected to Tachysphex costae by Pulawski, 1971:401, 406): Ferton, 1912:399 (life history); Grandi, 1931:47 (reference to Ferton, 1912); Cros, 1936:355 (life history); Móczár, 1938:80 (Hungary).
As Tachysphex buyssoni: Guiglia, 1932:475 (Libya), corrected to Tachysphex costai by Guiglia, 1940:291.
Le Tachyte manticide: Fabre, 1886:229, 233-249 (life history); de Gaulle, 1908:121 (listed from France); Berland, 1923a:173 (identification of Fabre's specimens).

Recognition.- Tachysphex costae has the apical depression of sternum I intersected by a longitudinal carina (as in Fig. 132a), the erect body setae either straight or angled apically but not sinuous (except somewhat sinuous on the propodeum posterolaterally), the mesopleural setae not concealing the integument, and male sternum III with conspicuous, suberect setae on the apical depression. In addition, hindwing vein cu-a is oblique in most specimens (anal end further away from wing base than cubital end), but it is vertical or nearly so in many southern African specimens. Several species are similar, but costae differs as follows:

In the female, the pygidial plate is margined throughout by a lateral carina (not margined next to the apex in erythropus), and the apical tarsomeres of the mid- and hindtarsi have two or three small spines on each lateral margin (spines lacking in grandissimus and sordidus). The gaster is red basally in many Mediterranean and western Asian specimens, and such individuals differ from schoenlandi (southern Africa) only with difficulty: their clypeal lip and labrum each has a welldefined mesal notch (labrum and clypeal lip vary from entire to emarginate in schoenlandi). Southern African specimens of costae have an all black gaster and well-defined mesopleural punctures, whereas in schoenlandi the gaster is red basally and mesopleural punctures are minute, ill defined.

In the male, the apical depression of sternum III (of sterna III-V or III-VI in populations north of the equator and those from southern Kenya) are covered with subappressed or suberect setae that are not agglutinated except appearing agglutinated on sternum III apicomesally (Fig. 101). The male of erythropus is similar, but unlike that species, the forefemoral notch of costae is not compressed into a crest; also, the notch has a proximal tuft of erect setae in European, North African, Kenyan, and Asian specimens (no such tuft in erythropus). Sub-Saharan specimens of costae have an all black gaster, whereas the gastral base is red in many schoenlandi.

Some North African sericeus closely resemble costae as most of their setae are nonsinuous. They differ from North African populations of costae in having an all black gaster (rather than all or partly red) and in lacking the setal tuft at the proximal end of the male forefemoral notch.

Species delineation.- European and Asian costae are so different from West African and
southern African specimens that two species seem involved at first (see Variation below for details). I regard them as conspecific because they intergrade in the intermediate areas. For example, the specimens from Samba Dia area, Senegal, have characteristics of both forms: the female resembles the European and Asian specimens, whereas the male is similar to other subSaharan individuals. A female from El Kala, Algeria, and two Ethiopian males are also intermediate.

Justification of new synonymy.- Two subspecies were previously recognized in

Figure 101. Tachysphex costae (De Stefani Perez): gastral segments II-VII in lateral view ($\times 30$). costae in addition to the nominotypical form. Tachysphex costae canariensis de Beaumont, 1968, from the Canary Islands, was characterized by an all black gaster and the unsculptured scutal interspaces, while costae fertoni Pulawski, 1971, was recognized for those North African specimens in which the gaster is all black. I think now that these two forms do not deserve a formal nomenclatural status, because the gaster varies from partly red to all black in many populations, and the shiny scutal integument is also found in many continental specimens, not only in populations from the Canary Islands. Should these two subspecies be preserved, other ones must be recognized to fully cover geographic variation, an action that would lead to unnecessary proliferation of names.

Description.- Gena unusually narrow in dorsal view. Scutal punctures averaging from about one to about two diameters apart. Mesopleuron dull, markedly microsculptured, with punctures that are ill defined in more northern populations, but well defined south of the equator. Propodeal dorsum ridged or irregularly rugose, intersecting posterior face at about right angle; side ridged but ridges anastomosed in many specimens and effaced in smallest ones; posterior face, in dorsal half or third, mostly with wide impression rather than median sulcus, but median sulcus well defined in a female from Bulawayo, Zimbabwe (TMP). Hindwing jugal lobe enlarged (Fig. 102a), crossvein cu-a oblique (anal end further away from wing base than cubital end), but vertical in many southern African specimens. Hindcoxal dorsum with inner margin carinate basally. Sternum I with apical depression that is bisected by longitudinal, obtuse carina (as in Fig. 132a).

Setae appressed on scape; erect on postocellar area and along hypostomal carina (length about $0.4 \times$ basal mandibular width); straight on forecoxa; most thoracic setae straight except angled apically, but nearly straight on scutum, and somewhat sinuous on propodeum posterolaterally; setae of propodeal dorsum oriented posterad (length about $0.4 \times$ basal mandibular width).

Head and thorax black, mandible reddish mesally. Frontal setae silvery in female and smallest males, golden in most males. Wings hyaline or yellowish; forewing costal vein light brown, subcostal vein dark brown. Femora: see Variation below. Tibiae and tarsi red. Gaster black or red basally (see Variation below). Terga I-III or I-IV in female, I and II to I-IV in male, silvery fasciate apically.

ㅇ.- Labrum with well-defined mesal notch. Clypeus: bevel markedly shorter than basomedian area; lip slightly arcuate, emarginate mesally, with or without lateral emarginations (see Variation below). Width of postocellar area $1.0-1.1 \times$ length. Dorsal length of flagellomere I $1.7-2.3 \times$ apical width. Dorsal foretibial surface with two to four spines, outer surface with several spines in Mediterranean, Asian, and West African specimens, with one or two spines in those from southern Africa. Forebasitarsus with 11-13 rake spines (spines divided into basal and apical groups, occasionally with single spine between them). Apical tarsomeres of mid- and hindtarsi with
two or three spines near midlength of each lateral margin and with a cluster of preapical spines on venter. Apical depression of tergum V impunctate, glabrous. Length $9.0-12.5 \mathrm{~mm}$.
δ^{*}.- Inner mandibular margin with tooth and small cleft. Clypeus: bevel shorter than basomedian area; lip free margin arcuate or slightly sinuate, with well-defined corner; distance between corners $1.1-1.3 \times$ distance between corner and orbit. Width of postocellar area $0.4-0.6 \times$ length. Dorsal length of flagellomere I 0.8-1.2 \times apical width. Outer margin of forebasitarsus, in most specimens, without preapical spines, but with one rake spine near midlength of basitarsus in single male from Tunisia; outer apical spine of foretarsomere II shorter than tarsomere III. Sternum II: setae mostly appressed and no longer on apical depression than on remaining surface (but suberect and longer in specimens from sub-Saharan Africa and those from Ramit and Varzob areas, Tajikistan, and some from Israel). Apical depression of sternum III with subappressed or suberect setae that appear agglutinated apicomesally, setae markedly longer than on remaining surface (Fig. 101); apical depression of sterna IV-VI with or without subappressed or suberect setae (see Variation below). Length $7.5-11.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 102b, c.

Figure 102. Tachysphex costae (De Stefani Perez): a - hindwing; b - volsella; c - penis valve.
Variation.- Mesopleural sculpture. The mesopleuron is dull, markedly microsculptured, with shallow, ill-defined punctures in Asian, European, North African, West African, Ethiopian, Kenyan, and Tanzanian specimens. In individuals from Zimbabwe and South Africa, the mesopleuron has well-defined punctures that are more than one diameter apart at center.

Female clypeus. The clypeal lip is not incised laterally in specimens from Europe, most from Asia, and the single female from Senegal. One lateral incision is present in the single female from Algeria, and two incisions in females from Kenya, Tanzania, Zimbabwe, South Africa, and some from Israel.

Male forefemoral notch. The forefemoral notch has a basal tuft of erect setae in Asian, European, and North African specimens. Sub-Saharan males have no such tuft except a rudimentary tuft is present in the few specimens examined from Senegal and Kenya.

Male sternal setae. Anterior portions of sterna IV-VI (cephalad of apical depressions) are largely glabrous in specimens from Pakistan and sub-Saharan Africa (sternum IV setose in one of the Ethiopian specimens), but setose in European, most Asian, North African specimens, and one from Zinguinchor, Senegal.

Male sterna: fringes on apical depressions. In most populations, a fringe (at least partly erect) is present on sterna III-V of III-VI, but only on sternum III in males from southern Africa,

Tanzania, and one from Ethiopia; the other Ethiopian specimen has a well-defined fringe on sternum III, and ill-defined fringe on sternum IV, and no fringes on the remaining sterna: sternum III has a well-defined fringe and sternum IV a rudimentary fringe in the two males from Kenya.

Setae of interocellar and postocellar areas. In specimens from Asia, Europe, North Africa, West Africa, and some from Tanzania, setae are nearly appressed on the interocellar area and about as long as one midocellar diameter on postocellar area. In specimens from Kenya, Zimbabwe, South Africa, and some from Tanzania, setae are suberect on the interocellar area, and markedly longer than midocellar diameter on the postocellar area (equal to $0.3-0.4$ of basal mandibular width). Ethiopian specimens are intermediate, with setae of the interocellar area suberect, and those on the postocellar area about as long as midocellar diameter.

Scutal setae. Nearly appressed in specimens from Asia, Europe, North Africa, and West Africa, but nearly erect in specimens from Ethiopia, Kenya, Tanzania, and southern Africa.

Color of frontal setae. Setae silvery in female, in males from sub-Saharan Africa (except gold in specimens from Nigeria, Ethiopia, and Kenya), and in small males from other areas; golden in most males north of Sahara.

Color of legs. Legs all black in southern African specimens. Femora varying from mostly red to largely black in females from Asia, Europe, North Africa, and West Africa; and all black (except apically) in males from these areas (mid- and hindfemora red in both females and most males from Tanzania). Tibiae all red in Asian, European, North African, Ethiopian, Kenyan, and Tanzanian specimens as well as in females from western Africa; black dorsally and red ventrally in males from western Africa, or foretibia all red (all tibiae largely red in male from Zinguinchor, Senegal).

Color of gaster. Gaster black, but segments I and II all or partly red in some females from Balkan Peninsula and Tajikistan, in females and many males from Italy, and all red in specimens from southwestern Europe (including Sardinia and Corsica), northwest Africa, Cyprus, and Middle East.

Nesting behavior.- Nesting habits and prey of costae were observed by Fabre (1886) and Deleurance (1945) in France, by Grandi (1930, 1961) in Italy, and by Ferton (1912) and Cros (1936) in Algeria (see the synonymy section above for the names used by these authors). Nests were established in sandy or sandstone cliffs and were permanently open during the provisioning period. Grandi supposed that the nests might be reused galleries of other aculeates, and Ferton and Cros found that they were indeed reused old burrows of ants and of Philanthus triangulum Fabricius. The number of cells per nest varied from one to eight (Grandi), and was 10 according to Deleurance. The ant nest used by costae consisted of a maze of galleries and chambers, but the chambers alone were used as cells.

Prey are the mantids Ameles abjecta Cyrillo, Ameles decolor Charpentier, Empusa pauperata Latreille, and Mantis religiosa Linnaeus, mostly nymphs but occasionally adult males. They are flown to the nest, held by the antennal bases with the wasp's mandibles. The female enters the nest directly, without stopping at the entrance. Even if forced by the observer to walk on the sand cliff in which she nests, she takes off before entering the gallery. Taking the paralyzed mantid away from the wasps and substituting it with a fresh one, Fabre established that three stings were necessary to paralyze it: the raptorial forelegs first, the midlegs next, then the hindlegs. Similar experiments were performed by Cros who noticed only the first sting; Deleurance and Steiner (1981) also reported the first sting being directed toward the raptorial legs. The number of prey per cell were 3-16 according to Fabre, no more than six according to Grandi, one, three, or four according to Cros, and averaging eight (10 in one case) according to Deleurance, and their length varied between 9 and 20 mm (Deleurance). They were all positioned head in, and the wasp's egg was placed on the external surface on the prey forecoxa (either right or left).

To construct a cocoon, the larva first attaches several silk threads to the cell's wall, suspending itself on a kind of a loose hammock, and spins a ring around the body's midlength (Fabre, Grandi, Deleurance). It then picks sand grains with the mandibles, humidifies them with saliva, and superimposes them on the ring. The ring gradually extends toward the body's rear end until the posterior half of the cocoon is completed. The larva then reverses its position and completes the other half.

In the old ant nests, the same chamber may be utilized more than once by the same female, with a cocoon and a larva being found there simultaneously. As Ferton pointed out, this is in apparent contradiction with other aculeates, which reuse the cell only after cleaning it carefully. In costae, however, the female may miss the fresh cocoon, still suspended in a hammock, while she sweeps the floor. The hammock threads gradually degrade, and the cocoon falls on the floor, so that two or more may eventually lay side by side. In one case, Ferton found 14 cocoons in a single chamber, probably the progeny of the same female. Deleurance reported two larvae in a single cell.

Grandi (1961) described the larva of this species.

The parasites of costae are the meloid beetle Cerocoma schaefferi Linnaeus, the bombyliid fly Anthrax hesperus Rossi, and the sarcophagid flies Miltogramma punctatum Meigen and Sphecapata albifrons Rondani.

Geographic distribution (Fig. 103).Mediterranean basin, north to southern France, Romania, and Hungary; east to Kazakhstan, Transcaspian Region, and western Pakistan; recorded from China by Wu and Zhou (1996); south to South Africa.

Records (localities for which the number of specimens studied or a bibliographic refer-

Figure 103. Collecting localities of Tachysphex costae. ence are not indicated are all from Pulawski, 1971).-ALGERIA: Biskra (Morice, 1911), El Kala (1 + , paratype of costae fertoni), Mascara (Cros, 1936), Tassili des Ajjer: Rank'lit (de Beaumont, 1958). ANGOLA: Kaifuchi, a locality not found in available

 Nicolás ($1 \sigma^{7}$, ZMAN), Maspalomas ($2 \sigma^{7}$, paratypes of costae canariensis), Tauro 6 km NW Arguineguin

 (6 ㅇ, 7 d ${ }^{\text {d }}$), Zakaki (1 d $^{\text {t }}$). EGYPT: Al Iskanderiyah (= Alexandria): Amrye (de Beaumont, 1966). Al Qahirah (= Cairo): Wadi Digla ($1 \sigma^{\pi}$, SAM). ETHIOPIA: Sidamo: 16 km N Moyale ($1 \delta^{\circ}$), 22 km N Moyale
 Rhône: Marseille (Kohl, 1885), Rognac (Berland, 1925), Vitrolles (Berland, 1925). Corse: Ajaccio (Nadig, 1934), no specific locality (1 ơ $^{\prime}$. Drôme: Nyons (Berland, 1925). Gironde: Bordeaux (Kohl, 1885). Hérault (Bitsch et al., 2001): Minerve, Nissan-lez-Ensérune. Lot-et-Garonne: Forêt de Campet (Simon Thomas, 1976). Pyrénées-Orientales: Banyuls-sur-Mer (® $^{\circ}$), Claira and Pollestres (Morel, Nouvel, and Ribaut, 1956), Puig-del-Mas near Baillaurie (Nouvel and Ribaut, 1958). Var: Esterel, Maures (Bernard, 1935), St.-Aygulf. Vaucluse: Carpentras (2 o $^{\circ}$), Sérignan (Fabre, 1886). GHANA: Legon 12 km NNE Accra ($1 \mathrm{o}^{\circ}$). GREECE: Aegean Islands: Astypalaia (as Stampalia: von Schulthess, 1929; de Beaumont, 1954a), Euboea: Nea
 SCHL), Fanes, Ixia ($1 \stackrel{\circ}{\circ}, 1 \delta^{\boldsymbol{r}}$), Malonas (2 ㅇ, MSNT), Kremasti and Petaloudes (de Beaumont, 1960a).

(= Crete): Ayia Varvara ($1 \mathrm{o}^{\star}$), Knossos ($1+\frac{\circ}{}$, $1 \mathrm{o}^{\circ}$), Lasithou Mts.: Tzermiadhon at $35^{\circ} 12^{\prime} \mathrm{N} 25^{\circ} 30^{\prime} \mathrm{E}\left(1 \mathrm{o}^{*}\right.$,
 Tolon (5 \&). Sterea Ellás (= Central Greece) (de Beaumont, 1965): Athens, Nea Kifissia, Thebes. HUNGARY: Pótharaszt-puszta (Móczár, 1938). IRAN: Fars: Daria Namak 27 km E Shiraz (2 ơ). Khorasan: Khulut-s-Langher (Gussakovskij, 1933). ISRAEL (de Beaumont, Bytinski-Salz, and Pulawski, 1973): Beeri, Jerusalem, Kfar Yeroham 30 km SSE Beersheba (1 \circ). Also: 5 km W Elat (1 đ̛, CSE), En Zeelim on Dead
 Porto d'Ischia (Erlandsson, 1974). Lazio: Acilia (de Beaumont, 1954b), Circeo (1 \&), Roma: Ponte Mammolo and Prima Porta di Roma (de Beaumont, 1959), Settecamini (de Beaumont, 1959). Liguria: Imperia (Guglia,
 (Nadig, 1934), Lago di Cogghinas, San Giorgio Molafà, Sorso, Tissi, Villasalto (Guiglia, 1948). Sicilia: Castelammare, Gela, Isola di Lampedusa (Pagliano, 1990; Pagliano and Scaramozzino, 1995), Sciacca (De Stefani Perez, 1882), Scicli (Pagliano, 1990), Siracusa, Taormina (Giordani Soika, 1944). Toscana: Campiglia Marittima (1 \&), Isola d'Elba (de Beaumont, 1954b), Isola di Gorgona (Generani, Pagliano, Scaramozzino, and Strumia, 2003), Quercianella (Grandi, 1959), San Vincenzo (2 o $^{\text {º }}$). IVORY COAST: 40 km S Toumodi (2 ㅇ, $8 \sigma^{*} ; 1 \delta^{\boldsymbol{*}}$, MSNT). KAZAKHSTAN ($\mathrm{K}=$ Kazenas, 2002, $\mathrm{P}=$ Pulawski, 1971): Aktöbe: $60-80 \mathrm{~km}$ NE Yrghyz (K), Saralzhin (K), Uil (K, P). Astana: Kökshetaū at Terisakkan River W Astana (P), 6 km SE and 12 km S Priozernyi (K). Atyraū: Inderborskiy (K), Kharkin 180 km N Atyraū (P). East Kazakhstan: 40 km W Chernayevka $=60 \mathrm{~km}$ NW Zaysan at about $48^{\circ} \mathrm{N} 84.5^{\circ} \mathrm{E}(\mathrm{K}), 20-25 \mathrm{~km}$ NW Tansyk (K). Mangghystaū: Imagombet 85 km NE Tauchik at about $44^{\circ} \mathrm{N} 52^{\circ} \mathrm{E}(1$ \& $)$. North Kazakhstan: Lake Inder (P). Qaraghandy: Atasuskiy = Zhana Arka (P). Qostanai: 25 km NE Amangeldy (1 早), Zhalanash (K). Qyzylorda: 5-8 km S (K) and $5 \mathrm{~km} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right)$ Akespe $=80 \mathrm{~km}$ W Aral'sk at about $47^{\circ} \mathrm{N} 60.5^{\circ} \mathrm{E}, 3 \mathrm{~km} \mathrm{NW}, 30 \mathrm{~km}$ SE and 15 km N Aral'sk (K), 3 km NW and 7 km N Kamyshlybash (K), 28 km SW Kazalinsk ($1 \mathrm{o}^{\mathrm{*}}$), 14 km SE Saksaul'skiy (K). South Kazakhstan: 5-8 km SW and 8-10 km SE Chardara (K), Kuyuk Pass 100 km ENE Chardara at about $42^{\circ} \mathrm{N} 70^{\circ} \mathrm{E}(\mathrm{K}), 45 \mathrm{~km}$ NW Suzak (K), 10 km S Syutkent on Syr-Darya River $=140 \mathrm{~km}$ WSW Chimkent at about $42^{\circ} \mathrm{N} 68^{\circ} \mathrm{E}(\mathrm{K})$, Turkestan (P). Zhambyl: 30 km SW Chu (K), 5-10 km S Mynaral W Lake Balqash (K). KENYA: Coast Province: Taita Discovery Centre ($1 \circ^{\text {o }}$), 14 km SW Voi (1 of). Rift Valley Province: Marich Pass Field Studies Centre ($1 \sigma^{\top}$), Magadi road 46 air km SW Nairobi ($1 \sigma^{\circ}$). LIBYA: El-Hag (Guiglia, 1940), Garian (de Beaumont, 1956a), Jalu and 20 km S Jalu in Cufra oasis (Guiglia, 1932, as Gialo), Tmimi (de Beaumont, 1960b). MALAWI: Chunzi near Domira Bay ($1 \circ$, BMNH). MALTA (Schembri, 1991): Fiddien, Ghadira, Gozo (Ramla), St. Thomas Bay. Also: St. Julians: Dragonara (Erlandsson, 1974). MAURITANIA: 25 km W Moudjéria (1 ه̛, MSNT). MOROCCO (de Beaumont, 1955): Ijoukak, Marrakech, Midelt. Also: Goundafa (Nadig, 1933), Ifrane (ơ, CSE), Melilla, and Muley Rechid (Giner Marí, 1945). NAMIB- $_{\text {I }}$ (IA: Gobabis District: Farm Boomlager 328 at Kainamatoje River at $22^{\circ} 00^{\prime} 02^{\prime \prime} \mathrm{S} 18^{\circ} 09^{\prime} 14^{\prime \prime} \mathrm{E}\left(10^{\circ}\right.$, CSE). Otjiwarongo District: 40 km S Otjiwarongo ($1 \mathrm{o}^{\circ}, \mathrm{OHL}$). Rundu District: Andara ($1 \mathrm{o}^{\circ}, \mathrm{NMN}$).
 SE Tsumeb ($1 \sigma^{\boldsymbol{\gamma}}, \mathrm{JG}$). Tsumkwe District: Gutscha Pan ($1 \circ$, NMN). NIGERIA: Azare ($1 \sigma^{\boldsymbol{\circ}}, \mathrm{BMNH}$). PAKISTAN: Baluchistan: Hazarganji Chiltan National Park 20 km SW Quetta ($1 \mathrm{~d}^{\circ}$). PORTUGAL (de Andrade, 1949; Diniz, 1964): Cruz Quebrada, Monchique, Rezende, Sines, Trafaria, Vale de Gaio near Setubal. Faro (Gayubo, 1984b): Bensafrim, Sto. Estevão, Vaqueiro. ROMANIA: Agigea near Constanta. RUSSIA:
 SOUTH AFRICA: Eastern Cape Province: Grahamstown ($1 \sigma^{\circ}$, AEI), 18 km WNW Grahamstown: Hilton
 ($1 \circ+1 \mathrm{o}^{\circ}$), 37 km NW Willowmore in Grootrivierberg Range ($1 \mathrm{o}^{\circ}$, USU), 6 km S Willowmore at $33^{\circ} 20^{\prime} \mathrm{S}$ $23^{\circ} 27^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$). Free State: 30 km N Colesberg at Orange River ($1 \sigma^{\circ}$, OÖLM). Gauteng: Tswaing ($1 \sigma^{\circ}$, PPRI). Kwazulu-Natal: Tembe Elephant Park (2 ơ, OÖLM). Mpumalanga: Crocodile Bridge in Kruger National Park ($1 \delta^{\circ}$, PPRI), Middelburg ($1 \sigma^{\pi}, \mathrm{AMG}$). Northern Cape Province: Gideonsfontein W Fraserburg at $31^{\circ} 47^{\prime} \mathrm{S} 20^{\circ} 57^{\prime} \mathrm{E}$ ($20^{\circ}, \mathrm{PPRI}$), Goegap Nature Reserve 10 mi E Springbok ($20^{\circ}, \mathrm{BMNH}$), SW Loeriesfontein (1 ㅇ, $1 \sigma^{\boldsymbol{\pi}}, \mathrm{OÖLM}$), Perdefontein in Williston District ($1 \mathrm{o}^{\pi}, \mathrm{FSCA}$), Roggekloof S Sutherland ($1 \mathrm{o}^{\pi}$, OHL), Victoria West ($1 \stackrel{\circ}{\circ}$, AMG). Northern Province: Afguns ($1 \stackrel{\circ}{\circ}$, AMG), Ellisras ($2 \circ ; 1$ ở, AMG), Guernsey $^{\circ}$ Farm 15 km NW Klaserie (1 \& , PMA), Mogol Nature Reserve ($1 \delta^{\circ}$, PPRI), Nylsvley Nature Reserve (1 \& , PPRI), Pafuri in Kruger National Park ($1 \stackrel{\circ}{ }$, PPRI). North-West Province: Mafeking (10^{π}, ZMAN),

Rustenburg (10°, USNM). Western Cape Province: Ashton ($1 \stackrel{\circ}{ }$, OÖLM), Beaufort West (3 ${ }^{\text {º }}$, SAM),
 Wellington: Rooshoek (2 ㅇ, RMNH). SPAIN: Ávila: Ávila (Gayubo and Mingo, 1988), La Alizeda, Navalperal (Gayubo and Mingo, 1988). Badajoz: Badajoz. Barcelona: Canet de Mar, Gava (Antiga and Bofill, 1904), Monistrol (Antiga and Bofill, 1904). Cadíz: Chiclana (Kohl, 1885), Guadiaro (Erlandsson, 1974), San Diego (Erlandsson, 1974). Castellon de la Plana: Benasal (Gayubo and Tormos, 1986), Onda (Asís and Jiménez, 1988). Ciudad Real: Valenzuela de Calatrava (Gayubo, 1987). Gerona: Palamós (Königsmann, 1971). Granada: La Zubia (de Beaumont, 1962). Huesca: Barbastro (2 \& \uparrow, 1 ơ), Monzon ($1{ }^{\circ}$). Jaen: Las Correderas. Madrid: El Escorial (Gayubo and Mingo, 1988), El Molar (Gayubo and Mingo, 1988), Madrid ($2 \neq 5$ ® $^{\text {o }}$), Ribas de Jarama (Gayubo and Mingo, 1988), Sierra de Guadarrama (Gayubo and Mingo, 1988). Málaga: Ronda. Murcia: Lorca (1 \&), Murcia (Gayubo and Mingo, 1988). Navarra: Tudela. Salamanca: Las Arribes del Duero (Gayubo, González, and Torres, 2000), Salamanca (Gayubo and Torres, 1991), San Martín del Castañar (Cruz-Sánchez et al., 2005). Segovia: Coca (1 ơ, SCHL). Soria: Aldea de San Esteban (Gayubo, García, Torres, and González, 1999). Toledo: Toledo. Valencia: Navalon de Arriba, also Picasent and Torrente (Giner Marí, 1934). Valladolid: Valladolid (Gayubo, 1985a). Zamora (Gayubo, 1986a): Fermoselle, Fresno de la Ribera. TAJIKISTAN: Adjigarm, Dushanbe (Gussakovskij, 1952), 21 km on Dushanbe-Varzob road (1 σ°), Kirovabad, Kondara 35 km N Dushanbe (2 q), Puguz, Ramit ($1 \sigma^{\circ}$). TANZANIA: Dodoma Region: 74 km E Dodoma ($1 \mathrm{o}^{\boldsymbol{\circ}}$). Kilimanjaro Region: Mkomazi Game Reserve: Ibaya ($1 \mathrm{o}^{\boldsymbol{*}}$, SAM), 18 km S Same ($1 \circ^{\circ}$). Tanga Region: 73 km NW Korogwe ($1 \circ+1 \circ^{\circ}$), 10 km WNW Mabokweni $\left(1 \sigma^{\circ}\right), 2 \mathrm{~km}$ NE Mkomazi ($1 \mathrm{o}^{\circ}$). TUNISIA: 3 km E Nabeul ($1 \mathrm{o}^{\circ}$, OHL). TURKEY: Ankara: 20 km N Sereflikoçhisar ($1 \widetilde{o}^{\circ}$). Izmir: Ephesus. Mersin: Mut. Tekirdag: Tekirdag. TURKMENISTAN: Anau 10 km W Askhabad, Kara-Kala, Khodja 12 km from Ghyaurs, Krasnovodsk, Mt. Syunt in western Kopet-Dagh. UZBEKISTAN: Fergana, Troitskoye near Tashkent. YEMEN: Al Kowd (3 ㄱ, ZMAN). ZIMBABWE: Bulawayo ($2 \delta^{*}$, AMG; $10 \sigma^{\star}$, SAM, including paralectotype and paratype of laticeps; 2 ㅇ, $1 \delta^{\star}$, TMP),

 Falls ($3 \circ+2 \delta^{\circ} ; 1 \circ$, SAM).

Tachysphex coxalis Pulawski, sp. nov.

Figures 104, 105.
Derivation of name.- Coxalis, with reference to a tooth-like hindcoxal expansion, one of this species distinctive features.

Recognition.- Tachysphex coxalis has a punctatorugose mesopleuron and the dorsal carina of the hindcoxa is produced basally into an obtuse tooth. Some mediterraneus are similar, but unlike that species the setae of coxalis are straight (rather than sinuous) and the scutal setae are about equal to midocellar diameter (rather than markedly longer). Additional recognition characters include: free margin of the clypeal lip with two lateral incisions on each side in the female (Fig. 104a), prominently arcuate and without lateral corner in the male (Fig. 104b), and the dorsal length of male flagellomere I about equal to its apical width.

Description.- Scutal punctures well defined, less than one diameter apart in specimen from Niger, but many discal punctures in female and some punctures in male from Mali several diameters apart. Mesopleuron punctatorugose. Propodeal dorsum irregularly rugose, with tendency to form longitudinal ridges; side ridged. Hindcoxal dorsum with inner margin carinate, carina expanded basally into obtuse tooth.

Setae erect on postocellar area, suberect on each side of oral fossa next to occipital carina, about as long as midocellar diameter on both; suberect on scutum, and midfemoral venter; inclined posterad on propodeal dorsum.

Figure 104. Tachysphex coxalis Pulawski, sp. nov.: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.

Head, thorax, legs, and gaster black except mandible dark reddish mesally and tarsal apex brown. Frontal setae silvery in both sexes. Wing membrane almost hyaline; costal vein of forewing yellowish brown, subcostal vein dark brown. Terga I-III silvery fasciate apically.

ㅇ.-L Labrum with free margin shallowly, broadly emarginate. Clypeus (Fig. 104a): bevel shorter than basomedian area; lip free margin shallowly, widely emarginate, with two lateral incisions of each side. Width of postocellar area $1.2 \times$ length. Dorsal length of flagellomere I 1.4 \times apical width. Forefemoral venter minutely punctate, punctures many diameters apart near base, becoming gradually denser toward apex. Dorsal foretibial surface with a few fine bristles; outer surface with two thin bristles. Forebasitarsus with nine rake spines, outer margin slightly expanded subbasally (thus slightly

Figure 105. Collecting localities of Tachysphex congoensis, coxalis, and crassipes.
concave between expansion and apex), as in saturnus. Midtrochanteral venter with minute punctures that are more than one diameter apart. Apical tarsomeres with minimally convex apicoventral margin; each lateral margin of apical midtarsomere with two minute spines, outer margin of apical hindtarsomere with one such spine. Apical depression of tergum V impunctate, glabrous. Pygidial plate with well-defined punctures (except mesally) that average several diameters apart. Length 6.8 mm .
δ^{7}.- Mandible: trimmal carina without tooth and cleft. Clypeus (Fig. 104b): bevel rudimentary or absent; lip free margin prominently arcuate, without corner, forming single curved line with rest of clypeal margin; distance between lip lateral margins about equal to distance between margin and orbit. Width of postocellar area 1.2-1.7 \times length. Dorsal length of flagellomere I about $1.0 \times$ apical width. Forefemoral notch finely setose; outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Length 4.66.4 mm. Volsella and penis valve: Figs. 104c, d.

Geographic distribution (Fig. 105).— Mali, Niger.
Records.- Holotype: ${ }^{\circ}$, MALI: 40 km SW Segou, 31 July 1991, MS (CAS). Paratypes: MALI: 5 km S San, 3 Aug 1991, MS (1 $\overbrace{}^{\circ}$). NIGER: Say, 10 Oct 1976, K.M. Guichard (1 ơ, KMG).

Tachysphex crassipes Arnold

Figures 105, 106.
Tachysphex crassipes Arnold, 1923:157, \uparrow, $\boldsymbol{\delta}^{\boldsymbol{*}}$. Lectotype: $\stackrel{+}{ }$, Zimbabwe: Matobo (SAM), here designated, examined.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:273 (listed); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).
Tachysphex crassipes var. claripennis Arnold, 1924:53, \uparrow. Holotype: \uparrow, Zimbabwe: Essexvale (SAM), examined. New synonym.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae).- As Tachysphex crassipes claripennis: Bohart and Menke, 1976:273 (listed).

Lectotype selection.—Arnold (1923) mentioned a single type (without reference to sex) in his original description, but he designated a female and a male as types. I have selected the female as the lectotype.

Recognition.- Tachysphex crassipes has a flat labrum, galea shorter than wide in lateral view, crossvein cu-a of the hindwing vertical, and unmodified tarsi (length of tarsomeres II more than twice apical width, length of tarsomeres IV more than apical width, tarsomeres V without spines on venters or lateral margins). In addition, the femora, tibiae, and gaster are all black (terga not fasciate or at most rudimentary, broadly interrupted silvery fasciae are present on terga I-III), setae are inclined posterad on the propodeal dorsum, male foretarsus has a conspicuous rake, and male sterna II-VI each has an impunctate apical depression. Also, unlike mesembrius, the clypeal lip is not receded laterally in the female (Fig. 106a) and not pointed in the male (Fig. 106b). This combination is shared with punctatiformis and vanrhynsi. Unlike vanrhynsi, the mesopleural punctures of crassipes are well defined (rather than minute, inconspicuous, or absent), the setae are sinuous on the thorax, at least on the scutum anteriorly (rather than straight or slightly angled apically), and the female clypeus basically has only one lateral incision on each side (rather than two). Tachysphex crassipes and punctatiformis differ by the proportions of their postocellar area, which is slightly narrower in crassipes (width $0.8-0.9 \times$ length in the female and $0.8-1.0$ in the male rather than $1.1-1.6$ in the female of punctatiformis and 1.1-1.3 in the male); in addition, crassipes has well-defined mesopleural punctures (that are 1-2 diameters apart) and the setae appressed on the scape, tergum I, and hindfemoral venter. In punctatiformis, the mesopleural punctures are minute or evanescent in the male and many females (but conspicuous in some females), and the setae are
erect or nearly so on the scapal lateroventral margin in many specimens, and in many females also on the hindfemoral venter and tergum I. The three species differ in their geographic ranges: crassipes is found in Botswana, Zimbabwe, and northeastern South Africa, whereas punctatiformis ranges from Namibia to western and central South Africa, and vanrhynsi occurs in western South Africa.

The female of crassipes closely resemble ebeninus, and they differ mainly in the sculpture of the propodeal dorsum (irregularly ridged to rugose in crassipes, regularly ridged longitudinally in ebeninus). It is probable, however, that in some ebeninus the propodeal dorsum is also irregularly sculptured (see that species for details). In addition, the mesopleuron of crassipes, between the punctures, varies from unsculptured to microsculptured, whereas in ebeninus the interspaces are all unsculptured. Another similar species is glaber from the Abd el Kuri Island, but in crassipes the free margin of the clypeal lobe is sinuous or incised laterally (not so in glaber).

Relationship to punctatiformis.- Tachysphex crassipes and punctatiformis may be geographic forms of one species, as they are similar morphologically and inhabit mutually exclusive but almost adjacent areas (the gap between their ranges probably results from inadequate collecting). At this time, I treat them as discrete species because I have not observed intergradation.

Justification of new synonymy. - The two syntypes of the nominotypical form are old specimens, with wing margins worn off and the wing membrane dark. The two syntypes of the var. claripennis, on the contrary, are fresh, with the wing margin entire and the wing membrane hyaline. As the difference obviously results from the specimens' age, the var. claripennis does not warrant a taxonomic status or a formal name.

Description.- Scutal punctures well defined, averaging 2-3 diameters apart on disk in most specimens, about one diameter in some. Mesopleural punctures well defined, varying from about one to about two diameters apart; interspaces microsculptured to largely unsculptured. Episternal sulcus mostly complete but incomplete in many males. Propodeal dorsum varying from rugose to irregularly ridged longitudinally, evenly microsculptured in some specimens; side ridged. Hindcoxal dorsum with inner margin carinate.

Setae in most specimens sinuous on postocellar area, on each side of oral fossa next to occipital carina, and on thorax; inclined posterad on propodeal dorsum; on postocellar area erect, equal to $0.5-0.8 \times$ basal mandibular width; and erect, sinuous on midfemoral venter (longest setae equal to midocellar diameter). In some males, however, setae are equal to 0.2 of basal mandibular width on postocellar area; nearly straight adjacent to hypostomal area and on propodeal dorsum; and straight, about one midocellar diameter long, on midfemoral venter.

Head, thorax, legs, and gaster black, mandible mesally and tarsal apex reddish (tarsi red except basally in some males). Frontal setae silvery in both sexes. Wing membrane nearly hyaline to slightly infumate; forewing costal and subcostal veins dark brown. Terga mostly not fasciate but one female from Kami, Zimbabwe, has rudimentary, broadly interrupted, silvery, apical fasciae on terga I-III.

ㅇ.- Clypeus (Fig. 106a): bevel longer than basomedian area; lip free margin arcuate, with rudimentary median emargination in some specimens, incised or sinuous laterally (in some specimens also with rudimentary adlateral incision). Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I $2.2-2.4 \times$ apical width. Forecoxa with small apicomedian process. Midtrochanteral venter variously sculptured: densely punctate (punctures about one diameter apart) or with only a few, scattered punctures. Dorsal foretibial surface with three spines; outer surface with three spines, micropunctures several to many diameters apart. Forebasitarsus with 7-9 rake spines. Apical depression of tergum V impunctate, glabrous. Length $9.5-11.5 \mathrm{~mm}$.
0^{7}.- Mandibular inner margin with tooth, without cleft. Clypeus (Fig. 106b): bevel shorter to

FIGURE 106. Tachysphex crassipes Arnold: a - clypeus and mandible of female from Kami Ruins, Zimbabwe, with outline of free margin of a specimen from former Transvaal; b - male clypeus and mandible; c - volsella; d - penis valve.
longer than basomedian area; lip free margin arcuate, with well-defined corner; distance between corners $0.7-0.8 \times$ distance between corner and orbit. Width of postocellar area $0.8-1.0 \times$ length. Dorsal length of flagellomere I 1.8-2.0 \times apical width. Forefemoral notch microscopically setose to glabrous; outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Punctures of sterna II-VI (except laterally) 2-3 to many diameters apart, apical depressions impunctate, sterna III (except basally) and IV-VI with only a few, sparse punctures in one specimen from Umguza River, Zimbabwe. Length 7.3-10.6 mm. Volsella and penis valve: Figs. 106c, d.

Collecting period.- 13 May through August.
Geographic distribution (Fig. 105).- Botswana, Zimbabwe, northeastern South Africa.
Records.- BOTSWANA: Ghanzi: Mongalatsela ($1 \delta^{\circ}$, BMNH). SOUTH AFRICA: Gauteng:
 AMG). Northern Province: Buffelspoort Dam ($1 \stackrel{\circ}{ }$, AMG). Location unknown: Blackhill in former Transvaal (2 ㅇ, SAM) [one of several places of this name, can be in Gauteng, Mpumalanga, or Northern
 SAM; 2 ㅇ, $4 \delta^{\circ}$, TMP), Bulawayo: Forestvale ($1 \sigma^{\circ}$, ANSP), Bulawayo: Umguza River ($5 \sigma^{\circ} ; 1 \delta^{\circ}$, PPRI), Essexvale (1 ㅇ, SAM, holotype of claripennis), Hope Fountain ($1 \circ ; 1 \mathrm{o}^{\circ}$, SAM), Kami Ruins (1 ㅇ, 1 o $^{\circ}$;
 Matobo ($1 \stackrel{\circ}{\circ}, 1{ }^{\circ}$, SAM, lectotype and paralectotype of crassipes), Redbank ($1 \stackrel{\circ}{\circ}$, SAM), Sawmills (2 or $^{\boldsymbol{7}}$, SAM), Umtali ($1 \mathrm{o}^{\circ}$, AMG).

Tachysphex crocodilus Pulawski

Figures 107, 108.
Tachysphex crocodilus Pulawski, 1971:373, ㅇ, ơ. Holotype: ㅇ, Egypt: Kom Osheim on Cairo-Fayum road (USNM), examined.— Bohart and Menke, 1976:273 (listed).

Recognition.- Tachysphex crocodilus, known from Lower Egypt and Turkmenistan, is unique in having suberect, sinuous setae on the maxillary stipes (setal length about $1.5-2.0 \times$ midocellar diameter). Subsidiary recognition features include: galea membranous; setae erect and sinuous adjacent to entire occipital carina, about $0.7 \times$ basal mandibular width next to oral fossa; scutal setae suberect anteriorly; marginal cell short (Fig. 107c), maximum length (inner dimensions) about 2.8-3.1 \times maximum width. The female, in addition, has the pygidial plate unusually broad, unsculptured except for a few, sparse punctures in the basal half or so and contrastingly microsculptured in the apical half or so (Fig. 107d), and the inner hindtibial spur with sparsely spaced rays near midlength (as in Fig. 233d). In the male, punctures of sterna II-VI are several to many diameters apart mesally and contrastingly denser laterally.

Description.- Mandible: outer ridge somewhat swollen and expanded over notch. Galea membranous. Scutal punctures well defined, less than one diameter apart, interspaces dull in Egyptian specimens, shiny in that from Turkmenistan. Axilla somewhat swollen between dorsal

Figure 107. Tachysphex crocodilus Pulawski: a - female clypeus; b - male clypeus; c - marginal cell of forewing; d - pygidial plate of female; e - volsella; f - penis valve.
surface and lateral declivity. Mesopleuron finely rugose. Propodeal dorsum microareolate; side finely rugose, ridged posteriorly in Egyptian female; posterior surface, in dorsal third or so, with wide median impression. Marginal cell short (Fig. 107c), its maximum length (membrane only) about $2.8-3.1 \times$ maximum width. Hindcoxal dorsum with inner margin not carinate. Inner hindtibial spur, near midlength, with rays sparsely spaced in female (as in Fig. 233d), slightly so in male.

Setae: appressed on postocellar area, erect and sinuous adjacent to entire occipital carina and on stipes, appressed on scutum except suberect anteriorly, concealing integument on mesopleuron, mesothoracic venter, forecoxal venter, largely so on outer hindfemoral surface, erect and sinuous on propodeal dorsum; longest genal setae (next to oral fossa) about $0.7 \times$ basal mandibular width; propodeal side all setose; propleuron largely glabrous; sternum I glabrous laterally.

Head and thorax black, mandible yellowish red mesally. Frontal setae silvery in both sexes. Wing membrane hyaline; costal vein of forewing yellowish brown, subcostal vein brown. Femora black except apically, tibiae and tarsi red except male hindtibia somewhat darkened dorsally. Gaster: female tergum I red, tergum II red, partly black mesally, terga III and IV largely black, tergum V black (apical depressions translucent), tergum VI dark; male terga red, partly darkened, terga IV and V nearly all black. Terga I-IV silvery fasciate apically, male tergum V with ill-defined fascia.

ㅇ.- Clypeus (Fig. 107a): bevel rudimentary; lip free margin arcuate, neither emarginate mesally nor incised laterally. Width of postocellar area $0.5-0.6 \times$ length. Dorsal length of flagellomere I 2.3-2.4 \times apical width. Forecoxa with short apicomedian process. Dorsal foretibial surface with two spines; outer surface with two spines. Forebasitarsus with eight rake spines. Inner apical spines of hindtarsomere IV almost reaching claw bases. Tergum V sparsely punctate, apical depression impunctate, glabrous. Preapical bristles of sterna IV and V thickened. Pygidial plate broadly rounded apically, with transverse ridge on its internal surface (ridge indicated externally by minimal difference in surface level in female from Egypt, by transverse groove in that from Turkmenistan); with a few, sparse punctures anterad of ridge, microsculptured posterad of ridge (Fig. 107d). Length $8.0-8.2 \mathrm{~mm}$.
σ^{7}.- Mandible: trimmal carina invisible in single specimen examined. Clypeus (Fig. 107b): bevel absent; lip free margin obtusely pointed, with corner; with oblique carina emerging from corner; distance between corners $0.25 \times$ distance between corner and orbit. Width of postocellar area $0.6 \times$ length. Dorsal length of flagellomere I $2.1 \times$ apical width. Forefemoral notch microscopically setose, margined both anteriorly and posteriorly. Outer margin of forebasitarsus with five rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Most punctures of tergum VII several diameters apart, those next to posterior and lateral margins less than one diameter apart. Sterna II-VI with punctures that are several to many diameters apart mesally and contrastingly denser laterally; apical depression of sterna IV-VI impunctate, glabrous. Length 6.4 mm . Volsella and penis valve: Figs. 107e, f.

Collecting dates.- 20 May 1965 (Egypt), 21 June 1976 (Turkmenistan).

Figure 108. Collecting localities of Tachysphex crocodilus and diabolicus.

Geographic distribution (Fig. 108).- Lower Egypt, Turkmenistan.
RECORDS.- EGYPT: Al Fayyum: Kom Osheim ($1 \stackrel{q}{ }+1 \circ^{\circ}$, USNM, holotype and paratype of crocodilus). TURKMENISTAN: 20 km E Askhabad (1 1) .

Tachysphex curvipes Pulawski, sp. nov.

Figures 109, 110.
Derivation of name.- Curvipes, Latin noun meaning with crooked legs; with reference to the shape of the male forefemora.

Recognition.- Tachysphex curvipes is one of the species in which the galea is membranous (not sclerotized), the maxillary stipes has short, inconspicuous setae, the frons is not bulging near midlength, the hindwing vein cu-a is vertical, and the length of marginal cell is more than $3.0 \times$ width. Also, the mesopleural setae completely conceal the integument, and the gaster and the femora are all or largely red. In the female, the pygidial plate is unusually broad, broadly rounded apically (Fig. 109c), and the setae bordering the apical depressions of segments IV and V are conspicuously thickened. In the male, sterna III-VI are sparsely punctate, practically glabrous. The species ranges from the Sinai Peninsula and Israel to Turkmenistan.

The female resembles incanus in having the clypeal bevel shorter than the basomedian area and the free margin of the clypeal lip obtusely protruding mesally. As in incanus, the setae of the hindfemoral outer surface are reflective, concealing the integument along the ventral margin. Unlike that species, the tooth of the trimmal carina is low, obtuse in curvipes (Fig. 109a) and the pygidial plate is uniformly unsculptured and lacks a transverse groove. Tachysphex argentatus is similar, but the clypeal lip is not protruding mesally, the trimmal carina has a well-defined tooth, and the pygidial plate has a transverse groove and/or is microsculptured posteriorly.

The male is unique in having the forefemur characteristically curved in dorsal view (Fig. 109d). In addition, the clypeal free margin is conspicuously, narrowly projecting mesally (Fig. 109b). The forefemoral notch is deep (about $0.3 \times$ femoral diameter in posterior view), glabrous, with an illdefined platform (Fig. 109e). The notch is also deep in desertorum and incanus, but in desertorum it is covered with minute, erect setae, and in incanus it has a well-defined platform.

Description.- Mandible: outer ridge somewhat swollen and expanded over notch;. Galea membranous. Scutal punctures well defined, averaging about one diameter apart (discal punctures up to 2-3 diameters apart in one male). Mesopleural punctures shallow, somewhat ill defined, less than one diameter apart. Mesothoracic venter, in males from Sinai and Israel, with sparsely punctate area anterad of each midcoxa (punctures several diameters apart). Propodeal dorsum evenly microareolate; side finely sculptured, not ridged; posterior surface, in dorsal third or so, with wide median impression. Hindcoxal dorsum with inner margin obtusely carinate basally.

Setae appressed or nearly so on gena, in male erect on each side of oral fossa and about as long as midocellar diameter; appressed on postocellar area and scutum (sinuous, suberect along scutal foremargin), obscuring integument on mesopleuron and in female on hindfemoral outer surface along ventral margin; sinuous and variously oriented on propodeal dorsum (inclined either anterad or posterad). Sternum I in some specimens largely glabrous.

Head and thorax black, mandible yellowish red, black apically. Frontal setae silvery in both sexes. Wing membrane hyaline; costal vein of forewing yellow or yellowish brown, subcostal vein, respectively, yellowish brown or brown. Femora all red or male forefemur black in basal half; tibiae and tarsi red. Gaster red. Terga I-IV in female, I-V in male, silvery fasciate apically.

ㅇ.- Mandible: trimmal carina with low, obtuse tooth and inconspicuous cleft (Fig. 109a). Clypeus (Fig. 109a): bevel shorter than basomedian area; lip free margin obtusely pointed mesally, not incised laterally. Width of postocellar area $0.5 \times$ length. Dorsal length of flagellomere I 3.3-3.6

JK
Figure 109. Tachysphex curvipes Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible with outlines showing variation of clypeal free margin; c - outline of female pygidial plate; d - male forefemur in dorsal view; e - male forefemur in posterior view showing notch; f - volsella; g - penis valve.
\times apical width. Trochanteral venters of all legs with a few, sparse punctures. Forefemoral venter sparsely punctate near base. Dorsal foretibial surface with three spines; outer surface with two spines. Forebasitarsus with $8-10$ rake spines. Apical tarsomeres with two spines on venter (one subbasal, one near center). Tergum V with a few, sparse punctures, apical depression impunctate, glabrous. Pygidial plate unusually broad, broadly rounded apically, without transverse sulcus or impression, all unsculptured (Fig. 109c). Preapical setae (bordering apical depressions) of sterna IV and V markedly thickened. Length $11.5-13.2 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with obtuse tooth, without cleft. Clypeus (Fig. 109b): bevel absent; lip free margin either evenly triangular (specimen from Sinai), forming single curved line with rest of clypeal margin, or (other specimens) with apical point and obtuse corner; distance between corners $0.3 \times$ distance between corner and orbit. Width of postocellar area $0.6-0.7 \times$ length. Dorsal length of flagellomere I $2.5-2.7 \times$ apical width. Forefemur markedly curved in dorsal view (Fig. 109d); forefemoral notch deep (about $0.3 \times$ femoral diameter in posterior view), glabrous, with broad, ill-defined platform (Fig. 109e). Outer margin of forebasitarsus with six or seven rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Tergum VII with a few, sparse punctures (except punctures dense along lateral and posterior margins). Apical depression of sternum II impunctate, glabrous. Sterna III-VI sparsely punctate, largely glabrous (sterna III and IV densely punctate laterally). Length $8.0-9.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 109f, g.

Geographic distribution (Fig. 110).Sinai Peninsula, Israel, Turkmenistan.

Records.- Holotype: ${ }^{\text {of }}$, EGYPT: Sina (= Sinai): 51 km SE Nakhl, 19 May 1993, WJP (CAS). PARATYPES: EGYPT: Sina (= Sinai): 51 km SE Nakhl, 19 May 1993, AM ($1 \delta^{\circ}$), WJP ($1 \delta^{\text {o }}$), Wadi Sudr 50 air km SE Suez, 20 May 1993, WJP (1 đ ${ }^{\prime}$). ISRAEL: 135 km N Elat Iddan, 8 May 1996,
 km S Mizpé Ramon, 15 June 1994, M.E. Irwin (1 \& , 1 of, UCD). TURKMENISTAN: 5 km S Tedjen, 29 May 1963, S. N. Gorshenina ($1 \delta^{\circ}$).

Figure 110. Collecting localities of Tachysphex curvipes and dissimulatus.

Tachysphex deserticola de Beaumont

Figures 111, 112.
Tachysphex deserticola de Beaumont, 1940:173, ㅇ. Holotype: \uparrow, Egypt: Kharga oasis (Ministry of Agriculture of Egypt), not examined. - Honoré, 1942:55 (in checklist of Egyptian Sphecidae); de Beaumont, 1947a:193 (in revision of Egyptian Tachysphex); Pulawski, 1964:95 (Egypt); Osborn and Krombein: 1969:16 (Sudan); Pulawski, 1971:385 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:273 (listed); Roche and Zalat, 1994:115 (Egypt: Sinai Peninsula).

Recognition.- Tachysphex deserticola has a conspicuously prominent frons (Figs. 111c, d) and dense vestiture that completely conceals the clypeus, frons, mesopleuron, and hindfemoral outer surface (at least in ventral half). In addition, the labrum is flat, not protruding beyond the clypeal free margin, and male sterna II-VI are all or largely glabrous. Tachysphex isis, osiris, and vestitus are similar. Unlike isis and osiris, the middle clypeal section of deserticola is flat and has

Figure 111. Tachysphex deserticola de Beaumont: a - female clypeus and mandible; b - male clypeus and mandible; c - female head laterally; d - male head laterally; e - base of male forefemur showing notch; f - volsella; g - penis valve.
no bevel, the galea is membraneous, the flagellum is reddish in the basal half rather than all black, and parts of tergum I are completely concealed by vestiture. Unlike osiris, the hindwing vein cu-a is vertical. In the female, the pygidial plate is narrow apically and nearly uniformly sculptured, while broad and divided into two differently sculptured areas in vestitus (Figs. 407b, c). In the male,
the forefemoral notch is shallow, glabrous, with ill-defined platform (Fig. 111e). In vestitus, by contrast, the forefemoral notch is deeper, with a well-defined platform and sparse, erect setae (Fig. 406f).

Description.- Galea membranous. Frons conspicuously prominent (Figs. 111c, d). Scutal punctures minute, nearly compressed against each other. Mesopleuron microsculptured, with illdefined punctures. Mesothoracic venter, in female, with large, unsculptured area cephalad of each coxa; in male unsculptured except for a few, sparse punctures. Forewing with unusually sparse microsetae. Propodeal dorsum microsculptured; side microsculptured, not ridged; posterior surface, in dorsal third or so, with wide median impression. Hindcoxal dorsum with inner margin not carinate. Sternum I with obtuse longitudinal carina.

Setae appressed and fully concealing integument on clypeus, frons, scutum anteriorly, mesopleuron, forecoxa, outer surface of hindfemur (at least in ventral half), and parts of terga I and II; appressed or nearly so on each side of oral fossa next to occipital carina; on propodeal dorsum oriented anterad near base, oriented toward midline near center, oriented posterad near apex; propodeal side all setose. Tibiae in many specimens with sparsely punctate, sparsely setose, shiny zone (outer surface of foretibia, dorsal surface of mid- and hindtibiae). Propleuron and sternum I all or largely glabrous.

Head and thorax black except mandible yellowish red (brown apically), but thorax all red (except scutum partly black) in single female from Dakhla oasis, Egypt, clypeal middle section reddish apically, scapal venter yellow or yellowish, and flagellum reddish in basal half. Frontal setae silvery in female, golden above protuberance in male. Wing membrane hyaline; costal and subcostal veins of forewing pale yellow. Femora, tibiae, and tarsi red. Gaster red in female, in male three or four apical segments dark brown. Terga I-IV silvery fasciate apically, but fascia ill defined on tergum IV in many males.

ㅇ.- Mandible: trimmal carina with unusually small tooth (Fig. 111a). Clypeus (Fig. 111a): basomedian area flat, bevel absent; lip free margin arcuate, not emarginate mesally, not incised laterally. Width of postocellar area 1.1-1.3 \times length. Dorsal length of flagellomere I $2.0-2.5 \times$ apical width. Forefemur narrowly unsculptured basoventrally. Dorsal foretibial surface with two spines; outer surface asetose, with two spines. Forebasitarsus with 5-7 rake spines. Mid- and hindtrochanteral venters unsculptured. Apical depression of tergum V unsculptured, glabrous. Pygidial plate somewhat constricted preapically, with punctures that average several diameters apart, interspaces aciculate preapically; lateral carina ill defined. Length $5.9-8.5 \mathrm{~mm}$.
0°. - Mandible: trimmal carina with small tooth, without cleft. Clypeus (Fig. 111b): basomedian area flat, bevel absent; lip free margin slightly arcuate (nearly straight), with obtuse corner; distance between corners about $0.9 \times$ distance between corner and orbit; free margin of lateral clypeal section shallowly concave. Width of postocellar area $1.3 \times$ length. Dorsal length of flagellomere I 1.8-2.0 \times apical width. Forefemoral notch shallow, with glabrous bottom, with ill-defined platform (Fig. 111e); outer margin of forebasitarsus with four rake spines;

FIGURE 112. Collecting localities of Tachysphex deserticola and diversilabris.
outer apical spine of foretarsomere II as long as tarsomeres III and IV combined. Punctures of tergum VII several diameters apart but close to each other apically. Sternum II except laterally and sterna III-VI unsculptured, glabrous. Length 5.2-6.0 mm. Volsella and penis valve: Figs. 111f, g.

Geographic distribution (Fig. 112).— Western Libya, Egypt, northern Sudan.
Records.- EGYPT: Al Fayyum: Kom Osheim (1 \uparrow). Al Jizah (= Ghiza): Abu Rawash (1 δ°), Dah-
 ZMAN), Kharga oasis (de Beaumont, 1940). Matruh: NW Bahariya oasis at $19^{\circ} 12^{\prime} 21^{\prime \prime} \mathrm{N} 28^{\circ} 51^{\prime} 41^{\prime \prime} \mathrm{E}(1$ of, AMNH). Sawhaj: wadi 4 km W Abydos (1 ㅇ, 4 ® $^{\circ}$). LIBYA: Cyrenaica: 85 km S Jalu (de Beaumont, 1947a, as Gialo). SUDAN: Bir Um-Nabardi 160 km SE Wadi Halfa (Pulawski, 1971), Wadi Ain el Brins in Gebel 'Uweinat at $21^{\circ} 50^{\prime} \mathrm{N} 25^{\circ} 05^{\prime} \mathrm{E}(1+\circ)$.

Tachysphex desertorum F. Morawitz

Figures 113, 114.
Tachysphex desertorum F. Morawitz, 1894:342, ㅇ. Holotype or syntypes: \uparrow, Turkmenistan: Serax (ZIN), examined before 1971.- Dalla Torre, 1897:679 (in catalog of world Hymenoptera); Pulawski, 1971:376 (in revision of Palearctic Tachysphex); Kazenas, 1972b:161 (Kazakhstan); Myartseva, 1972a:78 (Turkmenistan); de Beaumont, Bytinski-Salz, and Pulawski, 1973:12 (Israel); Bohart and Menke, 1976:273 (listed); Kazenas, 1978:115, 128 (in key to Sphecidae of Kazakhstan and Central Asia); Nazarova, 1998:41 (Tajikistan); Kazenas, 2001:28 (in checklist of Sphecidae of Kazakhstan and Central Asia), 2002:66 (Kazakhstan).
Tachysphex abjectus Kohl, 1901c:782, $\overbrace{}^{\circ}$. Holotype: 0°, Transcaspia: Bala-Ishem (NHMW), examined before 1971. Synonymized with Tachysphex desertorum by Pulawski, 1971:376.- de Beaumont, 1936b:614 (China), 1940:173 (in revision of Egyptian Tachysphex); Honoré, 1942:55 (in checklist of Egyptian Sphecidae); de Beaumont, 1947a:190 (in revision of Egyptian Tachysphex), 1958:61 (Algeria), 1960b:239 (Libya), 1961c:5 (Iraq); Dollfuss, 1989:12 (type material in NHMW).
Tachysphex julliani nigripes Tsuneki, 1972e:391, + , junior primary homonym of Tachysphex nigripes Pulawski, 1967. Holotype: + , Mongolia: Bayanhongor Aymag: oasis Ehingol 90 km NE border post Tsaganbulag (TMB), examined. New synonym.— Bohart and Menke, 1976:274 (listed).

Recognition.- Tachysphex desertorum is one of the species that have the galea membranous, maxillary stipes with short, inconspicuous setae, frons not bulging near midlength, hindwing vein cu-a vertical, and length of marginal cell more than $3.0 \times$ width. The gaster is all black in the vast majority of specimens, but red basally in a male from southern Algeria.

In the female, the pygidial plate is broadly rounded apically, not constricted preapically, without a transverse sulcus or a difference in the surface level (Fig. 113c). Also, the clypeal bevel is present, the lip free margin is not incised laterally, and the setae bordering the apical depressions of segments IV and V are thickened. The sparsely punctate mesothoracic venter and forefemoral base, and unsculptured or sparsely punctate trochanteral venters, are subsidiary recognition features.

The male has the clypeal free margin conspicuously, narrowly projecting mesally (Fig. 113b) and sterna IV-VI glabrous mesally (at most with a few, sparse punctures). It differs from similar species by its relatively deep forefemoral notch (about $0.3 \times$ femoral diameter in posterior view), with ill-defined platform and minute but conspicuous, erect setae (Fig. 113d). Also, the clypeal lobe is unusually narrow, the lip corners, when present, being markedly closer to each other than to orbit (Fig. 113b). As in the female, the mesothoracic venter is sparsely punctate, and the trochanteral venters are unsculptured or sparsely punctate.

JUSTIFICATION OF NEW SYNONYMY.- The holotype of julliani nigripes is clearly conspecific with desertorum. The two names are therefore synonyms.

Description.- Mandible: outer ridge somewhat swollen and expanded over notch. Galea membranous. Scutal punctures well defined, up to several diameters apart on disk in most speci-

C $\quad \overline{0.25 \mathrm{~mm}}$
d

Figure 113. Tachysphex desertorum F. Morawitz: a - female clypeus and mandible; b-male clypeus and mandible; c - pygidial plate of female; d - base of male forefemur showing notch; $e-v o l s e l l a ; ~ f-p e n i s ~ v a l v e . ~$
mens, about one diameter apart in some. Mesopleuron dull, with somewhat ill-defined punctures, most of which are less than one diameter apart. Mesothoracic venter shiny, with punctures several to many diameters apart. Propodeal dorsum evenly microareolate, not ridged; side minutely, sparsely punctate; posterior surface, in dorsal third or so, with wide median impression. Trochanteral venters, on all legs, shiny, impunctate and asetose or with a few, sparse punctures and associated setae.

Hindcoxal dorsum obtusely carinate basally. Sternum I in most specimens with obtuse, ill-defined median carina.

Setae straight, slightly longer than midocellar diameter on each side of oral fossa next to occipital carina; appressed on postocellar area and scutum, suberect on scutum anteriorly in some males; oriented posterad on propodeal dorsum. Sternum I in most specimens glabrous.

Head and thorax black, mandible dark reddish to yellowish reddish (except basally and apically). Frontal setae silvery in both sexes. Wing membrane almost hyaline; costal vein of forewing yellowish brown, subcostal vein dark brown. Femora black; tibiae black in female and most males, partly reddish brown in males from Egypt and Iran; tarsi all or largely reddish. Gaster black except segments I-III red in single male from Tassili des Ajjer, Algeria. Terga I-III silvery fasciate apically.

ㅇ.- Mandible: cleft unusually broad, widely open (Fig. 113a). Clypeus (Fig. 113a): bevel shorter than basomedian area; lip free margin arcuate, not incised laterally. Width of postocellar area $0.5-0.7 \times$ length. Dorsal length of flagellomere I 2.1-2.7 \times apical width. Venters of fore- and midfemora sparsely punctate in basal half or so, integument shiny; venter of hindfemur asetose except basally. Dorsal foretibial surface with two or three spines; outer surface with two spines, in some specimens partly asetose. Forebasitarsus with $10-12$ rake spines. Apical tarsomeres on venter with erect, long preapical seta, in many specimens also with basoventral spine. Inner apical spine of hindtarsomere IV nearly reaching claw bases. Tergum V with a few, sparse punctures anterad of apical depression, apical depression impunctate, glabrous. Pygidial plate unusually broad, broadly rounded apically, with small punctures that are many diameters apart in anterior half or so, in fresh specimens microscopically ridged and areolate in posterior half or so (Fig. 113c), without internal transverse ridge, without transverse sulcus or difference in level. Preapical setae (bordering apical depressions) of sterna IV and V thickened, although less so than in julliani. Length $9.5-13.5 \mathrm{~mm}$.
0°.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 113b): bevel rudimentary or absent; lip free margin varying: either with well-defined corner or corner absent, thus forming single curved line with rest of clypeal margin; distance between corners $0.4-0.5 \times$ distance between corner and orbit. Width of postocellar area $0.7-0.8 \times$ length. Dorsal length of flagellomere I 1.6-2.1 \times apical width. Trochanteral venters largely asetose. Forefemoral notch deep (about $0.3 \times$ femoral diameter in posterior view), with wide, ill-defined platform and minute, erect setae (Fig. 113d). Outer margin of forebasitarsus with 4-7 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Tergum VII with a few, sparse punctures except punctures less than one diameter apart next to hindmargin. Sterna III-VI sparsely punctate (sterna III and IV densely punctate laterally in some specimens), largely glabrous. Length $7.5-9.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 113e, f.

Geographic distribution (Fig. 114).- Algeria, Libya, Egypt, Middle East (Iran, Iraq, Israel), east to Kazakhstan, Turkmenistan, Tajikistan, Mongolia, and western China.

Records.- AlGERIA: Biskra (de Beaumont, 1947a), Dider in the Tassili des Ajjer (1 ơ, MNHN). CHINA: Ningxia Huizu Autonomous Region: Etsingol in Alashan Plateau (Pulawski, 1971). Tsinghai: Tsaidam region: no specific locality (de Beaumont, 1936b). EGYPT: Al Qahirah (= Cairo): Katamia area 40

 va Sistan: Gurmuk S Bampur (Pulawski, 1971). Teheran: 30 km S Teheran (1 ه). IRAQ: Ana (de Beaumont, 1961c). ISRAEL: Beersheba and Mamshit (de Beaumont, Bytinski-Salz, and Pulawski, 1973), 135 km N Elat Iddan (10^{\star}, CSE), Elat Zukim Resort on Dead Sea (1 0^{\star}), Moshaav Hazeva in Arava Valley (10°, CSE), Wadi Ruth 50 km SW Beersheba (Pulawski, 1971). KAZAKHSTAN ($\mathrm{K}=$ Kazenas, 2002, $\mathrm{P}=$ Pulawski, 1971): Almaty: Basshchiysk Valley ($1 \mathrm{o}^{\circ}$), Kaskelen River 50 km N Almaty ($1 \mathrm{o}^{\circ}$), Myn-Bulak 100 km NE Almaty (2 $\uparrow, 2 \mathrm{o}^{\text {o }}$), Ust’urt 40 km W Panfilov (P), Zarechnyi 60 km N Almaty (1 \&). Aqmola: Priozernyi (K),

Figure 114. Collecting localities of Tachysphex desertorum.
12 km S Priozernyi (K). Atyraū: Ashchisay near Kul'sary (K), Grebenshchikov 70 km N Atyraū (K). East Kazakhstan: 18 km N Belaya Shkola $=20 \mathrm{~km}$ W Zaysan at about $48^{\circ} \mathrm{N} 83.5^{\circ} \mathrm{E}(\mathrm{K}), 12 \mathrm{~km} \mathrm{SW}$ Buran (K), 20 km SW Chernayevka village at approximately $48^{\circ} \mathrm{N} 84.5^{\circ} \mathrm{E}$ ($1 \mathrm{o}^{\star}$), 40 km NW Chernyaevka (K), 5 km W Karabulak at about $47^{\circ} \mathrm{N} 85^{\circ} \mathrm{E}(\mathrm{K}), 5 \mathrm{~km}$ SW Tansyk (1 \& $), 3 \mathrm{~km}$ E Ul’ken-Karatal at about $47.7^{\circ} \mathrm{N} 85^{\circ} \mathrm{E}$ (K), 15 km NE Zaysan (K). Mangghystaū: Imagombet ca 100 km NE Tauchik at about $44^{\circ} \mathrm{N} 52^{\circ} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right)$. Oral: Chelkar (P). Qaraghandy: 3 and 50 km N and $50-130 \mathrm{~km}$ NE Balqash (K), 5 km SW Balqash (1 $1 \mathrm{o}^{\text {t }}$). Qostanay: Zhalanash (K), 9 and 35 km NW Zhalanash (K). Qyzylorda: $5-8 \mathrm{~km} \mathrm{~N}$ and 5 km E Akespe $=80 \mathrm{~km}$ W Aral'sk at about $47^{\circ} \mathrm{N} 60.5^{\circ} \mathrm{E}(\mathrm{K}), 15 \mathrm{~km}$ N Aral'sk (K), Baigakum near Djulek (P), 3-10 km NW Kamyshlybash (K), 14 km SE Saksaul'skiy (K), 3 km S Yany-Kurgan (K). South Kazakhstan: 2-8 km SW and 30 km S Chardara (K), 30 km NE Suzak (K). Zhambyl: 4-5 km SE and 60-90 km NW Furmanovka (K), $17-25 \mathrm{~km}$ SE, 50 km SW, and 80 km SE Ulanbel' (K). Location unknown: Karasu village (K), Koybynskoye Gorge (1 \&). LIBYA: Cyrenaica: Tmimi (de Beaumont, 1960b). MONGOLIA: Bayanhongor Aymag: oasis Ehingol 90 km NE border post Tsaganbulag at about $43^{\circ} 18^{\prime} \mathrm{N} 99^{\circ} 12^{\prime} \mathrm{E}(2 \circ$, TMB, holotype and paratype of julliani nigripes). TAJIKISTAN: Tigrovaya Balka Nature Reserve (Nazarova, 1998). TURKMENISTAN: Askhabad (Myartseva, 1972a), Bala-Ishem (Kohl, 1901), Gasan-Kuli (Myartseva, 1972), Kary Kul 65 km N Askhabad (1 ¢ , 3 o *), Krasnovodsk (Myartseva, 1972a), Repetek (1 ơ), Serax (F. Morawitz, 1894),
 near Tashkent (Pulawski, 1971), Mussa-Kuduk in Golodnaya Step’ ca 150 km SW Tashkent (1 \&).

Tachysphex detritus Arnold, new status

Figures 115, 116.
Tachysphex schoenlandi var. detritus Arnold, 1924:69, \circlearrowleft^{7}. Holotype: o^{7}, South Africa: Eastern Cape Province: Willowmore (TMP), examined.- Arnold, 1930:4 (in checklist of Afrotropical Sphecidae).- As Tachysphex schoenlandi detritus: Bohart and Menke, 1976:276 (new status, listed).
Tachysphex maidli de Beaumont, 1940:169, ํ, ơ". Holotype: 우, Egypt: Sinai: Al Arish (originally A. Alfieri collection, now USNM), examined. New synonym.- Honoré, 1942:56 (in checklist of Egyptian Sphecidae); de Beaumont, 1947a:175 (in revision of Egyptian Tachysphex), 1950a:405 (Algeria), 1955:181 (Morocco); Pulawski, 1971:414 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, $1973: 13$ (Israel); Bohart and Menke, 1976:274 (listed); Kazenas, 1978:115, 127 (in key to Sphecidae of Kazakhstan and Central Asia); Roche and Zalat, 1994:115 (Egypt: Sinai Peninsula); Nazarova, 1998:41 (Tajikistan); Kazenas, 2001:29 (in checklist of Sphecidae of Kazakhstan and Central Asia).
 Ayvaj (ZIN), designated by Pulawski, 1971:414 and 416, examined before 1971. Synonymized with Tachysphex maidli by Pulawski, 1971:415.
Species 2 (part): van Noort, Prinsloo, and Compton, 2000:348 (Namibia), present correction.
Recognition.- Like flavofimbriatus and sericeus, detritus has the apical depression of sternum I intersected by a longitudinal carina, hindwing vein cu-a oblique (anal end further away from wing base than cubital end), setae sinuous on the head and thorax, and male sternum III with setae markedly longer apically than basolaterally. Unlike these species, the scutum of many detritus is punctatorugose.

The female of detritus differs in having suberect, sinuous setae on the side of tergum I basally and on the scapal and fore- and midfemoral venters, and also red mid- and hindfemora (the femora are black in flavofimbriatus). Additionally, the clypeal bevel of most detritus is evenly rounded but exceptionally step-like. In the vast majority of sericeus, the clypeal bevel is markedly step-like, but exceptionally rounded.

The male of detritus can be recognized by an emarginate forefemur (the emargination is rudimentary in some specimens), the presence of rake spines on the forebasitarsus in most specimens (at least one spine originates near the tarsomere's midlength or in its basal half), and setae of the apical depression of sternum III dense apicomesally but not agglutinated. In flavofimbriatus, the forefemur is entire, and in sericeus the forebasitarsus has no preapical rake spines or, exceptionally, one or two preapical spines close to the tarsomere's apex, and in most specimens the setae of the apical depression of sternum II are dense, as if agglutinated. Two characters differentiating some (but not all) males of detritus are: setae suberect on tergum I basolaterally and forefemoral notch rudimentary.

Description.- Gena unusually narrow in dorsal view. Scutum microsculptured, dull, with punctures that are ill defined in some specimens, but punctatorugose in those from Ethiopia, Kenya, and Tanzania, and some from Ivory Coast, Morocco, Namibia, and Zambia, at least anteriorly; discal punctures averaging mostly two to three diameters apart, but about one diameter apart in some specimens (including those from North Africa). Mesopleuron dull, markedly microsculptured, either with shallow, ill-defined punctures or punctatorugose. Propodeal dorsum longitudinally ridged to irregularly rugose, intersecting posterior face at about right angle; propodeal side ridged but ridges anastomosed in many specimens and effaced in smallest ones; posterior surface, in dorsal third or so, with wide median impression. Hindwing jugal lobe enlarged (as in Fig. 102a), crossvein cu-a oblique (anal end further away from wing base than cubital end), minimally so in exceptional specimens. Hindcoxal dorsum with inner margin carinate or carina evanescent. Sternum I with apical depression that is bisected by obtuse, longitudinal carina (as in Fig. 132a).

Setae sinuous and erect on interocellar area, postocellar area, along hypostomal carina, on thorax, forecoxa, and forefemoral venter (Fig. 115); in females and many males also on scapal venter, midfemoral venter, and sides of tergum I basolaterally; setal length (expressed as a fraction of basal mandibular width): $0.5-0.6$ on postocellar area and along hypostomal carina, up to 0.8 on mesopleuron anteroventrally and propodeal dorsum.

Figure 115. Tachysphex detritus Arnold: base of male forefemur showing notch.

Head, thorax, and gaster black, mandible red mesally. Frontal setae silvery in female, golden in most males (silvery in smallest specimens). Wings hyaline; forewing costal vein light brown, subcostal vein dark brown. Color of femora: see below. Tibiae and tarsi ferruginous except tibiae largely dark in some males. Terga I-III or I-IV silvery fasciate apically.

ㅇ.- Labrum entire or with small notch. Clypeus: bevel markedly shorter than basomedian area; lip free margin arcuate, entire or shallowly emarginate mesally, laterally not incised or with one or two small incisions on each side. Width of postocellar area $1.1 \times$ length. Dorsal length of flagellomere I 1.8-2.2 \times apical width. Dorsal foretibial surface with three spines; outer surface with several spines. Forebasitarsus with eight rake spines that are divided into proximal and distal groups. Apical mid- and hindtarsomeres with 1-3 (mostly two) small spines near midlength of each lateral margin and with a cluster of preapical spines on venter. Apical depression of tergum V impunctate, glabrous. Length $9.5-12.0 \mathrm{~mm}$. Forefemur black except red apically, mid- and hindfemora red.
δ^{*}.- Inner mandibular margin with tooth and cleft. Clypeus: bevel markedly shorter than basomedian area; free margin of lobe arcuate or slightly sinuate, with well-defined corner; distance between corners $1.0-1.1 \times$ distance between corner and orbit. Width of postocellar area $0.5-0.7 \times$ length. Dorsal length of flagellomere I 1.6-1.9 \times apical width. Forefemoral notch glabrous, varying from evanescent to moderately large (Fig. 115), without basal tuft of erect setae (but setae erect between femoral base and notch). Outer margin of forebasitarsus with $2-5$ rake spines (at least one spine located near this tarsomere's midlength or in basal half), but without preapical spines in single male from Ivory Coast. Setae of sternum II varying from appressed, short to erect, long (up to $0.5 \times$ basal mandibular width); apical depression of sternum III with suberect, dense but not agglutinated setae (remaining sternum either with similar setae or nearly glabrous); sterna IV-VI either glabrous or apical depressions covered with setae similar to those on sternum III. Length $7.2-9.6 \mathrm{~mm}$. Volsella and penis valve as in costae (Figs. 102b, c). Femora black except red apically, but hindfemur red in one specimen from Rehoboth area, Namibia.

Geographic distribution (Fig. 116).South Africa to North Africa, Israel, Arabian Peninsula, Turkmenistan, and Tajikistan.

Records.- Algeria: Hoggar: T. Aman-hedan-Izernène (1 \uparrow), Laghouat (Pulawski, 1971), Tadjerouna (de Beaumont, 1950a). ANGOLA: Curoca River 7 mi NE Porto Alexandre ($10^{\circ} ; 2 \sigma^{\circ}$, BMNH). BAHRAIN: no specific locality (Pulawski, 1971). EGYPT: Al Iskanderiyah: Mariout (de Beaumont, 1940). Al Qahirah (= Cairo): Cairo-Suez Road (1 ${ }^{\circ}$), Helwan (Pulawski, 1971), Wadi Digla (Pulawski, 1971). As Suways: Wadi Hagul 30 km

Figure 116. Collecting localities of Tachysphex detritus. SW Suez (2 of). Dumyat: Damietta, now Dumyat (de Beaumont, 1940). Matruh: 25-30 km W Marsa Matruh (1 ㅇ). Sina (= Sinai): Al Arish (1 ㅇ, USNM, holotype of maidli), Wadi Sudr 50 km SE Suez ($1 \mathrm{o}^{*}$). ETHIOPIA: Sidamo: 22 km N Moyale ($1 \mathrm{o}^{\top}$). ISRAEL (de Beaumont, Bytinski-Salz, and Pulawski, 1973): Kfar Yeroham, Ramat Gan, Revivim. IVORY COAST: 30-35 km N Korhogo ($1 \sigma^{*}$, ZMAN). KENYA: Coast Province: Malindi ($1 \sigma^{*}$), Mombasa ($1 \sigma^{7}$, USU), Voi at
 Magadi road 25 air km SW Nairobi ($1 \sigma^{\circ}$) and 46 air km SW Nairobi ($17 \sigma^{\circ} ; 4 \sigma^{\circ}$, NMK), Marich Pass Field Studies Centre (1 δ^{*}), 4 km NNE Namanga (1 ¢) LIBYA: Cyrenaica: Agedabia (Pulawski, 1971). MOROC-

CO: Agadir (Pulawski, 1971), Maader Talmaout (1 o^{*}), Midelt ($1 \mathrm{o}^{*}$), Tinerhir (de Beaumont, 1955), Tiznit ($1 \mathrm{o}^{\boldsymbol{*}}, \mathrm{SCHL}$). NAMIBIA: Bethanien District: 32 km and 34 km SW Helmeringhausen (2 ơ, AMG). Karasburg District: Fish River Canyon ($1 \sigma^{*}$, AMG), Fish River Canyon 15 km E Ai-Ais ($1 \mathrm{o}^{\circ}$, SDNHM). Keetmanshoop District: Noachabeb [Farm] 27 mi NNE Grünau (1 ơ, BMNH). Khorixas District: Brandberg: Hungarob River (10^{\top}, SAM, determined as Species 2 by van Noort, Prinsloo, and Compton, 2000). Lüderitz District: Aus (2 o^{*}), Namib Farm 70 km N Aus ($1 \mathrm{o}^{\star}$, OHL). Mariental District: 71 km E Stampriet ($1 \mathrm{o}^{\star}$, AMG). Rehoboth District: 9 km S Rehoboth (2 o°). Swakopmund District: Kuiseb River near Gobabeb ($1 \stackrel{+}{ }$, PPRI), Namib Desert Research Station ($1 \stackrel{\circ}{ }$, USU). Walvis Bay Territory: 13 km E Walvis Bay (1 ㅇ). NIGERIA: Azare ($1 \delta^{*}$, BMNH). SENEGAL: Kayar (2 ơn *, FB, MSNT), Ndangane 45 air km SE Mbour
 ($2 \mathrm{o}^{*}$, TMP, including holotype of detritus). Northern Cape Province: 40 km S Garies ($1 \mathrm{o}^{\circ}$, OÖLM), Perdefontein in Williston District (2 σ^{7}, FSCA). North-West Province: Vryburg ($1 \sigma^{7}$, SAM). Western Cape
 ($1 \sigma^{\circ}$, SAM), 5 km E Vredendal ($1 \mathrm{o}^{\circ}$, AMG), Witzenberg Valley at $33^{\circ} 20^{\prime} \mathrm{S} 19^{\circ} 30^{\prime} \mathrm{E}$ (1 $0^{\prime \prime}$, BMNH). TAJIKISTAN: Ayvaj (Gussakovskij, 1952), Tigrovaya Balka Nature Reserve (Nazarova, 1998). TANZANIA: Dar es Salaam Region: Bahari 30-35 km NE Dar es Salaam ($1 \mathrm{o}^{\boldsymbol{*}}, \mathrm{MSNT}$). Iringa Region: 75 km ENE Iringa
 SW Morogoro ($1+1 \delta^{\star}$). Shinyanga Region: Old Shinyanga Road ($1+$, BMNH). Tanga Region: 84 km NW Korogwe ($\begin{array}{ll}1 & \left.\sigma^{\star}\right) \text {. TUNISIA: Djerba Island (Pulawski, 1971). TURKMENISTAN: Akhcha-Kuyma near }\end{array}$

Tachysphex diabolicus Arnold

Figures 108, 117.
Tachysphex diabolicus Arnold, 1923:149, ㅇ, $\overbrace{}^{*}$. Lectotype: ㅇ, Zimbabwe: Sawmills (SAM), here designated, examined.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); de Beaumont, 1967:509 (misidentification, actually Tachysphex barkeri); Bohart and Menke, 1976:273 (listed).
Tachysphex diabolicus var. analis Arnold, 1924:51, ㄷ. . Holotype: ํ, South Africa: Eastern Cape Province: Algoa Bay (TMP), examined. New synonym.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae).-As Tachysphex diabolicus analis: Bohart and Menke, 1976:273 (new status, listed).

Lectotype selection.- Arnold (1923) spoke of a single type in the original description of diabolicus (without a reference to sex), but he designated a female and a male as types (and an additional male as a paratype). I have selected the female as the lectotype and the other two specimens as the paralectotypes.

Recognition.- Tachysphex diabolicus has the labrum convex, protruding beyond the clypeal free margin, although slightly so in some males, galea elongate (length about 0.9 of scape), propodeal dorsum glabrous apicomesally, and gaster all black or with red apex and no silvery fasciae on terga. Tachysphex punctatus shares these characters, but unlike that species, the fore- and midfemora of diabolicus are closely, minutely punctate.

Relationsphip to Tachysphex claripes.- Tachysphex diabolicus closely resembles claripes except that it lacks the silvery tergal fasciae and the male clypeal lobe is usually narrower (distance between corners $0.5-0.8 \times$ distance between corner and orbit rather than $0.8-1.1$). It may be an individual form of claripes, but I have not observed intergradation and therefore treat them as full species.

Justification of new synonymy.- The typical diabolicus is characterized by an all black gaster and an all setose hindfemoral venter (with an obtuse inner margin in the male). In the var. analis, female gastral segment VI and parts of V are red, the hindfemoral venter is asetose in the apical $0.3-0.4$ of length, and in the male the inner margin of the venter is sharp. There are intermediates, however. For example, the pygidial plate is reddish in a female from Koonap River, South

Africa, and reddish apically in that from Hilton Farm, South Africa, but both specimens have the hindfemoral venter all setose. Of 15 females of Pearly Beach, South Africa, 14 are var. analis, but in one the hindfemoral venter is asetose only in the apical 0.2 of length (suggesting full intergradation to the typical diabolicus). Of the eight males from the same locality, seven are var. analis, but one is typical diabolicus. The two forms are largely exclusive: the typical form extends from Zimbabwe and Namibia to South Africa (as far south as Grahamstown area, Willowmore, and Matjiesfontein), whereas the var. analis is found only in southern South Africa and in Namaqualand. They were found sympatrically only at Pearly Beach and Willowmore. I conclude that these two phena are members of one geographically variable species.

Description.- Labrum convex (but less so than in panzeri or pentheri), protruding from beneath clypeus, although slightly so in some males. Galea densely, minutely punctate (except anteriorly) and also with a few large punctures, about as long as 0.9 of scape. Scutal punctures well defined, averaging about one diameter apart in some specimens, about 2-3 in others. Mesopleuron dull, conspicuously, evenly microsculptured, with vestigial, shallow micropunctures. Propodeal dorsum evenly microareolate, side ridged (except anteriorly in some males). Hindcoxal dorsum with inner margin carinate, carina somewhat expanded basally.

Setae varying from nearly appressed to suberect on postocellar area but no longer than midocellar diameter; erect, about one midocellar diameter long on each side of oral fossa next to occipital carina; on scutum either appressed or suberect and markedly shorter than midocellar diameter; propodeal dorsum with nearly appressed, inconspicuous setae that are oriented posterad except glabrous apicomesally (glabrous area several midocellar diameters wide).

Head and thorax black, mandible dark reddish preapically. Frontal setae silvery or silvery with golden tint or dark (then inconspicuous) in female, silvery or golden in male. Thoracic setae varying from silvery to brown. Wing membrane infumate (yellowish in single female from Shangani, Zimbabwe, yellow in single male from Kommetjie, South Africa); forewing costal and subcostal vein reddish brown or subcostal vein dark brown. Color of legs: see below. Gaster either all black or with red apex, and tergum II with red basomedian spot in a male from Matetsi, Zimbabwe (SAM). Terga without silvery, apical fasciae.

ㅇ.- Clypeus (Fig. 117a): bevel markedly longer than basomedian area; lip free margin arcuate, shallowly, broadly emarginate mesally (emargination rudimentary in some specimens), incised laterally. Width of postocellar area $0.6-0.7 \times$ length $(1.0 \times$ in female from Hilton Farm, South Africa). Dorsal length of flagellomere I 2.4-2.6 \times apical width. Forefemoral venter minutely, uniformly punctate and with sparse, large, ill-defined punctures. Dorsal foretibial surface with two or three spines; outer surface with one to three spines. Forebasitarsus with seven or eight rake spines. Tergum V uniformly, minutely punctate (including apical depression). Pygidial plate alutaceous or unsculptured between punctures, punctures several diameters apart near midline, but many punctures nearly contiguous next to margin. Length 14.5-16.0 mm. Legs black except tarsal apex red or tibiae and tarsi red (see Variation below).
$\delta^{\boldsymbol{T}}$.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 117b): bevel longer than basomedian area, delimited anterolaterally by oblique carina emerging from lip corner; lip free margin arcuate, with well-defined corner; distance between corners $0.5-0.8 \times$ distance between corner and orbit. Width of postocellar area $0.6-0.7 \times$ length. Dorsal length of flagellomere I 1.8-2.2 \times apical width. Forefemoral notch glabrous or sparsely, microscopically setose; outer margin of forebasitarsus with 4-6 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Sterna IV-VI apically and sternum VII with suberect setae that are no longer than midocellar diameter, but setae appressed in males from Hilton Farm and Matjiesfontein. Sternum VIII: apical emargination with or without median point. Length $12.0-15.5 \mathrm{~mm}$. Volsella and penis valve:

Figure 117. Tachysphex diabolicus Arnold: a - female clypeus and mandible; b - male clypeus and mandible; c - forecoxal process of female; d - volsella; e - penis valve.

Figs. 117d, e. Femora all black or red apically (up to apical third), also forefemoral venter red in some specimens. Tibiae and tarsi red in most specimens but black except foretibial inner surface reddish in males from Struisbaai, and all tibiae black in two males from Willowmore, South Africa.

Variation in female.- Forecoxa. The forecoxa has a short, apical process in the two females from Zimbabwe, one from Namibia, and one of the two from Ladismith, South Africa (Fig. 117c).

Foretibial setae. The foretibia is finely setose throughout in two females from Zimbabwe, one from Hilton Farm, one from Koonap River, and one from Willowmore, South Africa. It has a narrow, glabrous zone in a female from Shangani, Zimbabwe, and in the Namibian and other South African females.

Color of tibiae. The tibiae are black in most specimens, but red in a female from Hilton Farm, one from Koonap River, and one from Willowmore (AMG).

Geographic distribution (Fig. 108).- Zimbabwe, northern Namibia, and South Africa.
Records.- NAMIBIA: Ondangwa District: 38.4 km SE Ondangwa (1 o , NMN). SOUTH AFRICA: Eastern Cape Province: Algoa Bay ($1 \circ$ holotype of var. analis, $1 \mathrm{o}^{\circ}$, TMP), Cookhouse ($1 \mathrm{o}^{\circ}$, SAM), 18 km WNW Grahamstown: Hilton Farm ($1+1,1 \circ^{\circ}$), Koonap River 17 km from Adelaide on road to

between Annis and Dabie at $28^{\circ} 20^{\prime} \mathrm{S} 16^{\circ} 55^{\prime} \mathrm{E}$ (10°, AMG), Wallekraal in Namaqualand ($2 \circ$, SAM). Western Cape Province: Bookbai 15 km W Atlantis at $33^{\circ} 34^{\prime} 45^{\prime \prime} \mathrm{S} 18^{\circ} 18^{\prime} 45^{\prime \prime} \mathrm{E}(1 \stackrel{\circ}{+}$, CSE), Brandfontein Reserve at $34^{\circ} 46^{\prime} \mathrm{S} 19^{\circ} 52^{\prime} \mathrm{E}\left(1 \delta^{*}, \mathrm{SAM}\right), 60 \mathrm{~km}$ N Cape Town ($1+$, OÖLM), Cederberg Mts. $15-30 \mathrm{~km}$ SE Clanwilliam

 SAM), Struisbaai ($1+\frac{\circ}{}$, USU), 1 km N Struisbaai at $34^{\circ} 47.2^{\prime} \mathrm{S} 20^{\circ} 02.1^{\prime} \mathrm{E}\left(7+9,70^{\circ}\right)$, Velddrif ($1 \mathrm{o}^{\circ}$, AMNH), 3 km N Yzerfontein at $33^{\circ} 20^{\prime} 00^{\prime \prime} \mathrm{S} 18^{\circ} 09^{\prime} 00^{\prime \prime} \mathrm{E}\left(10^{\circ}\right.$, CSE), Zeekoe Vlei at $34^{\circ} 04^{\prime} \mathrm{S} 18^{\circ} 31^{\prime} \mathrm{E}(2 \circ$, SAM). ZIMBABWE: Matetsi in Hwange District ($1 \stackrel{\circ}{ }+1 \sigma^{\circ} ; 1 \sigma^{*}$, AMG; $12 \sigma^{\circ}$, SAM), Sawmills at Umguza River ($1 \circ$ lectotype, $2 \sigma^{\star}$ paralectotypes of diabolicus, SAM), Shangani ($1 \circ$, BMNH).

The var. analis was found in the following South African localities: Algoa Bay, Bokbaai, Brandfontein Reserve, 60 km N Cape Town, Cederberg Mts., Graafwater, Het Kruis, Knersflakte, Kommetjie, Ladismith, S Lambert's Bay, Leipoldtville to Eland's Bay, Pearly Beach, Port Elizabeth, Somerset East, 3 km N Steytlerville, 6 km N Steytlerville, 28 km S Steytlerville: Wolwekraal Farm, Struisbaai, 1 km N Struisbaai, Uitenhage, Wallekraal, Willowmore, 3 km N Yzerfontein, and Zeekoe Vlei.

Tachysphex dignus Kohl

Figures 118, 119.
Tachysphex dignus Kohl in Kohl and Handlirsch, 1889:278, $\overbrace{}^{*}$. Holotype: ${ }^{*}$, Turkmenistan: Nukhur in KopetDagh (State Museum of Georgia, Tbilisi [?]), not examined.— Dalla Torre, 1897:679 (in catalog of world Hymenoptera, as digenus); Pulawski, 1967:398 (Turkey, description of \circ); de Beaumont, 1970b:15 (Iran: Baluchestan va Sistan); Pulawski, 1971:357 (in revision of Palearctic Tachysphex); de Beaumont, BytinskiSalz, and Pulawski, 1973:12 (Israel); Bohart and Menke, 1976:273 (listed); Kazenas, 1978b:115, 128 (in key to Sphecidae of Kazakhstan and Central Asia), 2001:28 (in checklist of Sphecidae of Kazakhstan and Central Asia); Gayubo, Özbek, and Yildirim, 2003:88 (Turkey).
As Tachytes incertus (corrected to Tachysphex dignus by Pulawski, 1971:357): Radoszkowski, 1886:33 (male genitalia), 1891:590 (reference to Radoszkowski, 1886); de Beaumont, 1936b:615 (specimens in Radoszkowski collection, as Tachysphex).

Interpretation of the species name.- The holotype of dignus was not available for study, but the good original description allows recognition. The combination of a narrow postocellar area, microareolate propodeal dorsum, black legs, and golden frontal pilosity is found in no other species that occur in Turkmenistan (Pulawski, 1971).

Recognition.- The female of dignus has an unusually broad pygidial plate and unusually thick erect setae at the base of apical depressions of sterna III-V. It differs from other such species in having the following combination: mandible with outer ridge not swollen and not expanded over notch; galea sclerotized (not membranous); clypeus with well-defined bevel (Fig. 118a); pygidial plate without transverse sulcus, punctate throughout (without specialized sculpture in apical portion); and apical tarsomeres each with a pair of small, subbasal spines on the venter.

The male of dignus can be recognized by the following: sterna III-VI largely impunctate and glabrous, hindwing vein cu-a vertical, galea sclerotized, forefemoral notch larger than average for the genus (Fig. 118c), outer margin of foretarsomere with 4-6 rake spines, free margin of clypeal lobe arcuate; and propodeal posterior face with well-defined longitudinal groove (rather than flat impression).

Description.- Scutal punctures no more than one diameter apart. Mesopleuron with minute, ill-defined punctures that are about one diameter apart (more than one diameter posteroventrally). Propodeal dorsum evenly microareolate or slightly rugose, or transversely ridged along midline; side uniformly microsculptured. Hindcoxal dorsum with inner margin carinate basally. Sternum I near hindmargin with obtuse, median carina.

FIGURE 118. Tachysphex dignus Kohl: a - female clypeus and mandible; b - male clypeus and mandible; c - male forefemur showing notch; d - volsella; $\mathrm{e}-$ penis valve.

Setae appressed on postocellar area and scutum; suberect on each side of oral fossa next to occipital carina, about as long as midocellar diameter; on propodeal dorsum converging obliquely posterad toward midline.

Head and thorax black, mandible reddish mesally. Frontal setae silvery in female and smallest males, golden in most males. Wing membrane nearly hyaline to slightly infumate; costal vein of forewing light brown, subcostal vein dark brown. Femora and tibiae black, foretibial inner surface reddish in male. Gastral segments I and II or I-III red and remainder black, but gaster all black in many males. Terga I-III or I-IV silvery fasciate apically.

ㅇ.- Clypeus (Fig. 118a): bevel slightly longer to slightly shorter than basomedian area; lip free margin arcuate, not incised laterally. Width of postocellar area $0.7-0.8 \times$ length. Dorsal length of flagellomere I 2.3-2.6 \times apical width. Dorsal foretibial surface with two or three spines; outer surface with three spines. Forebasitarsus with 7-9 rake spines; outer margin of forebasitarsus I and II slightly expanded apically over bases of rake spines. Outer margin of foretarsomere IV about 0.7 \times length of inner margin. Venters of apical tarsomeres each with a pair of subbasal spines. Setae delimiting apical depressions of sterna III-V thickened (also those on tergum V laterally), markedly contrasting with those of tergum IV. Apical depression of tergum V impunctate, glabrous. Pygidial plate conspicuously broad, with punctures that average several diameters apart all over its surface; interspaces unsculptured. Length $9.8-16.0 \mathrm{~mm}$.
8^{7}.- Mandibular inner margin with wide, obtuse tooth, without cleft (Fig. 118b). Clypeus (Fig. 118b): bevel markedly shorter than basomedian area; lip free margin arcuate, with well-defined corner; distance between corners $0.8-0.9 \times$ distance between corner and orbit. Width of postocellar area $0.4-0.7 \times$ length. Dorsal length of flagellomere I 1.7-2.2 \times apical width. Forefemoral notch larger than average for the genus (Fig. 118c), microscopically setose. Outer margin of forebasitarsus with 4-6 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Venters of tarsomeres V with small spines: a pair of subbasal and one preapical. Sterna III-VII with only a few, sparse setigerous punctures (except sternum III or sterna III and IV densely punctate laterally). Length $7.2-13.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 118d, e.

Geographic distribution (Fig. 119).- Sinai Peninsula, Turkey, and Cyprus, east to Tajikistan, south to Yemen.

Figure 119. Collecting localities of Tachysphex dignus.
Records (from Pulawski, 1971, if not indicated otherwise).- AZERBAIJAN: Megri on Arax River in Nakhichevan Autonomous Republic. CYPRUS: Stavrovani. EGYPT: Sina: Feiran Oasis (1 \&) . IRAN: Hamant-Kuh SE Iranshar, Kuh-i-Taftan, Saravan. Kurdistan: 37 km SW Baneh ($2{ }^{\circ}{ }^{\circ}$, NHMW). ISRAEL: Wadi Ruas. SYRIA: Damascus: Amata 50 km SE Suwayda (c^{77}, OÖLM), Kissoue road (3 º $^{\text {º }}$), Kafr
 TAJIKISTAN: Kondara Gorge 35 km N Dushanbe ($1 \mathrm{o}^{\circ}$). TURKEY: Ağri: Doğubayazit at $39^{\circ} 33^{\prime} \mathrm{N} 44^{\circ} 0^{\prime} \mathrm{E}$ (1 ơ $^{\circ}, \mathrm{CSE}$). Ankara: Ankara, Beynam, 16 km W Kirikkale (1 \&). Erzincan: Erzincan-Refahiye (1 ơ $^{\circ}$), Üzümlü (Gayubo, Özbek, and Yildirim, 2003). Karaman: Karaman (1 ơ). Kayseri: Göreme 54 km W Kayseri at $38^{\circ} 39^{\prime} \mathrm{N} 34^{\circ} 52^{\prime} \mathrm{E}\left(3 \delta^{\circ}, \mathrm{CSE}\right.$). Kirsehir: Kaman area (2 \boldsymbol{o}°). Konya: Sille (10°). Malatya: Kopeksiz 25 km E
 MENISTAN: Firuza 40 km W Askhabad (2 \&, OÖLM), Nuhur in western Kopet-Dagh (Kohl and Handlirsch, 1889). YEMEN: Rougrafat in Wadi el Gaber, locality of unknown location (1 ค, 1 đ ${ }^{\prime}$).

Tachysphex dissimulatus Pulawski, sp. nov.

Figures 110, 120.
Derivation of name.- Dissimulatus, the passive past participle of the Latin verb dissimulo, to feign, disguise, hide under false appearance; an allusion to this species similarity to its relatives and to difficulties in its recognition.

Recognition.- Tachysphex dissimulatus, a southern African species, has the labrum convex
and protruding beneath the clypeal free margin and the galea longer than wide in profile. Furthermore, the scutal punctures average less than one diameter apart, the propodeal side is uniformly microsculptured, and the setae adjacent to the hypostomal carina are straight and no longer than a midocellar diameter, appressed on the postocellar area and scutum, oriented posterad on the propodeal dorsum apicomesally. The female has an unsculptured apical depression of tergum V , and the male a well-developed foretarsal rake and a microscopically punctate forefemoral notch. A number of other species share these characteristics.

The female of dissimulatus has the clypeal lip incised laterally (incision may be abraded in worn specimens), foretibial outer surface all setose, and forecoxa without an apical process. It closely resembles excavatus and incertus, but excavatus ranges from Mauritania to Niger and Togo, and incertus in central and southwestern Asia, southern Europe, and in Africa south to southern Sahara. Most incertus have the pygidial plate broader than in dissimulatus, but I could not find any morphological difference between the females of dissimulatus and excavatus. Another similar species is camptopygus from Namibia, in which, unlike dissmulatus, the apex of the pygidial plate is characteristically downcurved.

The male of dissimulatus can be essentially recognized by the shape of its volsella, whose dorsal process is either about as high as wide and obliquely truncate apically (but nearly rounded in some specimens) or not differentiated from the apical volsellar portion (Figs. 120c, d). Several species are similar, particularly panzeri and palopterus, but both occur north of the equator.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea longer than wide in profile, with numerous, minute punctures; its length equal to 0.8 of scape in female,

Figure 120. Tachysphex dissimulatus Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d - portion of volsella showing individual variation; e - penis valve.
to 0.9 in male. Scutal punctures about one diameter apart, interspaces almost unsculptured in female and some males (hence punctures appearing well defined), microsculptured and dull in most males (hence punctures appearing ill defined). Mesopleuron uniformly microareolate, with microscopic punctures that are several diameters apart. Propodeal dorsum evenly microareolate; side evenly microsculptured, not ridged. Hindcoxal dorsum with inner margin not carinate.

Setae appressed on postocellar area and scutum; shorter than midocellar diameter on each side of oral fossa next to occipital carina; lateral setae of propodeal dorsum oriented posterolaterad, adlateral setae oriented posteromesad and joining apically, admedian setae oriented toward midline in apical half.

Head and thorax black, mandible reddish except basally and apically, clypeal bevel reddish in some females. Frontal setae silvery in female, golden in male. Wing membrane almost hyaline; costal vein of forewing light brown, subcostal vein dark brown. Femora varying from all red to all black in female, in male all black (femoral apex red in some specimens); tibiae varying from all red to largely black (foretibia partly red, midtibia reddish basally and apically, hindtibia all black); tarsi all red or black basally. Gaster red basally and black apically in most females, all red in some; all black in most males, reddish basally in some. Terga I-IV in female, I-III in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 120a): bevel as long as basomedian area or slightly longer; lip free margin arcuate, emarginate mesally, incised laterally. Width of postocellar area $0.9-1.1 \times$ length. Dorsal length of flagellomere I 1.4-1.8×apical width. Apicomedian forecoxal process rudimentary. Dorsal foretibial surface with two or three spines; outer surface with one or two spines. Forebasitarsus with seven or eight rake spines. Apical spines of hindtarsomere IV nearly reaching claw bases. Apical depression of tergum V impunctate, glabrous (setose mesally in many specimens). Pygidial plate with minute punctures that average many diameters apart; interspaces unsculptured. Length $8.3-10.5 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth and cleft (cleft ill defined in some specimens). Clypeus (Fig. 120b): bevel about as long as basomedian area, delimited anterolaterally by carina that emerges from lip corner; lip free margin arcuate, with well-defined corner; distance between corners $1.0-1.3 \times$ distance between corner and orbit. Width of postocellar area $0.9-1.1 \times$ length. Dorsal length of flagellomere I 1.7-2.1 \times apical width. Forefemoral notch with bottom microscopically punctate and setose. Outer margin of forebasitarsus with 3-5 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Tergum VII, at center, with punctures up to 2-3 diameters apart in some specimens. Apical margin of sternum VIII varying from evenly concave between lateral prongs to obtusely pointed mesally. Length $5.1-10.6 \mathrm{~mm}$. Volsella and penis valve: Figs. 120c-e; dorsal volsellar process in most specimens obliquely truncate, but almost rounded or not differentiated from apical portion in some (two of these three forms may be found in the same specimen).

Floral records.- The males collected in Helmeringhausen and Stampriet areas, Namibia, were collected, respectively, on flowers of Trianthema parvifolia E. Mey ex Sond. (Aizoaceae) and of Limeum sp. (Moluginaceae), as recorded by F.W. and S.K. Gess, the collectors.

Geographic distribution (Fig. 110).— Zimbabwe, Botswana, Namibia, South Africa.
Records.- Holotype: ơ, ZIMBABWE: Kami Ruins, 30 Dec 1995, WJP (CAS). Paratypes:
 (1 ${ }^{\text {or }}, \mathrm{BMNH}$). NAMIBIA: Bethanien District: 34 km SW Helmeringhausen on road C13, 9 Mar 1999, FSG (1 o $^{\pi}$, AMG). Gobabis District: Gobabis, 21 Dec 1974, H. Empey (3 o ; 2 o $^{\pi}$, AMG). Karibib District: 62 km E Karibib, 19 Feb 1990, MS ($1+\frac{+}{}$, MS). Mariental District: 18 km SE Stampriet on road to Gochas, 29 Mar 2000, FSG (2 ơ $^{\circ}$, AMG); Vaalbank [Farm] at $23^{\circ} 54^{\prime}$ S $18^{\circ} 53^{\prime} \mathrm{E}$, 20-22 May 1973, C. Jacot-Guillarmod (1 ơ 7, AMG). Okahandja District: Okahandja, 18 and 19 Feb 1990 (2 9); 70 km N Okahandja, 14 Mar 1990, MS
(1 ơ, MS); Waldau River 17 km W Okahandja, WJP, 3-4 Dec 1996 (2 ơ), 14 Dec 1996 (1 o $^{\text {o }}$). Omaruru District: Otjikoko Sud Farm 33 km ENE Omaruru, 10-13 Feb 1972, [British Museum] Southern African Expedition (1 ㅇ, BMNH). Otjiwarongo District: Osire, 24 Dec 1974, H. Empey (1 \& AMG). Rehoboth District: 7 km N Rehoboth, 15 Feb 1990, MS (1 ㅇ, MS); 9 km S Rehoboth, 14 Feb 1990, MS ($1 \mathrm{ơ}^{\text {or, MS }}$); 23 km N Rehoboth, 15 Feb 1990, MS (1 ㅇ, MS) and WJP (1 ㅇ, 1 o $^{\circ}$), 17 Feb 1990, MS (1 ํ, MS) and WJP ($1 \mathrm{c}^{\circ}$); 49 km S Rehoboth, 9 Feb 1990, MS (1 ค, MS). Windhoek District: Gamsberg east of Pass, 12 Mar 1999, FSG ($1 \mathrm{~d}^{7}$, AMG). SOUTH AFRICA: Eastern Cape Province: Bathurst, 14 Jan 1959, C. JacotGuillarmod (10°, AMG), Kenton-on-Sea, 23-30 Nov 1971, R.A. Jubb (10°, AMG). Gauteng: Bronkhorstbaai, 10 Oct 1964, H. Empey (1 \& , AMG); Bronkhorst: Spruit Dam, 10 Oct 1964, H. Empey (1 \uparrow); Tswaing (as Soutpan), 31 Dec 1985, J.M. Carpenter (1 \&) . Kwazulu Natal: Sileza Forest Reserve, 4 Nov 1996, M.E. Irwin (1 우, CSE). Mpumalanga: Waterval Boven, $10-11$ Feb 2000, Marek Halada (1 ơ, OÖLM). Northern Cape
 Olifantshoek, 26 Nov 1990, R. Miller and L. Stange (1 , FSCA). Northern Province: Buffelspoort Dam, 16 Nov 1968, H. Empey (ở $^{\text {r }}$, AMG); Ellisras, 24 Dec 1973, H. Empey ($1 \stackrel{+}{ }$, AMG). North West Province: Marico, 10 Dec 1924, WKR ($1+$, AMG). Western Cape Province: 60 km N Cape Town, 9 Nov 1999, M. Halada (2 ơ, OÖLM); Cederberg Mts. 15-30 km SE Clanwilliam, 24 Oct 1982, T.L. \& R.T. Griswold (4 ơ, USU); Ceres, R.E. Turner, Dec 1920 (3 ㅇ, BMNH) and Dec 1924 (1 ㅇ, BMNH); 20 km N Citrusdal, 27 Oct 1999, M. Halada (1 ㅇ, 2 ơ $^{\boldsymbol{t}}$, OÖLM); 13 mi S Clanwilliam, 2 Nov 1966, J.G. Rozen (1 ㅇ, 1 ơ, AMNH); Kliprand 60 km S Loeriesfontein, 31 Oct 1999, Marek Halada (5 ơ, OÖLM); 40 km S Lambert's Bay, 30 Oct
 Pakhuis Pass, 24 Oct 1983, T.L. \& R.T. Griswold (1 ه̛, USU); Paleisheuwel, Nov 1948, [South African] Mus.

 1990, R. Miller and L. Stange (2 ㅇ, FSCA); Redbank at Kami River, WJP, 30 Jan 1995 (1 ơ), 28 Dec 1995 (1 \circ), 1 Jan $1996\left(1 \circ+1 \circ^{\circ}\right)$; Sawmills at Umguza River, 27 Jan 1995, WJP ($1 \circ$) .

Tachysphex diversilabris Arnold

Figures 112, 121, 122.
Tachysphex diversilabris Arnold, 1960:83, ㄱ, ơ. Lectotype: ${ }^{\prime \prime}$, South Africa: Kwazulu-Natal: Drakensberg Mts.: Fire Lookout in Cathedral Peak Forestry Reserve (SAN), here designated, examined.- Bohart and Menke, 1976:273 (listed).

Recognition.- Tachysphex diversilabris, an all black species of South Africa's colder habitats, has scutal and mesopleural punctures well defined, labrum flat and galea shorter than wide in profile, hindwing crossvein cu-a vertical, and tarsi unspecialized (length of midtarsomere II more than twice width, length of hindtarsomere IV greater than width, apical tarsomeres without spines on venter or lateral margins).

The female differs from other such species except congoensis, consocius, and some aterrimus in having a laterally incised clypeal lip (Fig. 121a) and a convex middle clypeal section, with a welldefined bevel (clypeus almost flat in aterrimus, with an ill-defined bevel). Unlike congoensis and consocius, it has the apical depression of tergum V minutely punctate and finely setose (rather than unsculptured and asetose). In addition, in many specimens the setae of its postocellar area are about 2.0-3.0 midocellar diameters long (rather than 1.0-1.5 \times) and scutal and mesopleural setae are sinuous rather than straight. Coloration is also somewhat helpful: the mandible of diversilabris varies from all black to black with a reddish preapical zone (tooth of trimmal carina and adjacent area are black in all specimens examined), and the pygidial plate is black. In most consocius, the mandible is largely reddish mesally, and the pygidial plate, in many specimens, is reddish apically.

The male can be recognized by a unique combination of its sharply pointed clypeal lobe, not angulate laterally (Fig. 121b) and flagellomeres III-X each with a longitudinal sulcus that separates two differently setose areas (Fig. 121c), although the sulcus is rudimentary is some specimens.

Subsidiary recognition features include: trimmal carina obtusely angulate but without real tooth (Fig. 121b); scutum anteriorly and mesopleuron anteriorly, in most specimens, with sinuous setae; and sternum VIII tridentate apically (but middle tooth evanescent in some specimens). The unusual flagellar structure is shared with most consocius, in which, however, the trimmal carina has a tooth, the clypeal lip is angulate laterally (not sharply pointed mesally), and the scutal and mesopleural setae are straight or angled distally.

Tachysphex diversilabris and consocius differ sharply in their geographic ranges. The former is known only from higher elevations of eastern and western South Africa and also from the Table Mountain area near Cape Town, whereas consocius is found throughout Africa, in southern Europe, and in Asia east to Sri Lanka. Both were collected simultaneously at Constantiaberge near Cape Town at the elevation of 640 m , and also at Dassiefontein Farm in Northern Cape Province.

Relations to Tachysphex consocius.Except for the male clypeus, diversilabris and consocius closely resemble each other morphologically, and share a uniquely derived male antennae. The laterally incised female clypeal lip and tridentate male sternum VIII, although found elsewhere within the genus, are unique specializations among their closest relatives. These two Tachysphex, therefore, appear to be sister species.

Description.- Mandible: outer ridge somewhat swollen and expanded over notch. Scutal punctures well defined, somewhat coarse, averaging less than one diameter apart (some punctures almost confluent). Mesopleural punctures well defined, averaging no more than one diameter apart; interspaces conspicuously microsculptured in most specimens, but unsculptured in one male from Table Mountain, South Africa. Propodeal dorsum irregularly ridged to irregularly rugose; side ridged.

Figure 121. Tachysphex diversilabris Arnold: a - female clypeus and mandible ($\times 44$); b - male clypeus and mandible ($\times 55$); c - male flagellomere IV showing longitudinal groove (×282). Hindcoxal dorsum with inner margin carinate.

Setae erect on postocellar area, scutum, and midfemoral venter, sinuous on scutum anteriorly and on mesopleuron in most specimens, but straight in two males from Van Reenen and in single
female from 10 km W Utrecht; either erect or diverging anterolaterad from midline on propodeal dorsum; setal length expressed as a fraction of basal mandibular width: 0.4 on each side of oral fossa next to occipital carina, 0.6 on postocellar area (0.4 in female from 10 km W Utrecht).

Head and thorax black, mandible all black or reddish preapically, largely reddish mesally and preapically in one male examined. Frontal setae silvery in both sexes. Wing membrane hyaline to slightly infumate; costal and subcostal veins of forewing black. Legs and gaster black. Terga I-IV silvery fasciate apically.

ㅇ.- Clypeus (Fig. 121a): bevel longer than basomedian area, with sparse, large punctures; lip free margin arcuate or slightly pointed mesally, incised laterally. Width of postocellar area $1.8 \times$ length. Dorsal length of flagellomere I 1.9-2.0 \times apical width. Dorsal foretibial surface with a few fine bristles; outer surface with one spine near midlength or without spines. Forebasitarsus with five or six rake spines. Apical depression of tergum V microsculptured and setose throughout. Pygidial plate microsculptured, with punctures that average several to many diameters apart (markedly less than that near margin). Length $7.5-8.8 \mathrm{~mm}$.
$\delta^{\boldsymbol{\pi}}$.- Mandible: trimmal carina obtusely angulate but without real tooth and without cleft. Clypeus (Fig. 121b): bevel about as long as basomedian area; lip free margin pointed (point acute to rectangular), without corner, thus forming single curved line with rest of clypeal margin. Width of postocellar area 2.0-2.3 \times length. Dorsal length of flagellomere I 1.5-1.6 \times apical width; flagellomeres III-X each with longitudinal sulcus that separates two differently setose areas (Fig. 121c), but sulcus rudimentary in one of the two males from 5 km S Clanwilliam. Femoral notch with microscopic, inconspicuous setae. Outer margin of forebasitarsus mostly without preapical spines, but with two or three such spines in specimens from Cape Town area; outer apical spine of foretarsomere II shorter than tarsomere III (only slightly so in specimens from Cape Town area). Sternum VIII tridentate apically in most specimens, but middle tooth evanescent in single specimen from Entabeni Forest Reserve and absent in two males from 5 km S Clanwilliam. Length 5.6-7.8 mm. Volsella and penis valve: Fig. 122.

Geographic distribution (Fig. 112).South Africa: Drakensberg Mountains, Table Mountain area near Cape Town, and Kamies-

Figure 122. Tachysphex diversilabris Arnold: volsella and penis valve. berg Mountains.

Records.- SOUTH AFRICA: Kwazulu-Natal: Cathedral Peak (3 0^{7}, USU), Cathedral Peak area in the Drakensberg Mts.: above Mike's Pass at $28^{\circ} 59^{\prime} \mathrm{S} 29^{\circ} 14^{\prime} \mathrm{E}$, $1973 \mathrm{~m}\left(10^{\circ} ; 2 \circ\right.$, PPRI), Cathedral Peak: Fire Lookout at $7500-7700 \mathrm{ft}$. $[=2290-2350 \mathrm{~m}]\left(1 \stackrel{\circ}{ }\right.$, $1 \mathrm{o}^{\star}$, SAM, lectotype and paralectotype of diversilabris), Coleford Nature Reserve at $29^{\circ} 57^{\prime}$ S $29^{\circ} 27^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{PPRI}\right.$), Giant's Castle Nature Reserve (${ }^{\circ} \stackrel{\circ}{\circ}$, CSE; $1 \stackrel{\circ}{ }$, ZMAN), Drakensberg Garden area ($1 \stackrel{\circ}{ }$, PPRI), near Hlatikulu (10^{*}, ZMAN), 10 km W Utrecht ($1+\frac{+}{}$, OÖLM), Van Reenen (2 ơ, BMNH). Northern Cape Province: Dassiefontein Farm 14 road km E Kamiesksroon ($5 \quad \circ, 1 \mathrm{o}^{\circ}$). Northern Province: Entabeni Forest Reserve at $23^{\circ} 00^{\prime} \mathrm{S} 30^{\circ} 16^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right.$, PPRI), Mogoto Nature Reserve near Zebediela (1 ơ *, PPRI). Western Cape Province: Cape Peninsula: Silver Mine (1 아, AMG), Cape Town: Constantiaberge, 640 m alt., at $34^{\circ} 02^{\prime} \mathrm{S} 18^{\circ} 23^{\prime} \mathrm{E}(1+$, SAM) and Constantiaberge above Tokai Forest and Donkerboskloof, 460 m alt., same coordinates ($2 \mathrm{o}, 2$ of , SAM) , Cape Town: Table Mountain (1 ㅇ, $1 \delta^{\circ}, \mathrm{ZMLU}$) and Table Mountain near top at $33^{\circ} 57^{\prime} \mathrm{S} 18^{\circ} 24^{\prime} \mathrm{E}\left(14\right.$ ㅇ, $\left.7 \mathrm{o}^{\circ}\right), 5 \mathrm{~km} \mathrm{~S}$ Clanwilliam at $32^{\circ} 11.4^{\prime} \mathrm{S} 18^{\circ} 52.5^{\prime} \mathrm{E}\left(1+9,2 \delta^{\circ}\right)$.

Tachysphex dolosus Arnold

Figures 123-125.
Tachysphex panzeri var. dolosus Arnold, 1923:171, \circ, ơ'. Lectotype: $_{+}^{+}$, Zimbabwe: Sawmills (SAM), here designated, examined.-Arnold, 1930:4 (in checklist of Afrotropical Sphecidae).-As Tachysphex panzeri dolosus: Bohart and Menke, 1976:275 (new status, listed).- As Tachysphex dolosus: Pretorius, 2005:116 (new status, use of geometric morphometrics to determine sexual dimorphism in wing venation).

ReCOGNITION.- Tachysphex dolosus has a convex labrum (markedly protruding beyond the clypeal free margin), galea about as long as the scape, and the propodeal side microareolate (all or largely so), glabrous adjacent to the metapleural sulcus. It differs from all other such species except socotrae in having all setae of the propodeal dorsum (except lateral ones) suberect and pointing anterad or anterolaterad (Fig. 124a), although setal orientation is often altered due to specimens old age, mechanical handling, or moisture. Subsidiary recognition features are: terga I-IV each with an apical, silvery fascia (the fascia is interrupted mesally on tergum IV), and male midfemur with obtuse edge between venter and posterior surface (Fig. 123d).

In the female, the apical depression of tergum V is impunctate and asetose, as in caliban, camptopygus, excavatus, incertus, and sycorax (specimens with altered propodeal setae may be confused with these species). Unlike socotrae (an endemic of Socotra Island), the female of dolosus has a densely punctate scutum (punctures about one diameter apart). In the female of socotrae, punctures of the scutal disk average several diameters apart.

The male is similar to calidus, and the most reliable recognition feature is the shape of the volsella whose dorsal process is low, broad, while elongate, narrow in calidus (compare Figs. 78b and 124b). Another good recognition feature is the surface of the forefemoral notch, whose bottom is densely, microscopically punctate and setose (Figs. 123f, g), appearing dull under lower magnifications. In calidus, the femoral notch is microscopically, sparsely punctate and setose, appearing shiny. In addition, the propodeal dorsum of calidus has a varying but constantly different setal pattern (in many specimens most setae are oriented anterad, but preapical setae diverge radially from a pair of vortices). Unlike socotrae, the corner of the clypeal lip is not prominent (prominent in socotrae).

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea: length equal to $1.0-1.1$ of scape (see below for punctation). Scutal punctures: see Variation below. Mesopleuron dull, uniformly microareolate. Propodeal dorsum uniformly microareolate, side uniformly microareolate or ridged posteroventrally. Hindcoxal dorsum with inner margin not carinate. Outer surface of foretibia and midtibial dorsum narrowly impunctate and glabrous in most females (but punctate and setose throughout in some, e.g., in the two females from Kenya) and in many males.

Setae subappressed to suberect on postocellar area; appressed on scutum; suberect but varying in shape and length next to hypostomal area (see Variation below); suberect, oriented anterad or anterolaterad on propodeal dorsum except lateral setae oriented posterolaterad (Fig. 124a).

Head and thorax black, mandible reddish yellow (except apically); in most specimens also the following reddish yellow: clypeal bevel and lip, labrum, and pronotal lobe posteriorly. Frontal setae silvery in female, golden in male. Wing membrane almost hyaline to slightly infumate; in forewing both costal and subcostal veins yellowish brown. Legs and gaster all red in most specimens, but femora black in a male from Mossel Bay, and gaster all or largely black in some specimens (e.g., those from 62 km SW Morogoro, Tanzania). Terga I-IV silvery fasciate apically (tergum IV only laterally so).

ㅇ.- Clypeus (Fig. 123a): bevel about as long as basomedian area; lip free margin arcuate,

Figure 123. Tachysphex dolosus Arnold: a - female clypeus ($\times 37$); b - male clypeus ($\times 44$); c - base of male forefemur in profile ($\times 42$); d - male midfemur in ventral view ($\times 43$); e - female foretibia, outer surface ($\times 42$); f - base of male forefemur in ventral view showing bottom of notch; g - bottom of forefemoral notch, higher magnification.
emarginate mesally, sinuous or not sinuous laterally. Width of postocellar area $0.5-0.7 \times$ length. Dorsal length of flagellomere I $2.5-2.6 \times$ apical width. Dorsal foretibial surface with three spines; outer surface with two or three spines and longitudinal, glabrous zone (Fig. 123e). Forebasitarsus with seven or eight rake spines; outer apical spine of hindtarsomere V reaching claw base. Apical depression of tergum V impunctate, asetose. Pygidial plate with well-defined punctures that aver-

Figure 124. Tachysphex dolosus Arnold: a - propodeal dorsum showing orientation of setae; b - volsella; c - penis valve.
age many diameters apart (but many lateral punctures less than one diameter apart). Length $11.0-16.0 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 123b): bevel about as long as basomedian area; lip free margin straight, rounded, or obtusely pointed, entire or emarginate; corner well defined to inconspicuous; distance between corners varying geographically (see Variation below). Width of postocellar area $0.6-0.7 \times$ length. Dorsal length of flagellomere I $2.6 \times$ apical width. Forefemoral notch densely, microscopically punctate and setose, appearing dull under lower magnifications (Figs. 123c, f, g). Midfemur with obtuse edge between venter and posterior surface (Fig. 123d). Outer margin of forebasitarsus with 3-6 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Hindfemoral venter with inner (= posterior) margin sharp in many specimens. Length $7.5-12.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 124b, c.

Geographic variation.- Specimens from various areas differ in punctation, pilosity of lower gena, and the shape of the male clypeus, as described below:

Galea: punctures about one diameter apart (except anteriorly) in specimens from southern Africa, Tanzania and Kenya, and several diameters apart in West African males.

Genal setae (on each side of oral fossa next to occipital carina): slightly sinuous in most southern African specimens, but nearly straight in a male from Dasklippas in Cederberg Mts., South Africa, and straight in the single female from Angola and the specimens from Tanzania, Kenya, Ghana and Togo. Setal length is about $0.3 \times$ basal mandibular width in southern African specimens and those from 73 km NW Korogwe, Tanzania, and about $0.4 \times$ basal mandibular width in the Western African and Kenyan specimens as well as those from 62 km NW Morogoro, Tanzania.

Scutal punctures: averaging about one diameter apart in female, about 2-3 diameters apart on disk in males from southern Africa, Kenya, and Tanzania, about one diameter apart in males from West Africa.

Male clypeus: distance between lip corners $0.8-1.0 \times$ distance between corner and orbit in southern African populations, 1.1-1.3 \times in males from Kenya and Tanzania, and $1.6-1.8 \times$ in males from Ghana and Togo.

Male tergum VII: punctures about one diameter apart in specimens from southern Africa, Tanzania, and Kenya, but averaging several diameters apart in West African males.

Volsella: dorsal process low in southern African and Kenyan males, but roundly prominent in those from Ghana and Togo.

Floral records and prey.- Specimens from 120 km W Khorixas and those from 97 km
from Swakopmund (AMG) were collected on flowers of Zygophyllum simplex L . (Zygophyllaceae), those from Omaruru to Usakos on flowers of Brownanthus kuntzei (Schinz) Ihlenf. and Bittrich (Aizoaceae) and of Limeum argute-carinatum Wawra and Peyr. (Molluginaceae), as recorded by F.W. and S. Gess, the collectors. One female from Tierberg Farm, South Africa (AMG), is pinned with prey, an acridid nymph (det. F.W. Gess).

Geographic distribution (Fig. 125).Ghana and Togo, Kenya and Tanzania to Angola and South Africa.

Records.- ANGOLA: Giraul River 10 mi NE Namibe ($3 \mathrm{o}^{\circ}$, BMNH), Pediva 30 mi E Porto Alexandre ($2{ }^{\text {or }}, \mathrm{BMNH}$), 5 mi E Villa Arriaga (1 ㅇ) . BOTSWANA: Palapye road ($1 \begin{gathered} \\ 0\end{gathered}$, AMNH).

Figure 125. Collecting localities of Tachysphex dolosus. GHANA: Kawampe 45 km N Kintampo at $8^{\circ} 30^{\prime} \mathrm{N}$
 Hill area (1 ㅇ, 16 o $^{\text {r }}$). Eastern Province: near Ewaso Ng'iro River opposite Archer's Post ($1 \mathrm{o}^{\circ}$), 5 km NNE
 District: Blinkoog near Warmbad in Great Karas Mts. (18°, SAM), SE 2719 Ca [$=$ between $27^{\circ} 45^{\prime}$ and $28^{\circ} 00^{\prime} \mathrm{S}$ and $19^{\circ} 15^{\prime}$ and $\left.19^{\circ} 30^{\prime} \mathrm{E}\right]\left(2 \circ, 1 \mathrm{o}^{\circ}\right.$, NMN); 12 km SW Grünau ($1 \circ$, FSCA), 30 km E Karasburg ($2 \sigma^{\circ}, \mathrm{AMG}$), Ortmansbaum near Warmbad ($1+$, NMN). Karibib District: Khan River 23 km N Karibib (1 ㅇ, 13 ơ' $^{7} 2$ o $^{\star}, \mathrm{NMN}$), Phillips Ranch 5 mi N Usakos ($1+9$), 97 km from Swakompund on road to Usakos ($2 \sigma^{\circ}$, AMG), 55 km SW Usakos ($1 \mathrm{o}^{\circ}$), 65 km SW Usakos ($1 \stackrel{\circ}{\mathrm{P}}$, MS). Keetmanshoop District: Noachabeb [Farm] 27 mi NNE Grünau (δ°, BMNH; $1 \circ$, NMN). Khorixas District: Brandberg West 70 km WNW Uis Myn ($1 \sigma^{\circ}$, OHL), W Grootberg Pass (2 ㅇ, $1 \sigma^{\circ}$, AMG), 4 km E Khorixas ($1 \sigma^{\circ}$), 2 km W Khorixas at 20 $0^{\circ} 23^{\prime} \mathrm{S}$ $14^{\circ} 56^{\prime} \mathrm{E}\left(28^{\circ}\right), 120 \mathrm{~km}$ from Khorixas on road to Palm at $20^{\circ} 17^{\prime} \mathrm{S} 14^{\circ} 05^{\prime} \mathrm{E}$ (1 ㅇ, $8 \mathrm{~d}^{\circ}$, AMG). Lüderitz District: Aus ($10^{\circ}, \mathrm{BMNH}$), near Aus on road to Helmeringhausen ($1 \mathrm{o}^{\circ}, \mathrm{AMG}$), Namib Farm 70 km N Aus ($1 \sigma^{\top}, \mathrm{OHL}$). Maltahöhe District: 30 road km from Helmeringhausen ($1 \stackrel{\circ}{ }$, AMG), Naukluft ($1 \sigma^{\circ}$, BMNH). Mariental District: Onze Rust 192 [Farm] ($1 \sigma^{\pi}$, AMG), Vaalbank 319 [Farm] (0^{π}, AMG). Okahandja District: Waldau River 17 km W Okahandja ($2 \circ$, $1 \mathrm{o}^{\circ}$). Omaruru District: 32 km W Omaruru ($1 \mathrm{o}^{\star}$, AMG), Omaruru to Usakos at $21^{\circ} 41^{\prime}$ S $15^{\circ} 59^{\prime} \mathrm{E}$ (100°, AMG), Otjikoko-Süd [Farm] ($1 \mathrm{~d}^{\circ}, \mathrm{NMN}$). Opuwo District: Anabib (Orupembo) 100 mi W Ohopoho ($1 \mathrm{o}^{*}$, ZMLU). Otjiwarongo District: 18 km NE Kalkfeld ($1 \mathrm{~d}^{\boldsymbol{*}}$). Outjo District: Namatubis Guest Farm 15 km NW Outjo (2 9 , CSE). Rehoboth District: 9 km S Rehoboth ($1 \sigma^{\top}$). Swakopmund District: Ganab ($1 \delta^{\top}$, PPRI), Gobabeb ($1+1 \sigma^{\top}$, ZMUC), Welwitschia forest near Gobabeb ($1 \mathrm{o}^{\circ}$), Homeb ESE Gobabeb ($3 \mathrm{o}^{*}$, FSCA), Mirabib 40 km ENE Gobabeb ($3 \mathrm{o}^{*}$, ZMUC), Swakop

 30 km N Colesberg at Orange River ($1 \stackrel{\uparrow}{ }$, 1 ơ $^{\circ}$, OÖLM). Northern Cape Province: Aggeneys ($12 \sigma^{\boldsymbol{*}}$, FSCA),

 PPRI), Olifantshoek ($1 \sigma^{\circ}$, FSCA), Onseepkans ($3 \sigma^{\circ}$ SAM), Prieska ($1 \circ+$ AMG), Tanqua-Karoo National Park (1 ㅇ, SAM), Twee Rivieren in Kalahari Gemsbok National Park at $26^{\circ} 28^{\prime} \mathrm{S} 20^{\circ} 37^{\prime} \mathrm{E}\left(4\right.$ of, $4 \mathrm{o}^{\prime}$, PPRI), Victoria West (20 $\circ, 90^{\boldsymbol{*}}$, AMG), Vioolsdrif ($1 \circ$, AMG). Western Cape Province: Beaufort West ($80^{\circ}, \mathrm{SAM}$), Cape Agulhas ($1 \mathrm{o}^{\circ}, \mathrm{ZMLU}$), Ceres ($1 \mathrm{o}^{\circ}, \mathrm{SAM}$), 43 km ENE Ceres on road to Sutherland ($2 \mathrm{o}^{\circ}, \mathrm{AMG}$), 40 km E Clanwilliam: Sevilla ($1 \mathrm{o}^{\circ}$, USU), Dasklippas in Cederberg Mts. NE Porterville ($1 \mathrm{o}^{\circ}$, OHL), Dikbome Farm near Merweville (5 ㅇ, $32 \sigma^{\circ}$, SAM), George ($1 \sigma^{\circ}$, TMP), Graafwater ($1 \sigma^{7}$, FSCA), Karoo National Park at $32^{\circ} 15^{\prime} \mathrm{S} 22^{\circ} 32^{\prime} \mathrm{E}\left(1 \stackrel{\circ}{ }+1 \mathrm{o}^{\circ}, \mathrm{PPRI}\right)$ and $32^{\circ} 20^{\prime} \mathrm{S} 22^{\circ} 30^{\prime} \mathrm{E}\left(2 \mathrm{o}^{\circ}\right.$, PPRI), Kliprand 60 km WNW Loeriesfontein
($1 \stackrel{\circ}{+}, 2$ o *, OÖLM), Laingsburg ($1 \stackrel{\circ}{ }$, AMG), 30 km ENE Laingsburg at $33^{\circ} 08^{\prime} \mathrm{S} 21^{\circ} 08^{\prime} \mathrm{E}\left(10^{\circ}\right)$, 5 km S
 Matroosberg at ca $33^{\circ} 32^{\prime} \mathrm{S} 19^{\circ} 52^{\prime} \mathrm{E}\left(1 \delta^{\circ}, \mathrm{AMG}\right)$, Pearly Beach ($1 \mathrm{o}^{\circ}, \mathrm{SAM}$), 5 km W Robertson ($1 \mathrm{o}^{\circ}$), Tierberg
 RMNH), Worcester ($1 \sigma^{ }$, TMP). TANZANIA: Kilimanjaro Region: Mkomazi Game Reserve: Ibaya (2 운, SAM). Morogoro Region: 62 road km SW Morogoro ($1 \stackrel{\circ}{\circ}$, $10 \sigma^{\circ}$). Tanga Region: 73 km NW Korogwe
 Luangwa River ($1 \sigma^{*}$, BMNH). ZIMBABWE: Bulawayo ($1 \sigma^{*}$, AMG; $1 \sigma^{*}$, NRS, labeled sycorax by
 ($1 \sigma^{\star}$, AMG; 2 ㅇ, SAM), Chewunde ($1 \sigma^{\star}, \mathrm{BMNH}$), Filabusi: Druid Mine ($4 \sigma^{\star}, \mathrm{SAM} ; 10^{\star}, \mathrm{TMP}$), Hwange

 labeled sycorax by G. Arnold).

Tachysphex ebeninus Arnold

Figures 126, 127.
Tachysphex ebeninus Arnold, 1929c:385, \uparrow, $\overbrace{}^{*}$. Lectotype: $\overbrace{}^{\star}$, Zimbabwe: Redbank (SAM), here designated, examined.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:273 (listed).

Recognition.- Tachysphex ebeninus has the gaster and femora black (also the female tibiae), labrum flat and galea shorter than wide in lateral view, hindwing crossvein cu-a vertical, and unspecialized tarsi (midtarsomere II more than twice as long as wide apically, tarsomeres IV longer than wide apically, apical tarsomeres without spines on venter or lateral margins). In addition, the mesopleuron has well-defined punctures and unsculptured, shiny interspaces; the propodeal side has well-defined ridges; the setae are erect on the postocellar area (Figs. 126a, b), suberect to erect on the scutum, and inclined obliquely posterad on the propodeal dorsum. The clypeal lip, in the female, is arcuate, obtusely incised laterally (Fig. 126c), and in the male unusually narrow: the lip width is markedly less than the distance between the lip and eye orbit (Fig. 126d). Subsidiary recognition features are: terga I-IV with silvery, apical fasciae that are inconspicuous and broadly interrupted mesally in most specimens; male tibiae at least partly red, foretarsus with well-developed rake, and outer apical spine of foretarsomere II markedly longer than tarsomere III.

Tachysphex ebeninus closely resembles crassipes, and I have found no reliable characters to separate the females. The most obvious difference is in the propodeal dorsum, regularly ridged longitudinally in ebeninus, but irregularly ridged or rugose in crassipes. An aberrant male of ebeninus, however, has the propodeal dorsum finely rugose, and females with a similar sculpture can certainly be expected. Another difference is in the mesopleuron sculpture: in all ebeninus examined, the interspaces are unsculptured, shiny, whereas in crassipes, the interspaces vary from unsculptured to microsculptured. The male of ebeninus differs in having the tibiae red (all or largely so) and the clypeal and frontal setae golden (in the male of crassipes the tibiae are all black and the head vestiture is all silvery).

Relationships to Tachysphex crassipes.- Tachysphex ebeninus may be just a local or geographic form of crassipes (and eventually of punctatiformis), hence a junior synonym. My limited material does not allow me to test this possibility.

Description (see also Variation below).- Scutal and mesopleural punctures well defined, averaging about 2-3 diameters apart on scutal disk and beneath mesopleural scrobe; interspaces unsculptured, shiny. Propodeal dorsum regularly ridged longitudinally, side ridged. Hindcoxal dorsum with inner margin carinate basally.

Figure 126. Tachysphex ebeninus Arnold: a - female head; b - male head; c - female clypeus and mandible; d - male clypeus and mandible; e - volsella; f - penis valve.

Setae sinuous and erect on postocellar area (Figs. 126a, b), on each side of oral fossa next to occipital carina, and on scutum (setal length up to $0.5 \times$ basal mandibular width); sinuous, oriented posterad on propodeal dorsum; erect, about one midocellar diameter long, on midfemoral venter.

Head, thorax, gaster, and femora black, mandible dark reddish preapically. Wing membrane slightly yellowish, costal and subcostal veins of forewing brown. Tibiae and tarsi black in female (tarsal apex red), all or partly red in male (fore- and midtibiae largely brown reddish in one specimen). Frontal and clypeal setae silvery in female, golden in male. Terga I-IV each with broadly interrupted, inconspicuous silvery fascia, but fasciae well developed in single male from Victoria Falls.

ㅇ.- Clypeus (Fig. 126c): bevel shorter than basomedian area; lip free margin arcuate, incised laterally. Width of postocellar area $0.8 \times$ length. Dorsal length of flagellomere I $2.0 \times$ apical width. Dorsal foretibial surface with two or three spines; outer surface with two spines. Forebasitarsus with six rake spines. Outer margin of foretarsomere IV about 0.5 length of inner margin. Apical depression of tergum V impunctate, glabrous. Pygidial plate: punctures many diameters apart mesally, denser near margin; some of the punctures adjacent to margins elongate. Length 8.5 mm .
\mathbf{o}^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 126d): bevel slightly to markedly shorter than basomedian area; lip free margin arcuate, with rounded but well-defined corner; distance between corners $0.6-0.7 \times$ distance between corner and orbit. Width of postocellar area $0.7-0.8 \times$ length. Dorsal length of flagellomere I 1.6-1.9 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Sternal punctures conspicuous, increasing in size toward gastral apex; apical depressions impunctate. Sternum VIII evenly emarginate or with rudimentary apicomedian projection. Length $7.6-9.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 126e, f.

Variation.- The single male from Victoria Falls differs from the other specimens in having denser scutal and mesopleural punctures, finer propodeal sculpture, and shorter, straight setae. In particular, most scutal punctures, on the disk, are about one diameter apart (some are about three diameters apart), and the mesopleural punctures are about one diameter apart beneath the scrobe. The propodeal dorsum is finely rugose, with tendency to form longitudinal ridges. The setae are erect on the postocellar area but only about $0.25 \times$ basal mandibular width, markedly inclined adjacent to the hypostomal carina (length about $0.4 \times$ basal mandibular width), and inclined on the scutum. Silvery, apical fasciae are well defined on terga I-V.

Collecting period.- 15 May through 20 August.

Geographic distribution (Fig. 127).Zimbabwe.

RECORDS.- ZIMBABWE: Bulawayo airport (50°), De Beer's Farm at Umguza River ($1 \delta^{\circ}$, SAM, paratype of ebeninus), Nyamandhlovu ($1 \mathrm{o}^{\circ}$, SAM, paratype of ebeninus), Redbank at Kami River (1 \circ, 30°, SAM, including lectotype of ebeninus), Victoria Falls (1 ${ }^{\circ}$).

Figure 127. Collecting localities of Tachysphex ebeninus, erectus, and erythrurus.

Tachysphex erectus Pulawski, sp. nov.

Figures 127, 128.
Derivation of name.- Erectus, Latin for erect; with reference to the erect setae on tergum I, one of this species main diagnostic features.

Recognition.- The male of erectus, an endemic of the Namaqualand region of South Africa, has a black body, flat labrum, vertical hindwing vein cu-a, coarsely punctate scutum and mesopleuron (interspaces shiny), and tergum I with erect setae. These characters are unlikely to be sexually dimorphic and will probably allow recognition of the unknown female. The male is additionally characterized by an unusually narrow clypeal lip, with corners conspicuously closer to each other than to the respective orbit (Fig. 128a), free margin of clypeal lip straight, foretarsus without rake, and tergum VIII tridentate apically.

Description (male only).- Galea minutely, sparsely punctate, longer than wide, as long as 0.8 of scape. Scutal and mesopleural punctures well defined, coarse, mostly less than one diameter apart (some punctures 1-2 diameters apart); interspaces shiny. Propodeal dorsum rugose; side either all ridged or coarsely punctate except impunctate anteriorly; posterior surface coarsely punctate, with a few transverse ridges ventrally. Hindcoxal dorsum with inner margin carinate basally, carina somewhat expanded basally. Tergum II with lateral line (laterotergite present).

Setae suberect on each side of oral fossa next to occipital carina; erect on postocellar area and scutum; oriented obliquely anterad on propodeal dorsum; erect on tergum I. Setal length, next to occipital carina, on postocellar area, and on tergum I, about $0.4 \times$ basal mandibular width; longest midfemoral setae about equal to midocellar diameter.

Head, thorax, legs, and gaster black, but mandible reddish mesally and tarsal apex brown. Frontal setae silvery. Wing membrane slightly infumate; costal and subcostal veins of forewing brown. Terga I and II or I-III silvery fasciate apically.

ㅇ.- Unknown.
σ^{\top}.- Mandible: trimmal carina with prominent, asymmetrical tooth, with cleft, markedly emarginate distad of tooth (Fig. 128a). Clypeus (Fig. 128a): bevel about as long as basomedian area; lip free margin straight, with well-defined corner; distance between corners unusually small, $0.5 \times$ distance between corner and orbit. Width of postocellar area 1.9-2.0 \times length. Dorsal length of flagellomere I $1.8 \times$ apical width. Forefemoral notch glabrous. Length of midtarsomeres II and III 1.9 and $1.4 \times$ apical width, respectively. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Lateral margins of hind-

Figure 128. Tachysphex erectus Pulawski, sp. nov., male: a - clypeus and mandible; b - volsella; c - penis valve.
tarsomeres II-IV parallel to each other (except basally). Sternum VIII tridentate apically. Length $5.6-6.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 128b, c.

Geographic distribution (Fig. 127).- Known from two localities in Namaqualand region of South Africa.

Records.- Holotype: ${ }^{\boldsymbol{*}}$, SOUTH AFRICA: Northern Cape Province: Hester Malan [now Goegap] Nature Reserve, 15-21 Oct 1987, F.W. and S.K. Gess (AMG). Paratype: SOUTH AFRICA: Western Cape Province: Knersvlakte: Kalkgat, 20 Sept-15 Oct 2000, U. Schmiedel and M. Kuhlmann (1 δ°).

Tachysphex erythrophorus Dalla Torre

Figures 129-131.
Tachysphex erythrogaster Cameron, 1889:143, + , junior secondary homonym of Tachysphex erythrogaster (A. Costa, 1882). Holotype: \circ, India: Maharashtra: Pune (OXUM), examined in 1974.- Nurse, 1909:14 (description of $\mathrm{\sigma}^{\circ}$).
Tachysphex erythrophorus Dalla Torre, 1897:679. Substitute name for Tachysphex erythrogaster Cameron.— Bohart and Menke, 1976:273 (listed); Krombein and Pulawski, 1994:76 (in revision of Sri Lankan Tachysphex); Kazenas, $2001: 28$ (in checklist of Sphecidae of Kazakhstan and Central Asia).
Tachysphex latissimus R. Turner, 1917c:199, 우, $\overbrace{}^{\circ}$. Lectotype: ${ }^{\circ}$, India: Bihar: Pusa (BMNH), designated by Pulawski, 1975:310, examined in 1974. Synonymized with Tachysphex erythrophorus by Pulawski, 1975:310.
As Tachysphex No. 18 (part, other specimens = Tachysphex gujaraticus): de Beaumont, 1940:178 (in revision of Egyptian Tachysphex), corrected to Tachysphex pectoralis by Pulawski, 1971:126.
As Tachysphex argentatus: Gussakovskij, 1952:242 (ㅇ only), corrected to Tachysphex pectoralis by Pulawski, 1971:126.
Tachysphex pectoralis Pulawski, 1964:101, 와, $\overbrace{}^{\circ}$. Holotype: ㅇ, Egypt: Abu Rawash NW Cairo (CAS), examined. Synonymized with Tachysphex erythrophorus by Pulawski, 1975:310.— Pulawski, 1971:126 (in revision of Palearctic Tachysphex); Kazenas, 1978:123, 129 (in key to Sphecidae of Kazakhstan and Central Asia).

Recognition.- Tachysphex erythrophorus has sinuous or curved setae that largely conceal the integument on the mesopleuron and scutal forecorner (Fig. 130) and that are oriented posterad on the propodeal dorsum, width of postocellar area markedly greater than length, and a unique shape of the mesothoracic venter: the anterior (oblique) portion is longer than the posterior (horizontal) part (Fig. 130). Subsidiary recognition features are: gaster and legs all or largely red in the female and most males, flagellomere I long (dorsal length 2.2-2.7 \times apical width in female and $1.5-2.2 \times$ in male, with ventral length markedly greater than apical width), clypeal lip of female evenly arcuate (Fig. 129a) or with one lateral incision on each side or serrate (but without an admedian pair of teeth), and male forefemoral notch obtusely angulate basally. The male of gujaraticus is similar, but has the usual mesothoracic venter (the anterior portion is shorter than the posterior part), the dorsal length of flagellomere I is $1.0-1.4 \times$ apical width, with the ventral length in most specimens subequal to the apical width, and the forefemoral notch of some specimens acutely angulate basally.

Description.- Gena unusually narrow as seen from above. Scutal punctures averaging less than one diameter apart, but discal punctures two to many diameters apart in most females and some males. Mesopleuron dull, granulose. Mesothoracic venter distinctive: anterior (oblique) portion longer than posterior (horizontal) part (Fig. 130). Propodeal dorsum microsculptured; side microsculptured, with vestigial ridges in some specimens. Hindcoxal dorsum with inner margin not carinate.

Setae (numbers in parentheses refer to setal length expressed as a fraction of basal mandibular width): sinuous or curved on gena and thorax, sinuous on propodeum (except straight on propodeal

Figure 129. Tachysphex erythrophorus Dalla Torre: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d - penis valve.
side anteriorly); suberect on each side of oral fossa next to occipital carina; appressed on postocellar area and scutal disk (0.2-0.3); totally concealing mesopleural integument in fresh specimens (Fig. 130); oriented posterad on propodeal dorsum (0.5-0.6); appressed or nearly so on midfemoral venter.

Head black, but the following are reddish: mandible (except apical third), clypeal lip and bevel (bevel black in some males), and scapal venter. Pronotal lobe yellowish. Color of thorax and legs: see below. Frontal setae silvery in both sexes. Wing membrane hyaline; costal and subcostal veins of forewing yellowish brown. Gaster red except apical segments brown in some males. Terga I-IV in female, I-V or I-VI in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 129a): bevel shorter than basomedian area; lip free margin arcuate in some specimens, in others shallowly sinuous laterally or with rudimentary median notch, serrate in some (but without admedian pair of teeth). Width of postocellar area 1.4-1.7 \times length. Dorsal length of flagellomere I 2.2-2.7× apical width. Forefemoral venter microsculptured. Dorsal foretibial surface with two or three spines; outer surface with two or three spines, punctures in apical half sparser than on remaining surface. Forebasitarsus with 7-9 rake spines. Venter of apical tarsomeres with
several thin, erect setae. Tergum V sparsely punctate (with only a few punctures in many specimens), apical depression impunctate, glabrous. Pygidial plate smooth, shiny, with fine, scattered punctures. Length $7.0-10.5 \mathrm{~mm}$. Thorax in many specimens all or partly red. Legs all red or forecoxa black.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 129b): bevel shorter than basomedian area; lip free margin arcuate or sinuate; distance between corners $1.1-1.3 \times$ distance between corner and orbit. Width of postocellar area 1.6-2.1 \times length. Dorsal length of flagellomere I $1.5-2.2 \times$ apical width. Forefemoral notch asetose. Outer margin of forebasitarsus with 4-7 rake spines, apical spine of tarsomere II markedly longer than tarsomere III. Sterna densely, evenly punctate and setose. Hindmargin of sternum VIII varying from almost evenly emarginate to tridentate (as in West African males), but mostly convex mesally. Length $5.5-8.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 129c, d. Thorax black, but mesothorax apicoventrally and metasternum red in many specimens. Legs all red or fore- and midfemora black.

Prey.- A female from Oursi, Burkina Faso, was collected with her prey, a young acridid nymph.

Geographic distribution (Fig. 131).- Mauritania and Egypt to Togo and Benin, Arabian Peninsula, Tajikistan, Turkmenistan, Pakistan, and India.

Figure 131. Collecting localities of Tachysphex erythrophorus.
RECORDS.- BENIN: Cotonou (1 \& , ZMAN). BURKINA FASO: 10 km E Dori at $14^{\circ} 00.5^{\prime} \mathrm{N} 0^{\circ} 03.2^{\prime} \mathrm{E}$

 ($1 \sigma^{\circ}$). INDIA: Bihar: Pusa ($1 \circ$, BMNH, lectotype of latissimus). Gujarat: Deesa ($5 \uparrow+2 \sigma^{\circ}$, BMNH). Maharashtra: Pune (1 , OXUM, holotype of erythrogaster Cameron). Rajasthan: 30 km SW Jaisalmer $=$ 8 km W Kundhara ($1 \mathrm{o}^{7}$, STUTTGART). MALI: central Adrar ($1 \mathrm{o}^{\circ}, \mathrm{KMG}$), Douentza ($1 \mathrm{q} ; 1 \mathrm{o}^{\mathrm{o}}, \mathrm{MS}$), Gao

 MAURITANIA: 20 km NE Akjoujt (1 \&), 20 km NE Aleg (3 \&), 25 km NE Aleg ($1 \circ$, MSNT), 25 km SW Moudjéria (8 ㅇ; 1 ㅇ, MSNT), 153 km NE Nouakchott (1 ㅇ, MSNT), Oued Henné ca 50 air km NE Moudjéria (1 \&), Tamouret Naaj ca 30 air km NE Moudjéria (2 \&). NIGER: Agadez Region: 0.5 km SE Aderbissinat at
$15^{\circ} 36.9^{\prime} \mathrm{N} 7^{\circ} 54.0^{\prime} \mathrm{E}$ (1 아). Diffa Region: 5 km N Diffa at $13^{\circ} 22.2^{\prime} \mathrm{N} 12^{\circ} 36.4^{\prime} \mathrm{E}$ (1 우), 13 km SW Nguigmi at $14^{\circ} 10.3^{\prime} \mathrm{N} 13^{\circ} 01.3^{\prime} \mathrm{E}$ (5 \&) , 34 km SW Nguigmi at $13^{\circ} 58.8^{\prime} \mathrm{N} 12^{\circ} 58.2^{\prime} \mathrm{E}$ (1 \uparrow). Maradi Region: 15 km NNW Maradi at $13^{\circ} 37.9^{\prime} \mathrm{N} 7^{\circ} 03.0^{\prime} \mathrm{E}(1$ \& $)$. Zinder Region: 21 km W Gouré at $13^{\circ} 51.2^{\prime} \mathrm{N} 10^{\circ} 07.8^{\prime} \mathrm{E}$ (2 $\%$), 45 km S Zinder at $13^{\circ} 27.3^{\prime} \mathrm{N} 9^{\circ} 00.5^{\prime} \mathrm{E}(1$ \& $)$. OMAN: Sih Hawayah ($1+$, KMG). PAKISTAN: Baluchistan: Quetta (1 ㅇ) . Punjab: Bahawalpur (3 ํ, 2 ơ), Lal Suhandra National Park 34 km E Bahawalpur (1 우), Muzaffar
 $25^{\circ} 10^{\prime}-26^{\circ} 05^{\prime} \mathrm{N} 67^{\circ} 10^{\prime}-67^{\circ} 55^{\prime} \mathrm{E}\left(3\right.$ \& $+2 \sigma^{\circ}$), Malir River bed 5 km ESE Karachi International Airport ($12 \sigma^{\circ}$). SAUDI ARABIA: Bahra 50 km ESE Jeddah (1 ö $^{\boldsymbol{\beta}}, \mathrm{KMG}$), Hofuf ($1 \mathrm{o}^{\top}, \mathrm{KMG}$). TAJIKISTAN: Dushanbe (Pulawski, 1971). TUNISIA: Tabarka at $36^{\circ} 58^{\prime} \mathrm{N} 8^{\circ} 45^{\prime} \mathrm{E}\left(1+\right.$, CSE), 15 km E Tabarka at $36^{\circ} 58^{\prime} \mathrm{N} 8^{\circ} 55^{\prime} \mathrm{E}$
 MENISTAN (Pulawski, 1971): Askhabad, Hassan-Kuli, Imam Baba near Mary. UNITED ARAB EMIRATES: Khor Fakkan ($1 \stackrel{\circ}{\circ}$, KMG).

Tachysphex erythropus (Spinola)

Figures 132-134.
Lyrops erythropus Spinola, 1839:479, ${ }^{\circ}$, actually or ¹. Lectotype: \boldsymbol{o}^{7}, Egypt: no specific locality (MSNT), designated by de Beaumont, 1952b:48, examined.- Casolari and Casolari Moreno, 1980:113 (specimens in M. Spinola collection).- As Larrada erythropus: F. Smith, 1856:281 (new combination, listed).- As Tachytes erythropus: A. Costa, 1867a:84 (new combination, in revision of Italian aculeate wasps); Kohl, 1883b:226 (incorrectly synonymized fluctuatus with erythropus).- As Tachysphex erythropus: Kohl, 1883a:175 (new combination, comparison with T. graecus), 1885:394 (tentatively transferred to Tachysphex, original description copied); Dalla Torre, 1897:679 (in catalog of world Hymenoptera); de Beaumont, 1952b:47 (study of type material), 1955:181 (Morocco), 1956a:197 (Libya); Grandi, 1957:389 (Libya); Suárez, 1959:57 (Spain); de Beaumont, 1960a:16 (Greece: Island of Rhodes), 1960b:238 (Libya); Ceballos, 1964:90 (in supplement to catalog of Spanish Sphecidae); de Beaumont, 1965:48 (Greece); Myartseva, 1965:77 (Turkmenistan); de Beaumont, 1966:212 (Egypt); Pulawski, 1967:397 (Turkey), 1971:408 (in revision of Palearctic Tachysphex); Kazenas, 1972:161 (Kazakhstan); Myartseva, 1972a:78 (Turkmenistan); de Beaumont, Bytinski-Salz, and Pulawski, 1973:12 (Israel); Krombein, 1974:452 (SW Egypt); Bohart and Menke, 1976:273 (listed); Kazenas, 1978:115, 127 (in key to Sphecidae of Kazakhstan and Central Asia); Guichard, 1980:227 (Oman); Gayubo, 1984b:363 (Portugal); Gayubo and Tormos, 1984:15 (Spain); Islamov, 1986:525 (Uzbekistan); Gayubo, 1987:112 (Spain); Tormos and Jiménez, 1987a:125 (Spain); Asís and Jiménez, 1988:271 (Spain); Gayubo and Mingo, 1988:78 (Spain); Pagliano, 1990:103 (Italy); Torregrosa, Gayubo, Tormos, and Asís, 1993:18 (Spain); Gayubo and Borsato, 1994:207 (Italy); Krombein and Pulawski, 1994:95 (in revision of Sri Lankan Tachysphex); Roche and Zalat, 1994:115 (Egypt: Sinai Peninsula); Negrisolo in Minelli, Ruffo, and La Posta, 1995b:9 (in catalog of Italian fauna); Pagliano and Scaramozzino, 1995:732 (Italy); Nazarova, 1998:41 (Tajikistan); Kazenas, 2001:28 (in checklist of Sphecidae of Kazakhstan and Central Asia); Schmidt and Bitsch in Bitsch et al., 2001:246 (in Sphecid Fauna of Western Europe); Kazenas 2002:67 (Kazakhstan).
Tachytes maracandicus Radoszkowski, 1877:26, ${ }^{\circ}$ (as Maracandica, incorrect original capitalization and termination). Lectotype: 0^{π}, Uzbekistan: Durman-kul (ZMMU), designated by Pulawski, 1971:411, examined before 1971. Synonymized with Tachysphex erythropus by Pulawski, 1971:408 and 411.— Magretti, 1884:588 (Sudan); Radoszkowski, 1887:44 (China: Tsaidam); nec Radoszkowski, 1886:32, 1891:590, and de Beaumont, 1936b:612 (= Tachysphex persa confinis).— As Tachysphex maracandicus: Kohl, 1885:396 (tentative new combination, original description copied); Dalla Torre, 1897:681 (in catalog of world Hymenoptera).
Tachytes flavogeniculatus Taschenberg, 1880:778, 0^{7}. Lectotype: $0^{7 \pi}$, Ethiopia: no specific locality (HALLE), designated by Pulawski in Krombein and Pulawski, 1994:97, examined. Synonymized with Tachysphex erythropus by Pulawski in Krombein and Pulawski, 1994:97.- As Tachysphex flavogeniculatus: Kohl, 1885:402 (new combination, listed); Dalla Torre, 1897:679 (in catalog of world Hymenoptera); Arnold, 1923:175 (listed); Bohart and Menke, 1976:273 (listed).

near Cairo (OXUM), designated by Pulawski, 1971:411, reexamined in 1974. Synonymized with Tachysphex mantivorus by de Beaumont, 1947a:172.- Mercet, 1910:165 (listed from Spain); von Schulthess, 1926b:215 (Tunisia); Nadig, 1933:79 (comparison with syriacus); Giner Marí, 1943a:139 (in Sphecid Fauna of Spain).
Tachysphex inventus Nurse, 1903:516, ơ. Lectotype: ơ, India: Gujarat: Deesa (BMNH), designated by Pulawski, 1975:313, examined in 1974. Synonymized with Tachysphex erythropus by Pulawski, 1975:313.
Tachysphex mantivorus de Beaumont, 1940:169, ㅇ, σ° (as mantivora, incorrect original termination). Lectotype: \circ, Greece: no specific locality (NHMW), designated by de Beaumont, 1947a:175, examined. Synonymized with Tachysphex erythropus by de Beaumont, 1952b:47.- de Beaumont, 1947a:172 (in revision of Egyptian Tachysphex); de Andrade, 1949:16 (Portugal); de Beaumont, 1950a:405 (Algeria), 1950b:18 (Egypt); Balthasar, 1954:269 (Palestine); Bytinski-Salz, 1956:226 (Turkey); Diniz, 1964:5 (Portugal).
As Tachysphex fluctuatus (collectively corrected to Tachysphex mantivorus by de Beaumont, 1940:169): Kohl, 1885:365 (in revision of Larrini); nec F. Morawitz, 1894:342 (= Tachysphex sordidus); W. Fox, 1896:554 (Somalia); W. Schulz, 1904:102 (Greece); von Schulthess, 1909:442 (Libya); Mercet, 1910:165 (listed from Spain); Morice, 1911:101 (Algeria); Dusmet, 1915:87 (Spain); von Schulthess, 1926:215 (Libya); Kruger, 1929:21 (Libya, as fluctuosus); Guiglia, 1932b:474 (Libya); Gussakovskij, 1933:280 (Iran); Nadig, 1933:79 (Morocco); Guiglia in Zavattari, 1934:303 (Libya); Gussakovskij, 1935:426 (Tajikistan); de Beaumont, 1936b:614 (Caucasus, Transcaspia), 1936c:8 (specimens in A. Costa collection); Rungs, 1936:24 (Morocco); nec Móczár, 1938:80 (= Tachysphex costae); Guiglia, 1939a:187 (Libya), 1940:292 (Libya), 1942:234 (summary of Libyan records); Honoré, 1942:56 (in checklist of Egyptian Sphecidae); Giner Marí, 1943:139 (in Sphecid Fauna of Spain), 1947:25 (Western Sahara); Ceballos, 1956:376 (listed from Spain); Myartseva, 1963:58 (Turkmenistan: lower Murgab River).
As Tachytes sericea: De Stefani Perez, 1886:171 (Italy: Sicilia), 1895:226 (in catalog of Sicilian Hymenoptera).
As Tachysphex simillimus (\circlearrowleft^{\star} only): Gussakovskij, 1952:235, corrected to Tachysphex erythropus by Pulawski, 1971:409.

Interpretation of the species name.- The lectotype of erythropus, a male, is poorly preserved, but the remaining straight setae on the upper mesopleuron and the characteristic crest-like, glabrous bottom of the forefemoral notch leave no doubt about the interpretation of this species.

RECOGNITION.- Tachysphex erythropus has the apical depression of sternum I intersected by a longitudinal carina (Fig. 132a), hindwing vein cu-a oblique (anal end further away from wing base than cubital end), setae straight on the head and thorax (many setae are angled apically), and male sternum III with setae markedly longer apically than basolaterally.

The female of erythropus has the pygidial plate not margined laterally, at least next to the apex, a large part of it being delineated by a row of setigerous punctures (Figs. 132d, e) in most specimens. The only other Tachysphex with a reduced lateral pygidial carina are luxuriosus and the Australian nepharius, both strikingly different.

The male of erythropus has a compressed forefemoral notch whose glabrous bottom forms a longitudinal crest, without erect setae at the notch's proximal end (Fig. 133a). The notch is similar in some sericeus in which, however, at least some setae on the head and thorax are sinuous and, in many southern African specimens, the setae are erect adjacent to notch's proximal end.

Description.- Gena unusually narrow in dorsal view. Scutal punctures less than one diameter apart or discal punctures up to about two diameters apart. Mesopleuron dull, markedly microsculptured, with shallow, ill-defined punctures. Propodeal dorsum irregularly rugose or irregularly ridged longitudinally, evenly microareolate in some small specimens, intersecting posterior surface at about right angle; propodeal side ridged but ridges anastomosed in many specimens and effaced in smallest ones; posterior surface, in dorsal third or so, with wide median impression. Hindwing jugal lobe enlarged (as in Fig. 102a), crossvein cu-a oblique (anal end further away from

Figure 132. Tachysphex erythropus (Spinola), female: a - sternum I in oblique lateral view ($\times 40$); b-apical hindtarsomere in dorsal view $(\times 69)$; $\mathrm{c}-$ same in ventral view $(\times 150)$; $\mathrm{d}-$ tergum VI in dorsal view $(\times 48)$; e - same in oblique lateral view $(\times 29)$.
wing base than cubital end). Hindcoxal dorsum with inner margin carinate basally, not carinate in some males. Sternum I with apical depression bisected by longitudinal, obtuse carina (Fig. 133a).

Setae: appressed on interocellar area; erect on postocellar area (about one midocellar diameter long); suberect to erect on each side of oral fossa next to occipital carina (length about $0.4 \times$ basal mandibular width); forecoxal and most thoracic setae straight except angled apically, but scutal

Figure 133. Tachysphex erythropus (Spinola), male: $a-$ base of forefemur $(\times 75)$; $b-$ gastral segments II - VII in lateral view ($\times 24$).
setae straight (and nearly appressed); oriented posterad (nearly erect) on propodeal dorsum, about $\times 0.4$ basal mandibular width.

Head, thorax, and gaster black, mandible red mesally. Frontal and clypeal setae silvery in female and smallest males, golden in most males. Wings hyaline; forewing costal vein light brown, subcostal vein light brown to dark brown. Color of legs: see below. Terga I-IV in female, I and II to I-IV in male, silvery fasciate apically (see Variation below for details).

ㅇ.- Labrum with well-defined notch. Clypeus: bevel convex, conspicuously shorter than basomedian area; lip almost straight, emarginate mesally but not incised laterally (median notch absent in worn specimens). Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I 1.8-2.1× apical width. Dorsal foretibial surface with two or three spines; outer surface with two or three spines. Forebasitarsus with $14-16$ rake spines (spines divided into proximal and distal groups in most specimens, or with a spine between them). Apical mid- and hindtarsomeres with one or two spines at midlength of each lateral margin (Fig. 132b), venter with a cluster of preapical spines (Fig. 132c). Apical depression of tergum V impunctate, glabrous. Pygidial plate with lateral carina absent at least apically. Length $9.0-14.0 \mathrm{~mm}$. Forefemur black except red apically in most populations but all red in some females from West Africa, mid- and hindfemora partly to all red, tibiae and tarsi red.
σ^{*}.- Inner mandibular margin with tooth and cleft. Clypeus: bevel rudimentary; free margin of lip arcuate or slightly sinuate, with well-defined corner; distance between corners $1.2-1.4 \times$ distance between corner and orbit. Width of postocellar area $0.3-0.6 \times$ length. Dorsal length of flagellomere I 1.6-2.0 \times apical length. Forefemoral notch without basal tuft of erect setae, its glabrous bottom compressed into narrow, longitudinal crest (Fig. 133a). Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Sternum II: setae no longer on apical depression than on remaining surface. Apical depressions of sterna III-VI with subappressed setae (which appear agglutinated on sternum III apicomesally); setae markedly longer than on remaining surface (Fig. 133b). Length $8.5-13.0 \mathrm{~mm}$. Volsella and penis valve as in costae (Figs. 102b, c). Femora black (except apically), tibiae and tarsi red (tibiae partly darkened in some specimens, starting with hindtibiae).

Variation.- Silvery tergal fasciae, in the male, are present on segments I-III in specimens from Europe, Asia, and North Africa, but only on terga I and II in some specimens from Egypt, and on terga I-IV in males from the other African countries (Mauritania and Senegal to Tanzania).

Geographic distribution (Fig. 134).Mediterranean Basin (north to Iberian Peninsula, Italy, Greece, Bulgaria, Cyprus, Turkey, Israel), south to Nigeria and Tanzania, also Arabian Peninsula, Azerbaijan, Transcaspia (Kazakhstan, Uzbekistan, Turkmenistan, and Tajikistan), Iran, India (Gujarat State only), and China (Tsaidam region only).

Records.- AlGERIA: Annaba (Morice, 1911, as Bône), Biskra (Morice, 1911), Tindouf (de Beaumont, 1950a). AZERBAIJAN: Gäncä (Pulawski, 1971). BULGARIA: Sandanski (4 ㅇ, $5 \delta^{\text {o }}$). BURKINA FASO: 4 km NE Dori at $14^{\circ} 03.8^{\prime} \mathrm{N}$ $0^{\circ} 03.1^{\prime} \mathrm{W}(1+\rho), 10 \mathrm{~km}$ E Dori at $14^{\circ} 0.05^{\prime} \mathrm{N} 0^{\circ} 03.2^{\prime} \mathrm{E}$ (1 ㅇ), Kompienga 20 km S Pama ($1 \circ+1$ of; 2 우, $2 \delta^{\circ}$, LEM), Pala near Bobo Dioulasso ($1 \delta^{\circ}$). CAMEROON: Moulvouday at $10^{\circ} 25^{\prime} \mathrm{N} 14^{\circ} 53^{\prime} \mathrm{E}$ ($1 \sigma^{\circ}$, FSAG). CHINA: Tsinghai: Tsaidam region: no specific locality (Radoszkowski, 1887).

Figure 134. Collecting localities of Tachysphex erythropus. CYPRUS: Ayia Napa 10 km W Capo Greco ($1 \delta^{\pi} ; 3 \delta^{\pi}$, SCHL), Cherkes (2 ㅇ, $1 \delta^{\circ}$), Famagusta ($3 \mathrm{o}^{\circ}$),
 DJIBOUTI: Obock ($1 \sigma^{\circ}$, MNHN). EGYPT (Pulawski, 1971, or as indicated): Al Fayyum: Karanis (2 \uparrow, 8
 Beaumont, 1966), Mariout (Honoré, 1942). Al Jizah (= Ghiza): Abu Rawash (1 ® $^{\circ}$), Ghiza ($1 \delta^{\circ}$), Hawamdieh (Honoré, 1942), Saqqara. Al Qahirah (= Cairo): Cairo, Helwan, Maadi (1 \&), Wadi el Tih (1 ơ, SAM), Zeitun (Morice, 1897). Al-Wadi al-Jadid: Dakhla oasis: Budhkula and Mut (1 ${ }^{\text {® }}$, ZMAN); Karkur Ekdui in Gebel 'Uweinat (border of Sudan and Libya); Siwa oasis (de Beaumont, 1950b): El Arig, Ilrhabid Nachou, Koreishid. Al-Uqsur (= Luxor): 15 km S Luxor (1 \& + , CSE). As Suways: Wadi Quiseb at $29^{\circ} 24^{\prime} 38^{\prime \prime} \mathrm{N} 32^{\circ} 2^{\prime} 40^{\prime \prime} \mathrm{E}(1+$ of, AMNH). Aswan: Kom Ombo ($2 \sigma^{\circ}$). Matruh: NW Bahariya oasis at $29^{\circ} 17^{\prime} 57^{\prime \prime} \mathrm{N} 28^{\circ} 13^{\prime} 53^{\prime \prime} \mathrm{E}(29$, AMNH),
 El Mussa (de Beaumont, 1940), Wadi Ghaib 50 km SSE Nuweiba ($1 \mathrm{o}^{\circ}$), Wadi Khreza 40 km N Sharm el Sheikh (1 0°), Wadi Watir. ETHIOPIA: no specific locality (2 o $^{\circ}$, HALLE, lectotype and paralectotype of
 Ixia (de Beaumont, 1960a). Epirus: Epirus (W. Schulz, 1904). Ionian Islands: Corfu (Pulawski, 1971). Pelopónnisos (de Beaumont, 1965): Olympia, Patras, Xylocastron, also Killini (1 \&, SCHL). Sterea Ellás (= Central Greece): Thermopylai ($\begin{aligned} & \left.\sigma^{\circ}\right) \text {. INDIA: Gujarat: Deesa (} 1 \delta^{\circ}, \text { BMNH, lectotype of inventus). IRAN }\end{aligned}$ (Pulawski, 1971): Baluchestan va Sistan: Hurmuk. Kerman: Bazman. Khorasan: no specific locality. ISRAEL (de Beaumont, Bytinski-Salz, and Pulawski, 1973, or as indicated): Ashkelon, 8 km NNE Ashkelon (1 ㅇ, CSE), Beeri, Beersheba, Bir Rehme $=$ Kfar Yeroham (1 ${ }^{*}$), Bne Brak, Elat, En Gedi on Dead Sea ($1 \mathrm{~d}^{\star}$), En Hazeva 35 km S Dead Sea, Jericho, Jerusalem, Masada, Mezad Aqrabbim 45 km SE Beersheba (3 9 , CSE), Nir Am, Pardes Hanna, Ramat Gan 5 km E Tel Aviv, Ruhama, Shibolim, Tel Aviv, Tiberias, Wadi el Kelt near Jericho (Balthasar, 1954), Wadi Quilt. ITALY: Lazio: Sasso Furbara (Pagliano, 1990). Sicilia: Isola di Pantelleria (Gayubo and Borsato, 1994; Pagliano and Scaramozzino, 1995). IVORY COAST: Bouaké: Foro-
 Aktöbe: Malyie Barsuky sands (P), Saralzhin (K), Uil (K, P). Almaty: 20 km N Aidarly village in Sarytaukum Desert at about $44.5^{\circ} \mathrm{N} 76^{\circ} \mathrm{E}(\mathrm{K}), 15 \mathrm{~km}$ E Ayak-Kalkan on Ili River at about $44^{\circ} \mathrm{N} 78.5^{\circ} \mathrm{E}(\mathrm{K}), 17 \mathrm{~km} \mathrm{NW}$ and 65 km W Bakanas (K), Chilik (K), $30-60 \mathrm{~km}$ E Chilik (K), $20-25 \mathrm{~km}$ SE Chingil' dy at about $44^{\circ} \mathrm{N} 77.5^{\circ} \mathrm{E}$ (K), Ili 70 km NNE Almaty (P), Kapchagai (K), 20 km NW Kapchagai (K), Kaskelen River 50 km N Almaty ($1 \circ+1 \mathrm{o}^{\circ}$), 5 km SW Kazakhstan village on Kurty River at about $44.5^{\circ} \mathrm{N} 76.5^{\circ}$ E. Qostanay: Zhalanash (K), 35 km NW Zhalanash (K). Qyzylorda: 5-8 km S Akespe $=80 \mathrm{~km}$ W Aral'sk at about $47^{\circ} \mathrm{N} 60.5^{\circ} \mathrm{E}(\mathrm{K}), 6 \mathrm{~km}$ W Amanotkel' village at about $46^{\circ} \mathrm{N} 61.5^{\circ} \mathrm{E}(\mathrm{K}), 10 \mathrm{~km} \mathrm{NW}$ and 15 km SE Aral'sk (K), Chokusu railroad sta-
tion 30 km NW Saksaul'skiy (K), Dzhulek = Chiili (P), Dzhusaly village at about $45.5^{\circ} \mathrm{N} 64^{\circ} \mathrm{E}(\mathrm{K}), 3 \mathrm{~km} \mathrm{NW}$ Kamyshlybash (K), 30 km WSW Kamyshlybash ($1 \stackrel{\circ}{ } 15 \mathrm{~km} \mathrm{~S}$ and 23 SW Kazalinsk (K), 14 km SE Saksaul'skiy (K), 3 and 20 km S Yany-Kurgan (K). South Kazakhstan: 5-8 km SW Chardara (K). Zhambyl: $50-70 \mathrm{~km}$ NW Furmanovka. Location unknown: Diirmentobe on Syr Darya River ($1 \mathrm{o}^{\star}$). KENYA: Coast Province: Kitani Lodge in Tsavo West National Park ($3 \sigma^{*}$, USNM), Taita Discovery Centre ($1 \circ$) , Voi (l°),
 5 km NNE Isiolo (1 아). Rift Valley Province: Archer's Post on Ewaso Ng'iro River (1 of,

 PMA), Olorgesailie (2 or $^{\text {r }}$). LIBYA (de Beaumont, 1960b, or as indicated): Es Sahabi (Guiglia, 1932). AlKufrah oasis (Guiglia, 1931): Al-Kufrah. Cyrenaica: Apollonia, Barce, Brèga 40 km E El Agheila, 20 km E El Agheila, El Hag (Guiglia, 1940), Es Shegga (Kruger, 1929), Gebel Awenal (o^{7}, MILANO, determined fluctuatus by D. Guiglia), Jalu (Guiglia, 1932, as Gialo), Jarabub (Kruger, 1929), Latrun, Ras el Hilal, Tmimi, Wadi Derna, Wadi El Mra. Fezzan (Guiglia, 1939a): Al Barkat, Gat, Tunin. Tripolitania: Bir el Hamra 50 km SW Mizda (de Beaumont, 1956a), Corradini (de Beaumont, 1956a), Garian (de Beaumont, 1956a), Tauorga = Tavorga, Wadi Kaam (Grandi, 1957). MALI: Anefis = Anevis (1 \& , KMG), 30 km S Ansongo ($1 \delta^{\circ}, \mathrm{KMG}$), Kuorouma (1 \&). MAURITANIA: Nouakchott ($1 \mathrm{o}^{\circ}, \mathrm{FB}$), Tayart 7 km W Atar ($1 \delta^{\circ}$), Toungat ($10^{\circ}, \mathrm{FB}$), $19^{\circ} 30^{\prime} \mathrm{N} 14^{\circ} 30^{\prime} \mathrm{W}\left(1 \sigma^{\circ}, \mathrm{KMG}\right)$. MOROCCO (Pulawski, 1971, or as indicated): El Kelaa des M’Gouna on southern slope of Grand Atlas (Rungs, 1936), Imiter (de Beaumont, 1955), Maader Telmaout, Marrakech, Meknès ($2 \mathrm{a}^{\circ}$), Melilla, Tahar Souk. NIGER: Diffa Region: 54 km NE Diffa at $13^{\circ} 42.3^{\mathrm{\prime}} \mathrm{~N}$ $12^{\circ} 55.8^{\prime} \mathrm{E}\left(1 \mathrm{~d}^{\circ}\right), 71 \mathrm{~km}$ NE Diffa at $13^{\circ} 53.0^{\prime} \mathrm{N} 12^{\circ} 56.3^{\prime} \mathrm{E}\left(1 \mathrm{~d}^{\circ}\right), 20 \mathrm{~km}$ SW Diffa at $13^{\circ} 13.1^{\prime} \mathrm{N} 12^{\circ} 25.9^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$). NIGERIA: Azare in southeastern Kano ($4 \delta^{\circ}$, BMNH), Zaria between Maigana and Soba ($1 \delta^{{ }^{7}}$, USNM).
 Nizwa at $20^{\circ} 43.3^{\prime} \mathrm{N} 57^{\circ} 04.4^{\prime} \mathrm{E}\left(30^{\circ} ; 2 \sigma^{\circ}\right.$, NHMO), Wadi Ghul near Nizwa $22^{\circ} 53.0^{\prime} \mathrm{N} 57^{\circ} 31.2^{\prime} \mathrm{E}(1 \quad$ of), Wadi Mahram in Sumait Wilayat (20°, OHL), Wadi Qitbit at $19^{\circ} 09.4^{\prime} \mathrm{N} 54^{\circ} 30.5^{\prime} \mathrm{E}\left(1 \sigma^{\circ}\right)$, Wahiba Sands 11 km S Al Qabil at $22^{\circ} 31.0^{\prime} \mathrm{N} 58^{\circ} 41.2$ E (1°) . Dhofar: Wadi Bihr ($1^{\circ}+$, KMG). PORTUGAL (de Andrade, 1949, or as indicated): Cascais: Boca do Inferno, Lisboa: Benfica, Pegões (Diniz, 1964; Gayubo, 1984b), Pulo do Lobo 20 km N Mertola at $37^{\circ} 49^{\prime} \mathrm{N} 7^{\circ} 38^{\prime} \mathrm{W}\left(10^{\circ}\right.$, CSE), Setubal (10°), Trafaria, Vale de Gaio. SAUDI ARABIA: El
 Bayakh 48 km E Dakar ($1 \mathrm{o}^{\circ} ; 1 \mathrm{o}^{\boldsymbol{\prime}}$, MSNT), Gulf of Bandiala ca $13^{\circ} 38^{\prime} \mathrm{N} 16^{\circ} 38^{\prime} \mathrm{W}\left(20^{*} ; 1 \circ+2 \delta^{\circ}\right.$, KMG), Kaffrine (3 σ^{*}), Ndangane 45 air km SE Mbour (100°, FB), Richard Toll ($1 \quad \circ$), 5 km SW Thiès ($1 \delta^{\circ}$, MSNT), Toubacouta ($1 \sigma^{\circ}, \mathrm{FB}$), Zinguinchor ($1 \sigma^{\circ}$, MSNT). SOMALIA: Berbera ($1 \sigma^{\circ}$, ANSP). SPAIN (Gayubo and Mingo, 1988, or as indicated): Alicante: Alicante, Benidorm (1 \& $1 \delta^{\text {® }}$), Guardamar del Segura, Muchamiel, San Vicente del Raspeig. Almería Almería (Pulawski, 1971), Gérgal (1 ${ }^{\text {® }}$), Mojacar (Pulawski, 1971). Caceres: Guadalupe (Pulawski, 1971). Cadiz: Jerez de la Frontera (3 ơ). Castellón: Vall d’Almonacid (Asís and Jiménez, 1988). Ciudad Real (Gayubo, 1987): Pozuelos, Robledo, Valenzuela de Calatrava. Granada: Ronda (Pulawski, 1971). Huelva: Punta Umbria (Pulawski, 1971). Huesca: Monzon (1 or). Jaen: Las Correderas (1 \AA°). Madrid: Madrid (1 \&), Montarco, Ribas de Jarama. Málaga: Ronda (Pulawski, 1971). Mallorca: Palma (Pulawski, 1971). Murcia: Aguilas. Teruel: Oliete (Dusmet, 1915). Valencia: Barranco de Carraixet (Tormos and Jiménez, 1987a), Cañada, Moncada, and Serra (Gayubo and Tormos, 1984), Torrente. SUDAN: Khartum (1 ㅇ, KMG; 1 ơ, ZMAN), Khor Arbaat Delta ($1 \mathrm{ơ}^{\circ}, \mathrm{BMNH}$), Khor Langhebb between Sauakin and Kassala (Magretti, 1884), Khor Menize (1 ㅇ, BMNH), Wadi Medani (1 ㅇ, BMNH). TAJIKISTAN: Ayvaj in mouth of Kafirnigan River ($1 \oplus, 1{ }^{\circ}$) , Kulab (Gussakovskij, 1935), Tigrovaya Balka Nature Reserve (Nazarova, 1998). TANZANIA: Iringa Region: 75 km ENE Iringa (1 ㅇ). Morogoro Region: 48 km W Morogoro ($1 \delta^{\circ}$). Tanga Region: 73 km NW Korogwe ($1 \sigma^{\circ}$), 2 km NE Mkomazi ($1 \sigma^{\circ}$). TUNISIA: Kebili (1 ㅇ, SCHL), Tabarka ($2 \sigma^{\circ}$, CSE). TURKEY: Aydin: Ortaklar (Pulawski, 1971). Içel: Silifke ($1 \sigma^{\boldsymbol{7}}$, OÖLM).
 Kyuma (Myartseva, 1972a), Akibay (Myartseva, 1965), Askhabad, Bayram-Ali, Djebel near Nebit-Dagh, Farab, Ghyaurs, Hoja 12 km from Ghyaurs (1 \& , 2 ® $^{\circ}$), 15 km S Iskander station, Kara-Kala, lower Murgab River valley (Myartseva, 1963, 1972a), Repetek, Sary-Chop 180 km S Mary. UNITED ARAB EMIRATES: Abu Dhabi (1 \& , KMG), Dubai: Awir (1 of UCD). UZBEKISTAN (Pulawski, 1971, or as indicated): Baysuntau Range foothills (Islamov, 1986), Durman-kul near Samarkand ($\mathrm{o}^{\text {º }}$, ZMMU, lectotype of maracan-
dicus), Khiva, Samarkand, Sidjak village in Ugam Range (Islamov, 1986), Tashkent (including Krasnaya Voda and Mayskoye), Yargak near Khatyrchi (30 km WNW Katta Kurgan). YEMEN: Lahj (1 ㅇ, RMNH).

Tachysphex erythrurus Pulawski, sp. nov.

Figures 127, 135.
Derivation of name.- Erythrurus, a combination of the Greek words erythros, red, and oura, tail. With reference to the red gastral apex of this species.

RECOGNITION.- Tachysphex erythrurus has the gaster black basally and contrastingly reddish apically (two segments reddish in the female and three or four in the male) and at least basal flagellomeres reddish brown or yellowish brown (all or only ventrally). This color pattern is not found elsewhere in the genus. The species is further characterized by well-defined mesopleural punctures (minute in many specimens) and unsculptured, shiny interspaces, red tibiae, and also by the setae erect on the postocellar area (Figs. 135a, b) and scutum, erect or suberect on the midfemoral venter, and oriented obliquely anterad on the propodeal dorsum. In the female, the middle clypeal section is almost flat, the bevel is ill defined, not contrasting with the basomedian area, and the tarsi are unspecialized (length of midtarsomere II more than twice length, tarsomeres IV longer than wide apically, tarsomeres V without spines on the venter or lateral margins). In the male, flagellomere I is unusually short, with the ventral margin about as long as apical width in some specimens.

The female of erythrurus resembles omoi, but differs by the color pattern described above, lack of a well-defined clypeal bevel, and shorter setae of the midfemoral venter (length about two-thirds of midocellar diameter rather than one diameter).

Description.- Scutal punctures well defined, several diameters apart on disk, interspaces unsculptured, shiny. Mesopleural punctures well defined (minute in female and many males), several diameters apart, interspaces unsculptured, shiny. Episternal sulcus complete or incomplete. Propodeal dorsum ridged; side ridged. Hindcoxal dorsum with inner margin carinate, carina slightly expanded basally.

Setae nearly erect on each side of oral fossa next to occipital carina, about $0.4 \times$ basal mandibular width; erect on postocellar area (Figs. 135a, b), about $0.4-0.6 \times$ basal mandibular width; erect on scutum; suberect to nearly erect, about 0.7 of midocellar diameter long on midfemoral venter; inclined obliquely anterad on propodeal dorsum.

Head and thorax black, mandible yellowish red except basally and apically; palpi pale yellow in specimen from Tana River, Kenya; scape, pedicel, flagellomeres I and II, and at least venter of flagellomere III reddish brown in most specimens (only venters of flagellomeres I and II reddish brown in a male from Marich Pass, Kenya); antenna yellowish brown in specimen from Tana River except flagellomeres III-XI darkened dorsally. Frontal and clypeal setae golden in both sexes except silvery in single male from Tana River; frontal setae sparse in female. Wing membrane slightly infumate; costal vein of forewing brown, subcostal vein black (pale yellow and brown, respectively, in specimen from Tana River). Femora varying from all red to all black (femoral apex red); tibiae and tarsi red. Gastral base black (segments I-III in some males, I-IV in female and other males), remainder red; also sternum III red in specimen from Tana River. Terga I-IV silvery fasciate apically, but fasciae interrupted mesally.

ㅇ.- Clypeus (Fig. 135c): middle section nearly flat, bevel ill defined; lip free margin arcuate, not incised laterally. Width of postocellar area 1.9-2.0 \times length. Dorsal length of flagellomere I $2.2-2.5 \times$ apical width. Forefemoral venter with numerous, minute punctures that are several diameters apart. Dorsal foretibial surface with a few fine bristles; outer surface with one spine. Forebasitarsus with 4-6 rake spines. Apical depression of tergum V asetose or with a few, isolated setae. Pygidial plate aciculate, impunctate. Length 6.1-7.4 mm.

Figure 135. Tachysphex erythrurus Pulawski, sp. nov.: a - female head; b - male head; c - female clypeus and mandible; d - male clypeus and mandible; e - volsella; f - penis valve.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 135d): bevel shorter than basomedian area; lip free margin arcuate or sinuate, with well-defined corner; distance between corners equal to distance between corner and orbit. Width of postocellar area 2.2-2.8 \times length. Dorsal length of flagellomere I $1.2 \times$ apical width, ventral length equal to apical width in some specimens. Length of flagellomere III about 0.8 of IV. Forefemoral notch with bottom glabrous. Outer margin of forebasitarsus with 2-4 rake spines; outer apical spine of foretarsomere II as long as or slightly shorter than tarsomere III. Sterna IV-VI in some specimens largely impunc-
tate and glabrous. Sternum VIII, in some specimens, with inconspicuous tooth in middle of apical emargination. Length $4.5-6.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 135e, f.
nest and Prey.- Maureen H. Bourbin noticed a female entering an open nest 73 km NW Korogwe on 27 June 2001. The nest was established in a hard-packed sandy soil, without vegetation, on a slightly inclined edge of a small seasonal stream, completely dry by then. The female was not carrying any prey. The nest, approximately 1.5 cm long, was a horizontal gallery that ended in a single cell. Three fully paralyzed prey were found inside, young instar acridid nymphs.

Geographic distribution (Fig. 127).— Kenya, Tanzania.
Records.- Holotype: ${ }^{\circ}$, KENYA: Rift Valley Province: Marich Pass Field Studies Centre, 9-13 July 1999, J.S. Schweikert and WJP (CAS). Paratypes: KENYA: Coast Province: Taita Discovery Centre, 29 May 2000 and 9 Sept 2001, Edwin Selempo (2 $\%$). Eastern Province: near Ewaso Ng'iro River opposite Archer's Post, 2-8 Dec 2002, M.A. Prentice (1 \&); 94 km E Thika, 5 July 1999, J.S. Schweikert and WJP ($1 \delta^{\text {® }}$). Rift Valley Province: Marich Pass Field Studies Centre, J.S. Schweikert and WJP, 9-13 July 1999 ($1 \delta^{\circ}$), 25-29 July $1999\left(\begin{array}{c}\text { o }\end{array}\right)$; same locality, V.F. Lee and WJP, 11-12 May $2000\left(1 \delta^{\top}\right), 14-17$ May 2000 (8 8); same locality, 26-27 Nov 2002, M.A. Prentice (1 \&). Province unknown (probably Eastern or Coast): River Tana, 20-22 July 1983, Collins and Ritchie (1 ơ, BMNH). TANZANIA: Tanga Region: 73 km NW Korogwe, 27 June 2001, M.H. Bourbin and WJP (1 \&); same locality, Omary S. Haji and WJP, 18 July 2001 (2 + , 1 ơ $^{\text {o }}$), 19-20 July 2001 ($2 \sigma^{\circ}$).

Tachysphex eurystoma Pulawski, sp. nov.

Figures 136, 137.
Derivation of name.- Eurystoma, a combination of the Greek words eurys, short, and stoma, a mouth; with reference to the broad clypeus, one of this species' distinguishing characters.

RECOGNITION.- The female of eurystoma can be recognized by the combination of the short tarsi (e.g., length of foretarsomere II and of midtarsomere III about equal to apical width) and an unusually broad clypeus (distance between lip corners $1.6 \times$ clypeal midlength, Fig. 136a). Subsidiary recognition features are: apical forebasitarsal margin emarginate (as in Fig. 54d), forebasitarsus with seven or eight rake spines (of which only the apical two have the sockets nearly contiguous), labrum with arcuate free margin, galea shorter than wide in profile, and pygidial plate densely punctate (most punctures less than one diameter apart). Females of barkeri and brachypus have a similar forebasitarsus and pygidial plate, but their clypeus is narrower (distance between lip corners $1.1-1.3 \times$ clypeal midlength), the free margin of the labrum is obtusely pointed, and the galea is longer than wide in profile, mostly with a concave lateral surface.

The male of eurystoma resembles barkeri and brachypus in its unusual antennal proportions: the ventral margin of flagellomere I is slightly shorter than the apical margin, and flagellomere II is moderately elongate (dorsal length $1.2 \times$ that of flagellomere I). Also, the midtarsus is slightly shortened (length of tarsomeres II and III 1.5-1.6 and $1.2 \times$ apical width, respectively). In eurystoma, however, the clypeal lobe is broader (distance between lip corners $1.3 \times$ clypeal midline, while about equal to midline in the other two), the galea is shorter than wide in profile (longer than wide), the forebasitarsus has two or three preapical rake spines (no spines or one such spine present), and the propodeal side is not ridged (also unridged in brachypus, but at least finely ridged in barkeri).

Description.- Scutal punctures small but well defined, averaging about 1-2 diameters apart in female, about one diameter in male; interspaces microsculptured. Mesopleural punctures averaging about two diameters at center; interspaces microsculptured, dull. Propodeal dorsum evenly microareolate; side dull, evenly microsculptured or shallowly punctate. Hindcoxal dorsum with inner margin carinate basally.

Figure 136. Tachysphex eurystoma Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d - penis valve.

Setae erect on postocellar area and on each side of oral fossa next to occipital carina, about one midocellar diameter long; appressed on scutum; slightly, uniformly inclined posterad on propodeal dorsum; up to about one midocellar diameter on midfemoral venter.

Head, thorax, gaster, and legs black (including mandible), tarsal apex brown in male. Frontal setae silvery in both sexes. Wing membrane slightly infumate; forewing costal and subcostal veins brown. Terga I-III silvery fasciate apically.

ㅇ. Labrum flat, free margin arcuate or shallowly emarginate mesally. Clypeus (Fig. 136a): lobe markedly broad (distance between lip corners about $1.6 \times$ clypeal midlength); bevel slightly impressed, about as long as basomedian area; lip nearly straight mesally, with two well-defined lateral incisions on each side. Width of postocellar area 1.3-1.4 \times length. Dorsal length of flagellomere I $1.4 \times$ apical width. Foretibial dorsal surface and outer surface with a few, thin bristles; punctures of outer side on left leg averaging 2-3 diameters apart in one specimen. Tarsi short: length of fore- and midtarsomeres II about 1.1 and $1.3 \times$ apical width, respectively; that of midtarsomere III equal to 0.9 of apical width; of fore-, mid-, and hindtarsomeres IV about $0.8,0.8$, and $0.9 \times$ apical width, respectively. Forebasitarsus: apical margin with angulate emargination (as in Fig. 54d); outer margin with seven or eight rake spines (of which only apical two have their basal sockets subcontiguous); apical spines equal to basitarsus width. Apical tarsomeres stout, with one or two preapical spines on venter; lateral margins with one small spine near midlength (spine lacking on one or both sides in one specimen examined). Apical depression of tergum V punctate throughout except narrowly impunctate apicomesally. Pygidial plate narrow, slightly emarginate apically, surface with
numerous punctures, both large and small, many of which are less than one diameter apart (as in Fig. 54e). Length 9.3-9.6 mm.
0^{7}.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 136b): bevel shorter than basomedian area; free margin of lip almost straight mesally, with well-defined corner; distance between corners $1.3 \times$ distance between corner and orbit. Width of postocellar area 1.2-1.3 \times length. Dorsal length of flagellomere I $1.3 \times$ apical width, ventral margin shorter than apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with three or four rake spines; outer apical spine of foretarsomere II shorter than tarsomere III. Length of midtarsomere II $1.5-1.6 \times$ apical width, that of midtarsomere III $1.2 \times$ apical width. Venter of apical tarsomeres with preapical spine (spine may be inconspicuous on some legs). Apical margin of sternum VIII at most slightly tridentate (median tooth, if present, markedly smaller than each of the lateral prongs). Length 7.5-8.2 mm . Volsella and penis valve: Figs. 136c, d.

Geographic distribution (Fig. 137).Eastern South Africa.

Records.- Holotype: ${ }^{\circ}$, SOUTH AFRICA: Kwazulu-Natal: Weenen, Feb 1925, H.P. Thomasset (BMNH). Paratypes: SOUTH AFRICA: Kwazulu-Natal: Royal Natal National Park, H.K. and M. Townes, 25 Jan 1971 (20°, AEI, CAS),

Figure 137. Collecting localities of Tachysphex eurystoma and excavatus. 29 Jan 1971 ($1 \mathrm{o}^{\circ}$, AEI). Mpumalanga: Bourkes Luck at $24^{\circ} 40^{\prime} \mathrm{S} 30^{\circ} 48^{\prime} \mathrm{E}$, 28 Feb 1986, CDE ($1+9 ; 1$ \& , $1 \mathrm{o}^{\circ}$, PPRI); Mac Mac Falls 10 km N Sabie at $25^{\circ} 02^{\prime} \mathrm{S} 30^{\circ} 48^{\prime} \mathrm{E}$, 27 Feb 1986, CDE ($1 \mathrm{o}^{\circ}$, PPRI).

Tachysphex excavatus Pulawski, sp. nov.

Figures 137-140.
Derivation of name.- Excavatus, Latin for excavated; with reference to the deeply emarginate male forefemoral notch.

Recognition.- Tachysphex excavatus, a West African species, has a convex labrum (protruding beyond the clypeal free margin) and an elongate galea (length equal to $0.7-0.8$ of scape). It is further characterized by a densely punctate scutum (punctures inconspicuous, about one diameter apart), propodeal side uniformly microsculptured, the setae adjacent to the hypostomal carina straight and no longer than a midocellar diameter, appressed on the postocellar area and scutum, and oriented posterad on the propodeal dorsum apicomesally.

The female of excavatus closely resembles incertus and dissimulatus in having a laterally incised clypeal lip (Fig. 138a), an unsculptured apical depression of tergum V, and a setose outer foretibial surface. The females of the three species can be essentially identified by their different geographic ranges and association with the topotypical males. In excavatus, the propodeal side is unridged and the pygidial plate is narrow, whereas in some but not all incertus the propodeal side is ridged along the dorsal and posterior margins and the pygidial plate is broad (Fig. 192c). The two species may overlap in southern Sahara, but are largely separated geographically: excavatus occurs from Mauritania to Niger and Togo, whereas incertus range from the Mediterranean coast to southern Sahara (in addition to parts of Europe and Asia). I have not found any morphological difference

Figure 138. Tachysphex excavatus Pulawski, sp. nov.: a - female clypeus and mandible ($\times 38$); b - male clypeus and mandible $(\times 90)$; c - base of male forefemur showing notch, anterior surface $(\times 120)$; $\mathrm{d}-\mathrm{base}$ of male forefemur showing notch, posterior surface $(\times 120)$; e - surface of forefemoral notch in oblique view $(\times 600)$; $f-$ surface of forefemoral notch in flat view at a higher magnification, notice small pores on the surface $(\times 3000)$.
between the females of excavatus and dissimulatus, which occurs in Zimbabwe, Botswana, Namibia, and South Africa.

The male has a unique, microscopically areolate bottom of the forefemoral notch (Figs. 138e, f), appearing uniformly mat under lower magnifications. Most males have the forefemoral notch
longer and deeper than average for the genus (Figs. 138c, d), but almost the usual size in some small specimens. A shallowly emarginate sternum VIII, broadly prominent mesally (Fig. 139), is also distinctive.

Description.- Labrum convex, markedly protruding beyond clypeal free margin. Galea densely, minutely punctate (except anteriorly), as long as 0.7 of scape in female, as 0.8 in male. Scutal punctures shallow, inconspicuous, about one diameter apart. Mesopleuron dull, evenly microsculptured. Propodeal dorsum and side evenly microareolate, posterior surface with inconspicuous ridges or not ridged. Hindcoxal dorsum with inner margin carinate basally or not carinate.

Setae appressed on postocellar area and scutum, nearly appressed and shorter than midocellar diameter on each side of oral fossa next to occipital carina, partly obscuring mesopleural integument in female, not obscuring in male, oriented toward midline on propodeal dorsum (obliquely anterad near base, obliquely posterad near apex) except oriented exactly posterad apicomesally.

Head black, mandible reddish except black in apical third (also basally in male), clypeal bevel red in many females. Setae golden on frons in female, silvery or golden in male; also scutal and scutellar setae golden in female. Thorax black in most specimens, but largely red in some females from Burkina Faso. Wing membrane slightly infumate to nearly hyaline; costal vein of forewing yellowish, subcostal vein dark brown. Color of legs and gaster: see below. Terga I-IV in female, I-III in male, silvery fasciate apically.
¢.- Clypeus (Fig. 138a): bevel longer than basomedian area; lip free margin arcuate, emarginate mesally, incised laterally. Width of postocellar area about $1.1 \times$ length. Dorsal length of flagellomere I 2.6-2.8× apical width. Dorsal foretibial surface with one to three spines; outer surface with one to four spines. Forebasitarsus with 6-8 rake spines; foretarsomere II slightly elongate (length 2.0-2.2 maximum width). Apical spines of hindtarsomere IV reaching claw bases. Apical depression of tergum V unsculptured, glabrous. Pygidial plate with punctures averaging many diameters apart, unsculptured between punctures, apex truncate or nearly so. Length $9.1-10.4 \mathrm{~mm}$. Femora varying from all red to largely black (red are: forefemoral apex, midfemoral venter and apex, hindfemoral outer side and venter except basally). Tibiae red. Tarsi red to largely darkened. Gastral segments I-III red, remainder black, all red in some specimens from Burkina Faso.
σ^{\top}.- Mandible: trimmal carina with tooth, mostly with cleft, but cleft absent in some specimens. Clypeus (Fig. 138b): bevel as long as basomedian area or longer; lip free margin arcuate, with well-defined, somewhat prominent corner; distance between corners $1.3-1.5 \times$ distance between corner and orbit. Width of postocellar area 1.2-1.4 \times length. Dorsal length of flagellomere I 1.5-1.8 \times apical width. Forefemoral notch deeper and longer than average for the genus (Figs. $138 \mathrm{c}, \mathrm{d}$), but shallow in one small specimen (length 5.7 mm) from Nouakchott area, Mauritania; notch bottom microscopically areolate, sparsely setose and also with sparse pores (Figs. 138e, f). Outer margin of forebasitarsus with $1-5$ rake spines, i.e., without preapical spines in some small specimens; outer apical spine of foretarsomere II as long as tarsomere III or longer. Hindmargin of sternum VIII shallowly emarginate, broadly prominent mesally (Fig. 139). Length $5.3-7.6 \mathrm{~mm}$. Volsella and penis valve: Fig. 140. Femora black except apically (forefemoral anterior surface red in some specimens from Burkina Faso). Foretibia largely black (reddish near base and on outer surface); midtibia all red to black except reddish basally and apically; hindtibia black except reddish basally. Tarsi black to red. Gaster black in most specimens, but terga I and II reddish in some.

Geographic distribution (Fig. 137).- Mauritania to Niger and Togo.
Records.- Holotype: ${ }^{3}$, SENEGAL: Ndangane 45 air km SE Mbour, 26 July 1991, WJP (CAS). PARATYPES: BURKINA FASO: 30 km SE Dori at $13^{\circ} 50.3^{\prime} \mathrm{N} 0^{\circ} 08.0^{\prime} \mathrm{E}, 30$ July 2004, Sidiki Konaté and WJP (1 \circ) ; 1 km NE Gorom Gorom at $14^{\circ} 27.3^{\prime} \mathrm{N} 0^{\circ} 13.1^{\prime} \mathrm{W}$, 29 July 2004, Sidiki Konaté and WJP (1 \uparrow); 15 km SE Gorom Gorom, 28 July 2004, Sidiki Konaté and WJP (1 \&) ; 46 km S Kaya at $12^{\circ} 43.4^{\prime} \mathrm{N} 1^{\circ} 10.6^{\prime}$ W, 19 July

Figure 139. Tachysphex excavatus Pulawski, sp. nov.: male sternum VIII.

Figure 140. Tachysphex excavatus Pulawski, sp. nov.: volsella and penis valve.

2004, Sidiki Konaté and WJP (1 ㅇ); Kompienga 20 km S Pama, 1-16 June 1988, Sanborne, Landry, and Tou (1 ㅇ, 1 o $^{\top} ; 7$ 우, 3 ón *, LEM); 4 km NW Ouahigouya at $13^{\circ} 37.0^{\prime} \mathrm{N} 2^{\circ} 27.6^{\prime} \mathrm{W}, 6-7$ Aug 2004, Sidiki Konaté and WJP ($1+\frac{+}{4}, 10^{\star}$); 23 km NW Ouahigouya at $13^{\circ} 43.1^{\prime} \mathrm{N} 2^{\circ} 35.3^{\prime} \mathrm{W}, 9$ July 2004, WJP and M.H. Bourbin (1 아). MALI: Aguelhok, 26 Sept 1976, G. Popov ($1+$ KMG); 40 km W Douentza, 19 Aug 1991, WJP (1 or); Gao, 29 Sept 1976, K.M. Guichard (2 \uparrow, KMG); Hombori, 12 Aug 1991, MS (1 ${ }^{\circ}$, MS); 10 km E Mopti, 7 Aug
 1991, MS (1 ㅇ, MS); 40 km W Mopti, 8 Aug 1991, MS (2 우, MS); 45 km W Mopti, 9 Aug 1991, WJP (1 ㅇ, 3 or *); Ouatagouna, 7 Oct 1976, K.M. Guichard (1 ㅇ, KMG); 60 km NE San, 6 Aug 1991, WJP (1 ơ), 8 Aug 1991, MS (ơ $^{*}, ~ M S$); 5 km S San, 3 Aug 1991, MS (1 ㄱ, MS); 20 km SW San, 22 Aug 1991, WJP (1 ㅇ)); 40 km SE Ségou, 2 Aug 1991, MS (2 우, MS). MAURITANIA: Lake Aleg 30 km W Aleg, 28 Oct 1993, AM
 12 km ENE Nguigmi at $14^{\circ} 18.9^{\prime} \mathrm{N} 13^{\circ} 13.2^{\prime} \mathrm{E}$, 27 Aug 2005, WJP ($1 \mathrm{o}^{\star}$). Niamey Region: 8 km NW Niamey at $13^{\circ} 35.8^{\prime} \mathrm{N} 1^{\circ} 59.9^{\prime} \mathrm{E}, 3$ Aug 2005, WJP (1 \&) . Tillabéri Region: Malalé 10 km E Niamey at $13^{\circ} 27.1^{\prime} \mathrm{N}$ $2^{\circ} 10.4^{\prime} \mathrm{E}, 4$ Aug 2005, WJP (2 +) ; Tintatadat 10 km S Ayrou, 22 July 1978, R.A. Cheka (1 + , BMNH). SENEGAL: Bayakh 48 km E Dakar, 7 July 1991, WJP (1 ơ); Ndangane 45 air km SE Mbour, 26 July 1991, AM
 $5 \delta^{\star}$), 17 July 1991, WJP ($1 \mathrm{o}^{\star}$); 5 km SW Thiès, 8 July 1991, WJP ($1 \delta^{*}$), 18 July 1991, AM ($1 \sigma^{\star}$, MSNT), WJP (1 \&) . TOGO: 12 km S Sokodé, 21 Feb 1991, WJP (3 ${ }^{\circ}$).

Tachysphex excisus Arnold

Figures 141-144.
Tachysphex dimidiatus de Saussure, 1892:483, ơ, junior secondary homonym of Tachysphex dimidiatus (Panzer, 1809), which is a junior synonym of Tachysphex pompiliformis (Panzer, 1805). Holotype: ơ, Madagascar: Toamasina Province: Anosibe (MHNG), examined. Tentatively synonymized with Tachysphex excisus by Menke in Bohart and Menke, 1976:273.- Leclercq, 1960:98 (Madagascar), 1961:111 (Madagascar).
Tachysphex dimidiatus var. excisus Arnold, 1945:104, ㅇ, ơ . Lectotype: ơ , Madagascar: Bekily (MNHN), here designated, examined.- Leclercq, 1960:198 (Madagascar).- As Tachysphex excisus: Menke in Bohart and Menke, 1976:273 (new status); Leclercq, 1990:117 (Madagascar); Pulawski, 2003:798 (in checklist of Malagasy Sphecidae).

Recognition.- Tachysphex excisus is the only Madagascan species with elongate mouth-
parts: the labrum convex and protruding from beneath the clypeus and the galea longer than wide in lateral view (Figs. 141a, b). The female differs from other such species by the combination of an all red gaster, uniformly microareolate propodeal dorsum and side, and the setae of the propodeal dorsum diverging anterolaterad on the median zone and oriented laterad next to the lateral maragin. The male is easily recognized by a conspicuous, setal fringe on each sternum V and VI, the fringes being markedly longer laterally than mesally (Figs. 141d-f). Similar fringes found in certain species of continental Africa (e.g., aethiopicus and pentheri) are about as long laterally as mesally. A subsidiary recognition feature, in the male, is the shape of the tooth on the trimmal carina (Fig. 141b).

Description (see also Dimorphic Males below).— Labrum convex, markedly protruding from beneath clypeus. Galea with minute punctures that are several diameters apart (interspaces unsculptured), as long as 0.8 of scape. Scutum minutely, uniformly punctate, with linear interspaces. Mesopleuron uniformly microareolate (Fig. 141c), as are propodeal dorsum and side (side minutely ridged near anterior margin in some specimens); transverse ridges of propodeal posterior surface evanescent in some specimens; upper metapleural pit oblong. Hindcoxal dorsum with inner margin not carinate.

Setae appressed on postocellar area and scutum; erect, about $0.3 \times$ basal mandibular width on each side of oral fossa next to occipital carina; on propodeal dorsum diverging anterolaterad on median zone and oriented laterad next to lateral margin.

Head and thorax black, mandible yellowish red (except apically). Frontal setae silvery in females and most males, golden or with golden tinge in some males. Wing membrane almost hyaline to slightly infumate; forewing costal vein brown, subcostal vein dark brown. Femora: see Dimorphic Males below. Tibiae varying from mostly black (foretibial inner surface and hindtibial dorsum red) to all red. Tarsi black basally (apex reddish) to all red. Gaster mostly red, but segments IV-VIII brown in some males. Terga I-III silvery fasciate apically.

ㅇ.- Clypeus (Fig. 141a): bevel about as long as basomedian area; lip free margin arcuate, emarginate mesally, incised laterally. Width of postocellar area $0.7-0.9 \times$ length. Dorsal length of flagellomere I 2.2-2.6× apical width. Dorsal foretibial surface with two spines; outer surface with one or two spines. Forebasitarsus with six or seven (mostly seven) rake spines. Apical depression of tergum V impunctate, glabrous. Pygidial plate with punctures that average several diameters apart, interspaces microareolate or unsculptured. Length 6.8-11.4 mm.
0°.- Mandible: trimmal carina with conspicuous, asymmetrical tooth (Fig. 141b) whose proximal margin is regularly curved and distal margin contrastingly straight or nearly so (forming right to obtuse angle with remaining carina); reduced distad of tooth (but contrastingly sharp preapically). Clypeus (Fig. 141b): bevel about as long as basomedian area, varying from shiny to dull (conspicuously microsculptured); lip free margin arcuate, minimally emarginate mesally, with welldefined corner; distance between corners 1.2-1.4 \times distance between corner and orbit. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I 1.8-2.0 \times apical width. Forefemur either entire or with medium size notch (without intermediates); notch microscopically setose. Outer margin of forebasitarsus with 3-5 rake spines; outer apical spine of foretarsomere II as long as tarsomere III or longer. Sterna V and VI each with subbasal setal fringe that is longer laterally than mesally (Figs. 141d-f). Sternum VIII shallowly emarginate. Length $6.4-9.3 \mathrm{~mm}$. Volsella and penis valve: Fig. 142

Dimorphic males and their status.- The forefemur is entire in most males of excisus, but emarginate in some specimens from southern Madagascar, without known intermediates. The color of the femora is largely correlated: in specimens without emargination, the femora are all black or the hindfemur is red apically (in some specimens, the red on the outer surface extends nearly to the femoral base); in emarginate specimens, the fore- and midfemora are partly red, and the hindfemur

Fourth Series, Volume 58, Supplement I

Figure 141. Tachysphex excisus Arnold: a - female clypeus and mandible ($\times 42$); b - male clypeus and mandible $(\times 54)$; c - mesopleural sculpture $(\times 1000)$; d - gastral segments III-VII of male in lateral view $(\times 42)$; $\mathrm{e}-$ male sterna V and VI in ventral oblique view ($\times 90$); $\mathrm{f}-$ male sterna V and VI in lateral oblique view $(\times 90)$.
is all red or black basally (up to one quarter of femoral length). Also, in specimens with an entire forefemur the sternal fringes are mostly dark brown but occasionally light brown; the fringes are light brown in emarginate specimens. Finally, the frontal setae are silvery except golden or with golden tinge in specimens with emarginate forefemora. All other characters are identical, including the genitalia.

There are no morphological differences between females, and the hindfemur varies from all black to all red (except narrowly black basally). The two extreme color forms obviously correspond to the two male forms, but intermediate specimens cannot be assigned to one or the other.

Interpretation of these two male forms is problematic and only breeding experiments may definitely resolve their status. Generally in Tachysphex, the presence or absence of the forefemoral notch is a species level or group level character, although individually variable in brevipennis and scopa. Lack of intermediates suggests that two species are involved (Arnold, 1945:104; Menke in Bohart and

Figure 142. Tachysphex excisus Arnold: volsella and penis valve. Menke, 1976:273). The emarginate form, however, occurs together with the simple form, as if they were varieties of one species. My field observations revealed that the two forms were intermixed within the same habitat, with no behavioral differences. Structural homogeneity of females also speaks in favor of one species, and I feel that the two male forms as conspecific. The emarginate form, which also has more red on the legs and golden frontal vestiture, may be induced by some ecological factor.

Habitat and prey.- Common in most sandy areas all over Madagascar. Grasshoppers are used as prey (Arnold, 1945).

Geographic distribution (Figs. 143, 144).— Madagascar.
Records (the $\sigma^{\text {a }}$ symbol refers only to males with entire forefemora, an e instead of sex symbol indicates males with emarginate forefemora).- MADAGASCAR: Antananarivo: Antananarivo (2 ơn 7 LB; $1 \sigma^{\pi}$, MHNB), Tsimbazaza Park in Antananarivo (Leclercq, 1990). Antsiranana: 1 km W Sakalava Beach ($1 \mathrm{o}^{\circ}$). Fianarantsoa: Ihosy ($1 \mathrm{o}^{\circ}, \mathrm{MHNB}$), 84 km N Ihosy at $21^{\circ} 58^{\prime} \mathrm{S} 46^{\circ} 35^{\prime} \mathrm{E}\left(20^{\circ}\right), 40 \mathrm{road} \mathrm{km}$ W Ihosy at $22^{\circ} 28^{\prime} \mathrm{S} 45^{\circ} 49^{\prime} \mathrm{E}\left(3 \circ+4 \delta^{\circ}\right)$, Isalo area at $22^{\circ} 38^{\prime} \mathrm{S} 45^{\circ} 20^{\prime} \mathrm{E}\left(1 \circ+1 \delta^{\circ} ; 1 \delta^{\circ}\right.$, MSNT), Isalo National Park at $22^{\circ} 36^{\prime} \mathrm{S} 45^{\circ} 10^{\prime} \mathrm{E}\left(12 \circ+160^{\circ} ; 40^{\circ}, \mathrm{MSNT}\right), 6 \mathrm{~km}$ SE Namorona at $21.548^{\circ} \mathrm{S} 47.974^{\circ} \mathrm{E}\left(2+9,10^{\circ}\right)$, Ranomafana National Park at $21^{\circ} 15.05^{\prime} \mathrm{S} 47^{\circ} 24.43^{\prime} \mathrm{E}(1+9)$, 10 km W Ranohira ($2 \stackrel{\circ}{ }$, $4 \mathrm{o}^{\circ}$). Mahajanga: Amborovy 8 km NE Mahajanga (2 ค, $21 \sigma^{\top}$), Marovoay ($1 \sigma^{\circ}, \mathrm{MHNB}$). Toamasina: Ambatondrazaka (1 오, $1 \delta^{7}$, MRAC), Ampasimanolotra (as Brickaville): Ambila-Lemaitso (1 + , LB), Anosibe (10°, MHNG, holo-

 $8 \delta^{*}, 1 e ; 1 \delta^{\circ}$, MSNT), 3 km NW Ampanihy ($3 \stackrel{+}{\circ}, 4 \delta^{\circ}, 1 e$), Ankororoka ($1 \circ+\mathrm{LB}$), Behara (Arnold, 1945; Leclercq, 1960, including e), Bekily ($2 \uparrow+2 \sigma^{\circ}, 1 e$, BMNH; $1 \stackrel{\circ}{\circ} 1 \sigma^{\circ}$, MNHN, lectotype σ^{π} and paralectotype of excisus), Bereboka 60 km NE Morondava (1 ค, BMNH), Berenty (17 ㅇ, 21 of $^{\circ} ; 1$ ㅇ, 2 of $^{\circ}$, MSNT), Betioky

 Toliara at $23^{\circ} 18^{\prime} \mathrm{S} 43^{\circ} 45^{\prime} \mathrm{E}\left(3\right.$ ㅇ, $70^{\circ}, 2 e ; 4$ ㅇ, $5 \boldsymbol{o}^{\circ}, \mathrm{MSNT}$), 12 km SE Toliara at $23^{\circ} 25^{\prime} \mathrm{S} 43^{\circ} 45^{\prime} \mathrm{E}(25$ q , $43 \delta^{\circ}, 5 e ; 3$ ㅇ, $6 \delta^{\circ}$, MSNT), Toliara-Morombe ($1 \delta^{\circ}$, NHMW), Tongobory ($2 e$, BMNH). Location unknown: Ivondro, one of the three localities of this name (Leclercq, 1960, including e); no specific locality ($1 \begin{aligned} & \text { ot, }\end{aligned}$ BMNH; $4 \delta^{\circ}$, MHNG, in de Saussure collection).

Figure 143. Collecting localities of Tachysphex excisus with entire male forefemur.

Figure 144. Collecting localities of Tachysphex excis$u s$ with emarginate male forefemur.

Tachysphex fasciatus Morice

Figures 145, 146.
Tachysphex fasciatus Morice, 1897:306, \uparrow. Holotype: \circ, Egypt: Zeitun near Cairo (OXUM), examined.Honoré, 1942:55 (listed from Egypt); Bohart and Menke, 1976:273 (listed).- Nec de Beaumont, 1940:178, 1947a:207, and Pulawski, 1971:118 = Tachysphex pseudofasciatus.

Taxonomic history.- De Beaumont (1947a:208) examined the type of fasciatus, a headless female. I received this specimen for study in February 2004, with the head reglued to the body (the head appears to genuinely belong to the specimen). It is a species clearly different from what de Beaumont (1940, 1947a) and Pulawski (1971) called fasciatus. Tachysphex fasciatus of these two authors is here redescribed as a new species, pseudofasciatus.

Recognition.- Tachysphex fasciatus has a flat labrum, not protruding beyond the clypeal free margin, mesopleural punctures minute, inconspicuous, hindwing vein cu-a vertical, propodeal dorsum and side evenly microsculptured, midfemur densely punctate, tarsi not abbreviate (midtarsomere II more than twice as long as wide, hindtarsomere IV markedly longer than wide), and setae appressed on midfemoral venter. The pygidial plate of the female is narrow apically.

The female of fasciatus (the male is unknown) differs from similar species in having an emarginate labrum in combination with a slightly, uniformly arcuate free margin of the clypeal lobe (without median emargination or lateral incision), and clypeal bevel shorter than basomedian area. The black gaster, combined with red femora, tibiae, and tarsi, is a subsidiary recognition feature.

Description (based on holotype only).- Scutal punctures fine, averaging about two diameters apart; interspaces shiny. Mesopleuron microsculptured, with minute, inconspicuous punctures. Propodeal dorsum and side evenly microsculptured; posterior surface not ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae erect on vertex, about as long as midocellar diameter; sparse, suberect, on each side of oral fossa next to occipital carina, about equal to midocellar diameter; appressed on scutum; oriented anterad on propodeal dorsum.

Head, thorax, and gaster black, mandible reddish mesally. Frontal setae silvery in female. Wing membrane hyaline; costal and subcostal veins of forewing yellowish. Femora (except black

Figure 145. Tachysphex fasciatus Morice: a - female head in frontal view; b - female clypeus and mandible.
forefemoral base), tibiae, and tarsi red. Terga I-IV silvery fasciate apically, conspicuously so on terga I-III.

ㅇ.- Labrum emarginate. Clypeus (Fig. 145b): bevel shorter than basomedian area; lip free margin slightly arcuate (almost straight), not incised laterally. Width of postocellar area $1.3 \times$ length (Fig. 145a). Dorsal length of flagellomere I $1.8 \times$ apical width; flagellomeres II-X lost. Foretibial outer surface with two and three spines, respectively. Forebasitarsus with nine rake spines. Apical tarsomeres with preapical bristle on venter. Tergum V with minute punctures that are several to many diameters apart, apical depression V impunctate, glabrous. Pygidial plate unsculptured except for a few, minute punctures that are many diameters apart. Length 9.0 mm .

Figure 146. Collecting localities of Tachysphex fasciatus and frigidus.
ơ.- Unknown
Collecting period.- The only known specimen was collected on 15 May 1896.
Geographic distribution (Fig. 146).-Egypt.
RECORDS.- EGYPT: AI Qahira (= Cairo): Zeitoun ($1+$, OXUM, holotype of fasciatus).

Tachysphex flavofimbriatus Arnold, new status

Figure 147.
Tachysphex fluctuatus var. flavofimbriatus Arnold, 1945:97, 0°. Holotype: 0°, Madagascar: Bekily (MNHN), examined.— Leclercq, 1960:98 (Madagascar: Bekily).—As Tachysphex fluctuatus flavofimbriatus: Bohart and Menke, 1976:276 (new status, listed); Pulawski, 2003:798 (in checklist of Malagasy Sphecidae).
Tachysphex villosus Arnold, 1947:164, \uparrow. Holotype: ${ }^{\circ}$, Madagascar: Bekily (MNHN), examined. New syn-onym.- Bohart and Menke, 1976:277 (listed); Pulawski, 2003:798 (in checklist of Malagasy Sphecidae).

Recognition.- Tachysphex flavofimbriatus, an endemic of Madagascar, has the apical depression of sternum I intersected by a longitudinal carina, hindwing vein cu-a oblique (anal end further away from wing base than cubital end), setae sinuous on the head and thorax, and male sternum III with setae markedly longer apically than basolaterally. This combination is shared with detritus and sericeus (none of which occurs in Madagascar). The female of flavofimbriatus, however, has the mid- and hindtibiae all or partly black rather than all red (the tibiae are also black in exceptional specimens of sericeus from the Arabian Peninsula). The male differs from the other two species in having a nonemarginate forefemur, the setae on the apical depression of sternum III white, and the mid- and hindlegs all black (rather than all or partly red).

Justification of new synonymy.- The holotypes of flavofimbriatus and villosulus are opposite sexes of the same species. Their names are therefore synonyms.

Description.- Gena unusually narrow in dorsal view. Scutal punctures less than one diameter apart except, in many specimens, more than one diameter apart on disk. Mesopleuron dull, markedly microsculptured, with shallow, ill-defined punctures. Episternal sulcus complete in large specimens, incomplete in small ones. Propodeal dorsum longitudinally ridged or irregularly rugose posteriorly or with ridges partly evanescent; intersecting posterior face at about right angle; propodeal side ridged but ridges anastomosed in many specimens and effaced in smallest ones; posterior surface, in dorsal third or so, with wide median impression. Hindwing jugal lobe enlarged (as in Fig. 102a), crossvein cu-a oblique (anal end further away from wing base than cubital end). Hindcoxal dorsum with inner margin carinate basally, carina not expanded. Sternum I with apical depression that is bisected by longitudinal, obtuse carina (as in Fig. 132a).

Setae nearly appressed on scape, sinuous and erect (or nearly erect) on interocellar and postocellar areas, gena, and thorax; oriented posterad on propodeal dorsum (at least posteriorly); suberect on midfemoral venter. Setal length expressed as a fraction of basal mandibular width: $0.4-0.5$ on postocellar area, $0.8-0.9$ on each side of oral fossa next to occipital carina, about 0.6 on propodeal dorsum, about 0.2 on midfemoral venter.

Head, thorax, and gaster black, mandible reddish mesally. Frontal and clypeal setae silvery in female, golden in male. Wings nearly hyaline; forewing costal and subcostal veins dark brown or costal vein light brown. Legs all black except inner surface of foretibia reddish (only partly so in some males), but mid- and hindtibial venters red in some females (e.g., holotype of villosus). Terga I-IV in female, I-V in male, silvery fasciate apically.

ㅇ.- Labrum with well-defined notch. Clypeus: bevel step-like, markedly shorter than basomedian area; lip free margin arcuate, emarginate mesally, with two lateral incisions on each side. Width of postocellar area about $0.8-0.9 \times$ length. Dorsal length of flagellomere I $1.8-2.0 \times$ apical width. Dorsal foretibial surface with three spines; outer surface with three spines. Forebasitarsus with nine rake spines. Apical mid- and hindtarsomeres with one or two spines at midlength of each lateral margin and with cluster of preapical spines on venter. Apical depression of tergum V impunctate, glabrous. Length $10.0-11.5 \mathrm{~mm}$.

Figure 147. Collecting localities of Tachysphex flavofimbriatus.
0^{7}.- Inner mandibular margin with tooth and cleft. Clypeus: bevel absent; free margin of lobe arcuate or slightly sinuate, with well-defined corner; distance between corners about $1.2 \times$ distance between corner and orbit. Width of postocellar area about $0.4 \times$ length. Dorsal length of flagellomere I $1.8 \times$ apical width. Forefemur not emarginate. Outer margin of forebasitarsus with $1-3$ short rake spines, i.e., without preapical spines in some specimens; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Sternum II with suberect setae; those on apical depression denser but not longer than on remaining surface. Apical depressions of sterna III and IV with subappressed setae that are markedly longer than on remaining surface (setae of sternum III white, appearing agglutinated apically). Length $9.5-10.0 \mathrm{~mm}$. Volsella and penis valve as in costae (Figs. 102b, c).

Geographic distribution (Fig. 147).- Southern and central Madagascar.
RECORDS.- MADAGASCAR: Toliara: Bekily ($1 \uparrow$, 30°, MNHN, including holotypes of villosus and flavofimbriatus; 1 ค, SAM, paratype of villosus), Bereboka 60 km NE Morondava ($1+$, BMNH), 12 km SE Toliara at $23^{\circ} 25^{\prime} \mathrm{S} 43^{\circ} 45^{\prime} \mathrm{E}\left(1+9,5 \sigma^{\circ}\right)$.

Tachysphex frigidus Pulawski, sp. nov.

Figures 146, 148.
Derivation of name.- Frigidus, Latin masculine adjective for frigid; with reference to the cold habitat where the specimens were collected.

RECOGNITION.- Tachysphex frigidus has a labrum convex and protruding beyond the clypeal free margin, an elongate galea (length equal to $0.9-1.1$ of scape), the propodeal dorsum all setose, with setae diverging obliquely anterad from the midline, the propodeal side ridged (only anteriorly in some specimens), and the upper metapleural pit oblong. In addition, scutal punctures are well defined (interspaces unsculptured or microsculptured); setae are straight on the head, appressed on the postocellar area and no longer than one midocellar diameter. In the male, sterna IV-VI have a subbasal, erect fringe of agglutinated setae (the fringes are visible only when the segments are fully extended).

The female resembles aethiopicus, melanius, miniatulus, rotundus, ruber, and usakos in having foretarsomeres I and II slightly broadened apicolaterally, with the lateral margin expanding over the bases of the rake spines (as in Figs. 9c, e). Unlike these species, the middle clypeal section is longer in frigidus (distance between antennal socket and lip free margin about $1.0 \times$ distance between lip corners, rather than $0.7 \times$ or nearly so).

In the male, the carina emerging from the clypeal lip corner is well defined and extends well beyond the lip at least as an obtuse swelling (best visible in oblique lateral view), the carinae markedly diverging upward; the clypeus is long (distance between antennal socket and lip free margin 1.2-1.3 \times distance between lip corners); and the mandible is elongate (Fig. 148b). Unlike aethiopicus, montivagus, and pentheri, sternum IV has a basal fringe of agglutinated setae. Unlike most pentheri, the apical prong of sternum VIII is not incised on the inner margin.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea with minute, sparse punctures, its length equal to about $0.9 \times$ of scape in female, about $1.1 \times$ in male. Scutal punctures well defined, most punctures on disk 2-3 diameters apart. Mesopleuron areolate, in female and some males with minute punctures that are 2-3 diameters apart under scrobe (punctures practically reduced in most males). Propodeal dorsum microscopically rugose; side ridged, only anteriorly so in some specimens; upper metapleural pit oblong. Hindcoxal dorsum with inner margin carinate basally.

Setae suberect on each side of oral fossa next to occipital carina, slightly shorter than midocellar diameter; appressed or nearly so on postocellar area, appressed on scutum; diverging obliquely

Figure 148. Tachysphex frigidus Pulawski, sp. nov.: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.
anterad from midline on propodeal dorsum.
Head and thorax black, mandible (except apically) and clypeal lip and bevel reddish brown (mandible largely darkened basally and clypeus all black in several males). Frontal setae silvery in both sexes. Wing membrane nearly hyaline; costal and subcostal veins of forewing light brown. Femora either all black (many males) or red in apical half or so; tibiae varying from all red (females, some males) to all black (some males). Gaster in female partly red, largely irregularly darkened, with at least reddish preapical area on terga I-V (tergum II all red in one specimen, terga nearly all black in another), in male all black or with some red on tergum I, apical depressions of terga translucent. Terga I-III silvery fasciate apically, fasciae practically absent in males from Agate Bay.

ㅇ.- Mandible: trimmal carina with low, somewhat rounded tooth (Fig. 148a). Clypeus (Fig. 148a): bevel longer than basomedian area; lip free margin arcuate, shallowly emarginate mesally, neither incised nor sinuous laterally. Width of postocellar area $0.7-0.8 \times$ length. Dorsal length of flagellomere I $2.7 \times$ apical width. Dorsal foretibial surface with two spines; outer surface with two spines. Forebasitarsus with 6 or 7 rake spines. Foretarsomeres I-III slightly expanded apicolaterally over bases of rake spines (as in Fig. 9c). Apical depression of tergum V punctate and setose. Pygidial plate aciculate basally, unsculptured apically, with minute punctures that are many diameters apart. Length 8.8-9.2 mm.
0^{π}.- Mandible elongate, trimmal carina with tooth, without cleft (Fig. 148b). Clypeus (Fig.

148b): bevel longer than basomedian area; lip free margin straight to arcuate, with well-defined corner, with obtuse ridge extending from corner; distance between corners $0.9-1.1 \times$ distance between corner and orbit. Width of postocellar area $0.9-1.3 \times$ length. Dorsal length of flagellomere I 2.1-2.3 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Punctures of tergum VII up to two or three diameters apart mesally. Sterna IV-VI (except laterally) each with subbasal, erect fringe of agglutinated setae (fringes visible only when segments are fully extended). Length 6.0-7.3 mm. Volsella and penis valve: Figs. 148c, d.

Geographic distribution (Fig. 146).- Southwestern Namibia.
Records.- Holotype: ${ }^{\circ}$, NAMIBIA: Lüderitz District: Grosse Bucht at $26^{\circ} 41^{\prime} \mathrm{S} 15^{\circ} 10^{\prime} \mathrm{E}, 29 \mathrm{Feb}$ 2000, visiting flowers of Zygophyllum clavatum Schltr. and Diels, FSG (AMG). Paratypes: NAMIBIA: Lüderitz: same data as holotype ($4 \boldsymbol{\sigma}^{\circ} ; 4 \delta^{\circ}$, AMG); Lüderitz to Agate Beach at $26^{\circ} 37^{\prime} \mathrm{S} 15^{\circ} 11^{\prime} \mathrm{E}, 29 \mathrm{Feb} 2000$,

Tachysphex fugax (Radoszkowski)

Figures 149-152.
Tachytes fugax Radoszkowski, 1877:30, 0^{*}. Holotype: © ${ }^{7}$, Uzbekistan: Samarkand (ZMMU), examined before 1971.- Dalla Torre, 1897:690 (in catalog of world Hymenoptera); de Beaumont, 1936b:619 (interpretation of the species).- As Tachysphex fugax: Kohl, 1885:394 (tentatively new combination, original description copied); Pulawski, 1971:178 (in revision of Palearctic Tachysphex); de Beaumont, BytinskiSalz, and Pulawski, 1973:8 (Israel); Erlandsson, 1974:71 (Malta); Frilli and Pizzaghi, 1975:76 (Italy); Bohart and Menke, 1976:273 (listed); Báez and Ortega, 1978:192 (Canary Islands); Kazenas, 1978:122, 132 (in key to Sphecidae of Kazakhstan and Central Asia); Pulawski, 1978:218, 221 (in key to Sphecidae of European USSR); Guichard, 1980:227 (Oman); Pagliano, 1980:127 (Italy); Gess, 1981:19 (South Africa, nest, prey); Rodgers and Homewood, 1982:233 (Tanzania); Schmidt and Westrich, 1983:123 (Greece); Gayubo, 1984a:84 (Spain), 1985a:168 (Spain), 1985b:487 (nest); Scobiola-Palade, 1985:96 (Romania); Gayubo, 1986a:33 (Spain); Gayubo and Heras, 1986:40 (Spain); Gayubo and Sanza, 1986:44 (Spain); Hensen and van Ooijen, 1987:12 (Turkey); Gayubo and Mingo, 1988:78 (Spain); Dollfuss, 1990:122 (Central African Republic); Gayubo, Asís, and Tormos, 1990:17 (Spain); Pagliano, 1990:103 (in catalog of Italian Sphecidae); Gayubo, Borsato, and Osella, 1991:402 (Italy); Gayubo and Torres, 1991:81 (Spain); Schembri, 1991:180 (Malta); Hohmann, La Roche, Ortega, and Barquín, 1993:233 (Canary Islands); Luchetti, 1993:106 (Italy); Torregrosa, Gayubo, Tormos, and Asís, 1993:18 (Spain); Gayubo and Borsato, 1994:207 (Italy); Roche and Zalat, 1994:115 (Egypt: Sinai Peninsula); Tormos, Asís, and Gayubo, 1994:188, 204 (Spain); Gorobchishin, 1995:18 (Ukraine); Negrisolo, 1995:23 (Italy); Negrisolo in Minelli, Ruffo, and La Posta, 1995b:9 (in catalog of Italian fauna); Gorobchishin, 1996:53 (Ukraine); Gusenleitner, 1998:498 (Austria); Gayubo, García, Torres, and González, 1999:89 (Spain); Gonzáles, Gayubo, and Torres, 1999:335 (Spain); Shkuratov, 2000:58 (Russia: Rostov Oblast'); Kazenas, $2001: 28$ (in checklist of Sphecidae of Kazakhstan and Central Asia); Schmidt and Bitsch in Bitsch et al., $2001: 249$ (in Sphecid Fauna of Western Europe); Kazenas 2002:67 (Kazakhstan); Gayubo, Özbek, and Yildirim, 2003:89 (Turkey); Generani, Pagliano, Scaramozzino, and Strumia, 2003:65 (Italy); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).
Tachysphex filicornis Kohl, 1883a:169, ㅇ. Lectotype: \uparrow, France: Marseille (NHMW), designated by Pulawski, 1971:181, examined before 1971. Synonymized with Tachysphex fugax by Pulawski, 1971:178.- Kohl, 1883c:670 (incorrectly recorded from Switzerland), 1885:369 (in revision of Mediterranean Tachysphex); Bingham, 1898:104 (Yemen); Ferton, 1901b:680 (found in Marseille area, France, but not in Corsica); Antiga and Bofill, 1904:10 (in catalog of Catalonian Hymenoptera); Saunders, 1904:604 (Mayorca); de Gaulle, 1908:121 (listed from France); Mercet, 1910:165 (listed from Spain); Graeffe, 1911:45 (Italy); Morice, 1911:101 (Algeria); Dusmet, 1915:87 (Spain); R. Turner, 1917a:321 (Ethiopia); Arnold, 1923:159 (redescription), 1924:57 (South Africa, variation); Berland, 1925:118 (in Sphecid Fauna of France); Grandi, 1928b:14 (Italy); Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bernard, 1933:62
(France); Nadig, 1933:79 (Morocco); Giner Marí, 1934:133 (Spain); Bernard, 1935:64 (France); de Beaumont, 1936a:208 (in revision of French Tachysphex); Giordani Soika, 1939:73 (Italy); de Beaumont, 1940:176 (in revision of Egyptian Tachysphex); Honoré, 1942:55 (in checklist of Egyptian Sphecidae); Giner Marí, 1943a:137 (in Sphecid Fauna of Spain); de Beaumont, 1947a:201 (in revision of Egyptian Tachysphex); Zavadil and Šnoflak, 1948:148, 152 (in key to Czechoslovak Sphecidae); de Andrade, 1949:15 (Portugal); de Beaumont, 1950a:406 (Algeria); Heldmann, 1953:112 (incorrectly recorded from Germany; see Schmidt, 1969); de Beaumont, 1954a:60 (Italy), 1954b:91 (Italy); Grandi, 1954:179 (nesting habits), 239 (Italy); de Beaumont, 1955:184 (Morocco); Steiner, 1955:138 (France); Vogrin, 1955:37 (Croatia); Ceballos, 1956:376 (listed from Spain); Morel, Nouvel, and Ribaut, 1956:338: (France); Grandi, 1957:389 (Italy: Sardegna); Nouvel and Ribaut, 1958:13 (France); Compte Sart, 1959:133 (Spain: Mallorca); de Beaumont, 1959:29 (Italy); Diniz, 1959:29 (Portugal); Suárez, 1959:58 (Spain); Wolf, 1959:24 (Heldmann's record from Germany is doubtful); Grandi, 1961:201 (nesting habits); de Beaumont, 1962:26 (Spain); Ceballos, 1964:90 (in supplement to catalog of Spanish Sphecidae); Diniz, 1964:29 (Portugal); de Beaumont, 1965:50 (Greece); Balthasar, Hrubant, and Hrubant, 1967:171 (Bulgaria); de Beaumont, 1967:509 (South Africa), 1968:263 (Canary Islands); Schmidt, 1969:164 (Heldmann's record from Germany actually refers to Tachysphex nitidus); Simon Thomas, 1969:120 (Canary Islands); Zangheri, 1969:1704 (Italy); Königsmann, 1971:106 (Spain); Simon Thomas, 1972:182 (France); Báez and Ortega, 1978:192 (Canary Islands); Dollfuss, 1989:13 (lectotype in NHMW).
Tachysphex micromegas de Saussure, 1892:481, ㅇ, $\overbrace{}^{\circ}$. Lectotype: \uparrow, Madagascar: no specific locality (MHNG), here designated, examined. New synonym. - Dalla Torre, 1897:681 (in catalog of world Hymenoptera); R. Turner, 1911b:370 (Seychelles Islands); Arnold, 1945:102 (redescription); Leclercq, 1960:98 (Madagascar, comparison with Tachysphex perniger), 1961:111 (Madagascar); Bohart and Menke, 1976:274 (listed); Leclercq, 1990:118 (Madagascar: locality records); Pulawski, 2003:798 (in checklist of Malagasy Sphecidae).
Tachysphex sikorae de Saussure, 1892: pl. 27, fig. 2 (as Sikorae, incorrect original capitalization). Objective synonym of Tachysphex micromegas. Synonymized with Tachysphex micromegas by Menke (first reviser) in Bohart and Menke, 1976:274.
Tachysphex filicornis excerptus R. Turner, 1917a:321, sex not indicated. Holotype or syntypes: Zimbabwe: Salisbury, now Harare (BMNH), examined. Synonymized with Tachysphex filicornis by Arnold, 1923:160 ("can hardly be maintained").- As Tachysphex fugax excerptus: Bohart and Menke, 1976:273 (listed).

ReCognition.- Tachysphex fugax is one of the many species in which the gaster, femora, and tibiae are all black; the labrum is flat and concealed beneath the clypeus; the mesopleuron has welldefined punctures and shiny interspaces; the setae are erect on the postocellar area, nearly erect on the scutum and midfemoral venter (as in Figs. 97c, d), and inclined obliquely anterad on the propodeal dorsum; and the tarsi are not modified (length of midtarsomere II more than twice apical width, that of tarsomeres IV more than apical width, apical tarsomeres not angulate basoventrally, without spines on venter or lateral margins).

There is no single character by which all fugax can be distinguished from all other such species, but specimens from continental Africa and Eurasia have an unusually long antenna. Length of flagellomere IV, e.g., is $4.0-4.5 \times$ apical width in the female (Fig. 149e) and $2.2-2.8$ in most males (Fig. 149f), but 1.8-2.0 in some males. In most other species, these ratios are 3.5-3.6 or less in the female, and less than 2.0 in the male. The long flagellomeres are diagnostic for these populations of fugax in combination, in the female, with a flat middle clypeal section and at most a rudimentary bevel, and in the male a clypeus without a bevel but with a well-defined lip corner (Figs. 149b, d) and an asetose, dull, microscopically rugose bottom of the forefemoral notch (Figs. 150a, b). In addition, only terga I-III are silvery fasciate apically, and the outer apical spine of male foretarsomere II is no longer than tarsomere III (Fig. 149g). The punctatorugose frons is a subsidiary recognition feature.

In the Malagasy and Comoro populations, female flagellomeres are slightly shorter and thus

Figure 149. Tachysphex fugax (Radoszkowski): a - clypeus of female from continental Africa ($\times 41$); b - male clypeus with arcuate lip margin $(\times 63)$; $\mathrm{c}-$ median portion of female clypeus $(\times 120)$, specimen from Madagascar; d - male clypeus with straight lip margin $(\times 54)$; e - female flagellomere IV $(\times 90)$, specimen from continental Africa; f - male flagellomere IV and portions of two adjacent ones $(\times 90) ; \mathrm{g}-$ male foretarsomeres I-III $(\times 70)$.
not diagnostic (length of flagellomere IV is $2.8-3.2 \times$ apical width). Specimens differ from other Malagasy and Comoro Tachysphex in having a combination of well-defined scutal and mesopleural punctures, erect setae of the postocellar area, female clypeal lip without lateral incision, and male clypeal lip with a prominent corner.

Justification of new synonymy.- Tachysphex micromegas is known from Madagascar and

Figure 150. Tachysphex fugax (Radoszkowski): a - base of male forefemur in ventral view showing notch; b - bottom of forefemoral notch, higher magnification.
the Comoros, and fugax from the continental Africa, southern Europe, and southwestern Asia. They intergrade in nearly all morphological structures. For example, most Madagascan females have a short but well-defined clypeal bevel, an apparent difference from fugax. In some Madagascan females, however, the bevel is rudimentary or absent, as in the typical fugax. The only gap is that the female antenna is slightly shorter in micromegas, as discussed under Recognition above. This difference does not suggest reproductive isolation, and I regard the two taxa as geographic forms of one species.

Relationships to Tachysphex morosus.- Tachysphex morosus (F. Smith, 1858) closely resembles fugax except that the male antenna averages shorter (the length is the same in some specimens). Possibly, they are merely geographic forms of one polytypic species (lack of records from intermediate territories almost certainly results from inadequate collecting). Tachysphex fugax occurs in the Afrotropical and Palearctic Regions (Africa, southern Europe, east to Tajikistan), whereas morosus is found in the Oriental Region and Oceania (from Sri Lanka, Sumatra, and New Guinea in the south to Nepal, Sichuan Province of China, and Taiwan in the north, and to Micronesia, Fiji, and Hawaii in the east; see Krombein and Pulawski, 1994:24, for locality records).

Description.-Frons punctatorugose. Scutal and mesopleural punctures well defined, on scutum either less than one diameter apart or many discal punctures up to 2-3 diameters apart, at center of mesopleuron less than one to about two diameters apart; interspaces shiny. Episternal sulcus complete. Propodeal dorsum irregularly rugose, side ridged. Hindcoxal dorsum with inner margin carinate, carina low to expanded basally.

Setae (figures in parentheses refer to setal length expressed as a fraction of basal mandibular width): erect on postocellar area ($0.4-0.5$ in most specimens, $0.2-0.3$ in specimens from Aldabra) and on each side of oral fossa next to occipital carina (0.5-0.7), slightly inclined posterad on scutum mesally ($0.4-0.5$ anteriorly, $0.3-0.5$ in Madagascan females); inclined obliquely anterad on propodeal dorsum.

Body black; mandible reddish mesally in many specimens; apical tarsomeres black or brown. Frontal setae silvery in both sexes, with golden tinge in upper part in some sub-Saharan males. Wing membrane infumate, slightly so in some specimens; forewing costal and subcostal veins almost black. Terga I-III silvery fasciate apically.

ㅇ.- Clypeus (Fig. 149a): bevel rudimentary or absent except short bevel present in most Malagasy specimens (Fig. 149c); lip free margin arcuate or obtusely pointed mesally, not incised laterally. Width of postocellar area $1.8-1.9 \times$ length. Dorsal length of flagellomere I $2.6-3.7 \times$ apical width. Dorsal foretibial surface with a few fine bristles; outer surface with one long, thin spine near midlength. Forebasitarsus with 5-7 rake spines. Apical depression of tergum V varying from
impunctate to punctate throughout. Pygidial plate aciculate, with minute, sparse punctures. Length $7.0-10.0 \mathrm{~mm}$.
$\delta^{\text {o }}$.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Figs. 149b, d): bevel absent; lip free margin arcuate, corner well defined, prominent in some specimens; distance between corners 1.0-1.3 \times distance between corner and orbit. Width of postocellar area 1.9-2.2 \times length. Dorsal length of flagellomere I 1.1-1.8 \times apical width, equal to about 0.7 of flagellomere II. Length of flagellomere IV varying (see Variation below). Forefemoral notch asetose, microscopically rugose, dull (Figs. 150a, b). Outer margin of forebasitarsus with 3-5 rake spines in most specimens (Fig. 149 g), but with only the apical spine in some (see Variation); outer apical spine of foretarsomere II varying from about as long as tarsomere III to markedly shorter. Tergum VII densely punctate throughout or punctures largely reduced. Length $5.0-8.0 \mathrm{~mm}$. Volsella and penis valve: Fig. 151.

Geographic variation.- Various populations of fugax differ in the size of the hindcoxal tooth, size of the female clypeal bevel, setae of female antenna, and length of the male antenna and male foretarsal rake, as described below.

Hindcoxal dorsum: inner carina somewhat expanded basally in most populations, but

Figure 151. Tachysphex fugax (Radoszkowski): volsella and penis valve. expanded into a basal tooth in most specimens from the Balkan Peninsula, Turkey, Syria, and Israel.

Female clypeal bevel: rudimentary or absent in most populations, but present in most Malagasy females, up to about two midocellar diameters long mesally (Fig. 149c).

Female antenna: antennal microsetae usual in most specimens, but contrastingly dense on the outer surface of four apical flagellomeres in females from Italy, southwestern Europe, and Morocco.

Male flagellomere III: dorsal length equal to about 0.9 of flagellomere IV in most specimens (0.8 in those from Kenya), but $0.6-0.8$ in males from the Balkan Peninsula, Turkey, Syria, Israel, some from Egypt (Aswan only), one male collected 16 km N Moyale, Ethiopia, and 0.7-0.9 in males from Madagascar.

Male flagellomere IV: dorsal length $2.2 \times$ apical width or more in most specimens, but 1.8-2.0 \times in males from the Balkan Peninsula, Turkey, Syria, Israel, United Arab Emirates, the male from the Moyale area mentioned above, and 1.9-2.2 in males from Madagascar.

Male foretarsomere I: outer margin with 3-5 rake spines in most specimens, but with one or two in some (one subbasal, one apical), and without preapical spines in some from Israel and Kenya and most from Madagascar and Comoro. The number of spines may vary individually, e.g., one preapical spine is present on one leg and no spines on the other.

Male foretarsomere II: outer apical spine about as long as foretarsomere III in most specimens, but markedly shorter in specimens from Balkan Peninsula, Turkey, Syria, Israel, United Arab Emirates, and also Madagascar (only slightly longer than inner apical spine).

Nesting behavior. - Nests are established in friable soils such as sand or clay, either in flat sites (Gess, 1981; Gayubo, 1985b) or in vertical cliffs (Grandi, 1954, 1961). There are one or two cells per nest, and the entrance is almost certainly open during the provisioning period (Grandi). Prey consist of grasshoppers, both adults and nymphs, that are flown to the nest. They are stored venter up, several per cell. Grandi could not determine the prey because of their early stage, and

Gess found adult and nymphal Lentulidae (some of which are Eremidium sp., pers. comm.); additionally, several females from Lesotho and South Africa are pinned with their prey, nymphal acridids (det. F.W. Gess). The wasp's egg is positioned transversally on the grasshopper venter, just behind the forecoxae (Grandi).

Geographic distribution (Fig. 152).Africa including Madagascar, southern Europe, Middle East and southern Caucasus, Kazakhstan, Turkmenistan, Uzbekistan, and Tajikistan. Kohl's (1883c) record from Switzerland (Peney near Geneva) has not been confirmed by subsequent authors.

Records (localities not followed by the number of specimens or a bibliographic refer-

Figure 152. Collecting localities of Tachysphex fugax. ence are all from Pulawski, 1971).- ALGERIA: Alger (Morice, 1911), Birmandreis near Alger, Biskra (${ }^{\text {o }}$, CU), Hussein Dey (Morice, 1911), Maison Carrée (de Beaumont, 1950a). ANGOLA: Cachoeiras 20 mi SW Gabela (1 \&, $1 \mathrm{ơ}^{\circ}$, BMNH), 8 mi NE Cacula (2 ơ $^{\circ}, \mathrm{BMNH}$), Curoca River 7 mi NE Porto Alexandre ($1 \mathrm{o}^{\circ}, \mathrm{BMNH}$), Duque de Bragança Falls (10 ơ $^{\boldsymbol{*}}$, BMNH), Giraul River 10 mi NE Namibe (10°, BMNH), 12 mi SW Luimbale ($2 \circ$, BMNH), Porto Alexandre
 mi NW Sa do Bandeira (1 ㅇ, $48^{\circ}, \mathrm{BMNH}$). AUSTRIA: Steiermark: Sternau SW Gamlitz at $47^{\circ} 07^{\prime} \mathrm{N} 16^{\circ} 26^{\prime} \mathrm{E}$ (Gusenleitner, 1998). AZERBAIJAN: coast N Astara (1 ㅇ, CSE), Gäncä. BOTSWANA: Makarikari Pans at

 TRAL AFRICAN REPUBLIC: Kembe ($3 \mathrm{o}^{\circ}$). COMORO ISLANDS: Grand Comore: Itsandra ($1+$ KMG). CONGO: Djoué 17 km W Brazzaville (2 ön $^{\circ}$, AMM). CROATIA: Istria Peninsula: no specific locali-
 cated): Al Fayyum: Karanis ($1 \mathrm{o}^{\text {º }}$). Al Jizah (= Ghiza): Hawamdieh (Honoré, 1942), Saqqara ($1 \mathrm{o}^{\text {º }}$). Al Qahirah (= Cairo): Abu Zabal, Cairo (3 ㅇ, 3 o $^{\circ}$), Ezbet Nahlé, Gebel Asfar, Helwan, Maadi (1 1). As Suways (= Suez): Fayed at $30^{\circ} 19^{\prime} \mathrm{N} 32^{\circ} 19^{\prime} \mathrm{E}$ ($1 \sigma^{\circ} \mathrm{CSE}$). Aswan: Aswan (4 o $^{\circ}$). Sina (= Sinai): Dahab (Roche and Zalat), 1994), Nakhl (1 o , MSNT), Tor (Kohl, 1885), Wadi Sudr 50 air km SE Suez (1 of). Location unknown: Sharkia Abu Hamad ($1 \mathrm{o}^{\star}$, FSCA). ETHIOPIA: Gamo Gofa: 42 road km NNE Arba Minch ($1 \mathrm{o}^{\star}$), 49 road km SE Sodo ($10^{*} ; 1 \delta^{\star}$, AAU). Harerge: Harer (R. Turner, 1917a), 37 km SE Jijiga (1 \ddagger). Shewa:

 Rhône: Marseille (1 ㅇ, NHMW, lectotype of filicornis), Miramas (Berland, 1925). Corrèze: Argentat (Berland, 1925). Corse: Ajaccio. Dordogne: Le Coux near Eyzies (Steiner, 1955). Drôme: Dieulefit (Bernard, 1933). Gard: Générac (Berland, 1925). Gironde: Cestas, Vendays-Montalivet (Simon Thomas, 1972). Hérault: Montpellier (Kohl, 1885). Loire-Inférieure: Le Pouliguen (Berland, 1925). Pyrénées-Orientales: Argelès (Morel, Nouvel, and Ribaut, 1956), Baillaurie (Nouvel and Ribaut, 1958), Banyuls-sur-Mer (Nouvel and Ribaut, 1958). Seine-et-Oise: Saclas (Berland, 1925). Vandée: St.-Jean-de-Monts (Berland, 1925). Var: Caillan (Berland, 1925), Estérel (Bernard, 1935). Vaucluse: Carpentras (6 $9,6 \delta^{\circ}$), Orange (Berland, 1925). Also found in several other Départements according to Bitsch et al. (2001:map 97), north to Loire-Atlantique. GABON: Léconi ($1 \circ$, FSAG), Owendo ($1 \not+2 \circ^{\circ}$, FSAG). GEORGIA: Tbilisi. GHANA: Accra near beach
 GREECE: Aegean Islands: Naxos, Rhodes: Empona ($1 \delta^{\text {® }}$). Ionian Islands: Corfou: no specific locality
(1 ㅇ, 2 o $^{\circ}$). Macedonia: Edessa (Schmidt and Westrich, 1983). Sterea Ellás (= Central Greece): Athens (® $^{\text {o }}$). GUINEA: Dabola ($1 \circ$, MNHN). ISRAEL: 135 km N Elat Iddan ($1 \circ+2$ o $^{\circ}$, CSE), En Aqev near Sede Boker at $30^{\circ} 50.01^{\prime} \mathrm{N} 34^{\circ} 48.64^{\prime} \mathrm{E}\left(1 \circ+7 \mathrm{o}^{\circ}\right.$, CSE), En Gedi ($1 \mathrm{o}^{\circ}$), Hazeva Field School in Arava Valley ($1 \mathrm{o}^{\circ}$, CSE),
 Aqrabbim (10°, CSE), Shizaf Nature Reserve near Hazeva in Arava Valley (1 ㅇ, CES), Wadi En Aqrabbim 50 km SE Beersheba (1 ㅇ, CSE), Wadi N'Aqev 5 km SSE Sede Boqer ($1 \mathrm{c}^{\prime}, \mathrm{CSE}$), Wadi Qelet 5 km W Jericho ($1 \mathrm{o}^{\star}$, CSE). ITALY: Apulia: Rodi Garganico (Foggia Province). Emilia-Romagna: Badagnano 20 km SE Piacenza (1 早, 1 o $^{\text {r }}$), Bologna (de Beaumont, 1954a), Grizzana in Bologna Province (Grandi, 1928), Rimini in Forlì Province (de Beaumont, 1954a). Friuli-Venezia Giulia: Eraclea Mare (Negrisolo, 1995), Porto Caleri (Negrisolo, 1995), Trieste (Graeffe, 1911). Lazio: Ostia (de Beaumont, 1959), Palo near Rome (de Beaumont, 1954a), Pontecorvo, Sabaudia (Pagliano, 1980). Piemonte: Priocca (Pagliano, 1990). Sardegna: Aggius, Arzachena (1 \&), Domusnovas (Pagliano, 1990), Maddalena archipelago (Luchetti, 1993), Ploaghe near Sassari (Grandi, 1957), San Giorgio Molafá ($\begin{aligned} & \text { ơ }) \text {. Toscana: Caprona near Castelmaggiore di Calci in Pisa }\end{aligned}$ Province (de Beaumont, 1954a), Castiglione della Pescaia (Gayubo and Borsato, 1994), Isola di Gorgona (Generani, Pagliano, Scaramozzino, and Strumia, 2003); Molina di Quosa in Pisa Province, Pisa, San Vincenzo in Livorno Province (de Beaumont, 1954a). Veneto: Lido di Venezia (Giordani Soika, 1939), Venezia: Punta Sabbioni (de Beaumont, 1954b). IVORY COAST: Bouaké (3 ㅇ, RMNH), Bouaké: Foro-foro (2 of, 4 ơ, UCD), 15 km NW Boundiali ($2 \sigma^{7}$, MSNT), 20 km W Boundiali ($\mathrm{o}^{\mathrm{o}^{*}}$), Degbezère 15 km E Bouaflé (1 q,
 Korhogo (5 ㅇ, $1 \mathrm{o}^{\star}, \mathrm{ZMAN}$), Lamto ($1 \stackrel{\circ}{ }$, MNHN), Niakaramandougou ($1 \mathrm{o}^{\circ}$), 56 km N Niakaramandougou
 S Toumodi (5 $\delta^{*} ; 1$ ㅇ, $7 \delta^{\boldsymbol{*}}$, MSNT). KAZAKHSTAN (Kazenas, 2002): Almaty: Almaty, 5 km SW village Kazakhstan. Pavlodar: Zhabagly. Zhambyl: 50-60 km NW Furmanovka. KENYA: Coast Province: Diani

 (1 \&), 5 mi SW South Horr on S side of Nyiru Range ($1 \delta^{\circ}$, LACM), 94 km E Thika (1 of, $1 \delta^{\circ}$). Nyanza

 at $0.30^{\circ} \mathrm{N} 36.91^{\circ} \mathrm{E}\left(1+9,4 \sigma^{\circ}, \mathrm{LACM}\right)$, ca 53 air km SW Nairobi ($2 \circ^{\circ}$). Western Province: Kakamega Forest

 Tachysphex sikorae, lectotype and paralectotypes of micromegas; 7 i, 5 ơ, NHMW, determined as micromegas by F.F. Kohl). Antananarivo: Antananarivo (1 \& , 2 ơ, LB; 1 of, MHNB), AntananarivoTsimbazaza ($1 \sigma^{\circ}, \mathrm{KU}$), 25 km W Antananarivo ($3 \mathrm{o}, 1 \mathrm{o}$, BMNH), Antsirabe (Leclercq, 1960),
 MSNT). Antsiranana: Amdondrobe at $13^{\circ} 42^{\prime} 55^{\prime \prime} \mathrm{S} 50^{\circ} 06^{\prime} 06^{\prime \prime} \mathrm{E}(1+\circ)$, Montagne d'Ambre National Park at $12^{\circ} 30.5^{\prime} \mathrm{S} 49^{\circ} 10.5^{\prime} \mathrm{E}(5 \quad \circ)$ and $12^{\circ} 31.1^{\prime} \mathrm{S} 49^{\circ} 10.4^{\prime} \mathrm{E}\left(4 \circ, 10^{\circ}\right)$, Montagne des Français at $12^{\circ} 18.8^{\prime} \mathrm{S} 49^{\circ} 38.5^{\prime} \mathrm{E}$ ($2 \mathrm{o}^{\circ}$), Nosy Be ($3 \circ$, MHNG, labeled Tachysphex sikorae, paralectotypes of micromegas), Nosy Be: Ampangorinana ($1 \delta^{*}$, MHNB), Reserve Spéciale d'Ankarana 2.6 km E Andrafiabe (2 ㅇ $)$, 1 km W Sakalava
 1 or $^{\circ} ; 1^{\circ}$, MSNT), Isalo National Park at $22^{\circ} 34^{\prime} \mathrm{S} 45^{\circ} 22^{\prime} \mathrm{E}=$ Piscine Naturelle ($3 \circ$, MSNT) and $22^{\circ} 36^{\prime} \mathrm{S}$ $45^{\circ} 10^{\prime} \mathrm{E}$ (6 品, 7 o $^{\circ}$), Kianjavato 55 km SW Mananjary at $21^{\circ} 23^{\prime} \mathrm{S} 47^{\circ} 40^{\prime} \mathrm{E}\left(2 \delta^{\circ}\right)$, Manombo Special Reserve
 $13 \mathrm{o}^{\circ}$), 5 km SW Ranohira at $22^{\circ} 36^{\prime} \mathrm{S} 45^{\circ} 23^{\prime} \mathrm{E}\left(1 \quad+\right.$), Ranomafana ($3 \circ+3 \mathrm{o}^{\circ}$), Ranomafana National Park at $21^{\circ} 15.05^{\prime} \mathrm{S} 47^{\circ} 24.43^{\prime} \mathrm{E}(1 \quad$) $)$. Mahajanga: Amboromalandy (1 \& + , MHNB), Amborovy 8 km NE Mahajanga
 Ampijoroa Station Forestière 40 km NW Andranofasika at $16^{\circ} 19^{\prime} 15^{\prime \prime} \mathrm{S} 46^{\circ} 48^{\prime} 38^{\prime \prime} \mathrm{E}\left(10^{\circ} ; 1 \mathrm{o}^{\circ}\right.$, LB). Toamasina: Ambatondrazaka (12 ㅇ, 29 dra $^{\circ}$, MRAC), Ambodivoahangy (Leclercq, 1990), Ampasimanolotra (as Brickaville): Ambila-Lemaitso ($3 \stackrel{\circ}{ }, 1 \sigma^{\circ}$, LB), near entrance to Andasibe National Park at $18^{\circ} 55.6^{\prime} \mathrm{S}$
 Maroantsetra ($1+$, MRAC), Moramanga ($1 \circ^{7}$, MHNB), 2 km S Moramanga (1 \&, KU), 25 km W Morarano-

 Toamasina ($1+9$). Toliara: 22 km E Ampanihy at $24^{\circ} 41^{\prime} \mathrm{S} 44^{\circ} 46^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$), Behara (Leclercq, 1960), Bekily
 7 \& 7 , 7 o $^{\circ}$, BMNH), Ifaty 22 km N Toliara at $23^{\circ} 11^{\prime} \mathrm{S} 43^{\circ} 37^{\prime} \mathrm{E}\left(1+\right.$ ㅇ) , Manderano at $23^{\circ} 31^{\prime} 39^{\prime \prime} \mathrm{S} 44^{\circ} 05^{\prime} 17^{\prime \prime} \mathrm{E}$

 km NE Toliara (5 ㅇ, 6 o $^{\circ} ; 3$ ơ $^{\circ}$, MSNT), 12 km SE Toliara at $23^{\circ} 25^{\prime} \mathrm{S} 43^{\circ} 45^{\prime} \mathrm{E}$ ($110^{\circ} ; 2$ q, MSNT), 20 km W Tsiombe (5 ơ $^{\star} ; 1$ ơ $^{\circ}$, MSNT). MALI: 30 km N Bamako ($1 \circ ; 1$ đ $^{\circ}$, MS). MALTA: Chadwick Lakes (Schembri, 1991), Citadelle (Erlandsson, 1974), Fiddien (Schembri, 1991), St. Julians (Erlandsson, 1974). MOROCCO (de Beaumont, 1955, or as indicated): Agadir (Pulawski, 1971), Asni, Casablanca (3 ${ }^{7}$), Erfoud (19 , AMNH), Fedhala, Ifrane (Nadig, 1933), Ijoukak, Kenitra (1 d°), Marrakech, Mehdia near Kenitra (Pulawski, 1971),
 ($1 \delta^{\circ}$). MOZAMBIQUE: Dondo (1 o, PPRI), Guengère in Pungoué Valley (1 o, MNHN). NAMIBIA: Grootfontein District: Gobiswater Farm 12 mi N Grootfontein (1 \& , BMNH). Karibib District: Khan River 23 km N Karibib (2 q). Outjo District: 31 km SE Kamanjab (1 q). Rehoboth District: 23 km N Rehoboth
 km SW Rundu ($1 \circ ; 1$ ค, MS). Swakopmund District: Kuiseb River near Gobabeb ($1 \circ 1$, ${ }^{\circ}$, PPRI). Windhoek District: Aris 25 km S Windhoek ($2 \mathrm{o}^{\text {o }}$), 2 km S Aris (c°), Bismarck River 30 km E Windhoek
 OMAN: Ain Hamran (1 ㅇ, KMG), Behla (1 ㅇ, KMG), Rostaq (1 ํ, 1 ơ $^{\circ}$, KMG). PORTUGAL: (Diniz, 1964, or as indicated): Arieiro near Lisboa (1 \&), Calhariz de Benfica (Pulawski, 1971), Coimbra, Évora, Lagoa de Albufeira, Lisboa, Moimenta da Beira, Montijo, Paço de Rei (Diniz, 1959), Pegães, Seixal including Porto do Rei (4 ${ }^{\circledR}$), Tabuaço, Trafaria, Vale de Gaio (Diniz, 1959), Xabregas (Pulawski, 1971). ROMANIA: Caraorman in Danube delta (Scobiola-Palade, 1985). RUSSIA: Rostov Oblast': Vëshenskaya village area at $49^{\circ} 37^{\prime} \mathrm{N}$ $41^{\circ} 45^{\prime} \mathrm{E}$ (Shkuratov, 2000). SAUDI ARABIA: Ad Diriyah ($1 \delta^{\circ}, \mathrm{KMG}$), El Riyadh (1 \&), Fayfa (1 \& , KMG),
 SE Mbour ($1 \mathrm{o}^{\circ}$), 3 km W Samba Dia $=70$ air km W Kaolack ($1 \mathrm{o}^{\star}$, MSNT), Tioungoune (1 ㅇ, FSAG),
 3 ơ, BMNH), Silhouette (1 ơ, BMNH), no specific locality (3 \&, BMNH). SIERRA LEONE: Freetown
 AFRICA: Eastern Cape Province: 17 mi S Adelaide (1 ค, AMG), Alexandria (1 đٌ, AMG), 10 km SE
 North ($1 \delta^{\circ}$, PPRI), Bathurst ($3 \circ+5 \sigma^{\circ}, \mathrm{AMG}$), 28 air km N Bedford at $32^{\circ} 33^{\prime} \mathrm{S} 26^{\circ} 00^{\prime} \mathrm{E}\left(1 \delta^{\circ}\right)$, Belmont Valley 10 km E Grahamstown at $33^{\circ} 19^{\prime} \mathrm{S} 26^{\circ} 38^{\prime} \mathrm{E}(1 \circ$, AMG), Boesmans River near Grahamstown ($1 \circ$, SAM), Colchester at $33^{\circ} 42^{\prime}$ S $25^{\circ} 50^{\prime}$ E (10°), East London (10°, ZMAN), Elandsheuwels Farm 40 km W Steytlerville

 Middelburg Division (3 of $^{\circ}, \mathrm{SAM}$), Morgan Bay (2 ㅇ, AMG), Natures Valley (1 ค, PPRI), Pearston (1 ค,

 Swartwaterspoort at ca $33^{\circ} 12^{\prime} \mathrm{S} 26^{\circ} 00^{\prime} \mathrm{E}\left(1 \quad \mathrm{q}, 1 \mathrm{o}^{\circ}\right.$, AMG), Table Farm 10 km NW Grahamstown (2 \circ, $7 \mathrm{o}^{\circ}$, AMG), Tsitsikama Mts. (1 ㅇ, BALDOCK), Uitenhage ($1 \stackrel{\circ}{ }$, TMP), Van Stadens River mouth ($1{ }^{\circ}$, SAM), Waaipoort Pass 19 km ENE Steytlerville at $33^{\circ} 14.8^{\prime} \mathrm{S} 24^{\circ} 19.8^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$, USU), Whittlesea ($2 \mathrm{o}^{\circ}$, AMG),

 6 km S Willowmore at $33^{\circ} 20^{\prime} \mathrm{S} 23^{\circ} 27^{\prime} \mathrm{E}\left(2+3 \mathrm{o}^{\circ}\right)$, 11 km SW Willowmore at $33^{\circ} 22.3^{\prime} \mathrm{S} 23^{\circ} 24.7^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right.$,

USU), 12 km W Willowmore at $33^{\circ} 16^{\prime} \mathrm{S} 23^{\circ} 22^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right)$. Free State: Adullam Farm near Clarens at $28^{\circ} 32^{\prime} \mathrm{S}$ $28^{\circ} 28^{\prime}$ E ($2 \sigma^{\circ}$, PPRI), Bloemfontein (2 \&, ZMAN), Bothaville ($1 \circ$, TMP), Caledon River between Bethulia and Aliwal North ($1 \sigma^{7}$, SAM $)$, Clocolan ($1 \mathrm{o}^{7}$, AMG), Fouriesburg ($1+$, OÖLM), Harrismith ($2 \circ, 1 \mathrm{o}^{7}$,
 Nature Reserve ca 5 air km E Bloemhof at $27^{\circ} 40^{\prime} \mathrm{S} 25^{\circ} 41^{\prime} \mathrm{E}\left(1 \circ+1\right.$ ® $\left.^{\circ}\right)$, Tussen Die Riviere Game Reserve

 1 ค, 1 ơ, TMP), Pretoria Botanical Garden (3 o $^{\text {® }}$), Schoemansville ($1 \mathrm{o}^{\boldsymbol{*}}$, AMG). Kwazulu-Natal: Durban

 OÖLM), Lake Santa Lucia ($1 \stackrel{\circ}{\circ}, 1 \mathrm{o}^{\circ}$, ZMAN), Lake Santa Lucia at Charters Creek ($1 \stackrel{\circ}{\circ}$, ZMAN), Mbazwana ($1 \sigma^{\circ}$, OÖLM), Mkuzi in Zululand ($1 \sigma^{\circ}$, PPRI), Ndumu Game Reserve (3 \& , ZMAN), Pietermaritzburg (1 \& , PMA), Rosebank ($1 \circ$, PPRI), Umfolozi in Zululand ($1 \circ$, AMG), Umtentweni ($1 \circ$, USNM), Underberg ($1 \circ+1 \mathrm{o}^{\circ}$, PRRI), Van Reenen (2 ㅇ, BMNH), 20 km W Vryheid ($1 \mathrm{o}^{\text {º }}$, OÖLM). Mpumalanga: Crocodile
 (1 ㅇ, $2 \sigma^{\circ}$, PPRI), Middelburg (1 ㅇ, AMG), Onder Sabie in Kruger National Park ($2 \sigma^{\circ}$, PPRI), Pretoriuskop in Kruger National Park (3 ơ, USNM), Satara ($1 \sigma^{\circ}$, PMA) and Skukuza in Kruger National Park (1 甲, 3 ơ,
 Northern Cape Province: Buffels River SW Springbok ($1 \sigma^{\circ}$, OÖLM), W Calvinia (2 ơ, OÖLM), Dassiefontein Farm near Kamieskroon ($1+$, PPRI), Garies ($2^{\circ}+1$ o $^{\circ}$, AEI), Goegap Nature Reserve 10 mi E Springbok (4 ค, 3 ở, AMG), Groen River 40 km SW Garies ($2 \circ$, 3 ơ, OÖLM), 25 km E Hondeklipbaai

 AMG), Nieuwoudtville: Skuinshoogte Pass at $31^{\circ} 16^{\prime} \mathrm{S} 19^{\circ} 08^{\prime} \mathrm{E}(6 \stackrel{\circ}{\circ}$, AMG), 5 km N Nieuwoudtville (1 趿, AMG), VanWyksfontein 8 km W Norvalspont ($1 \mathrm{\circ}$, AMG), Witsand Farm near Roaring Sands at $28^{\circ} 32^{\prime} \mathrm{S}$ $22^{\circ} 30^{\prime} \mathrm{E}\left(4{ }^{\circ}\right.$, PMA). Northern Province: Altyddroog Farm 13 km W Beitbridge at $22^{\circ} 11^{\prime} \mathrm{S} 29^{\circ} 53^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right.$, PPRI), Ben Alberts Nature Reserve at $24^{\circ} 37^{\prime}$ S $27^{\circ} 23^{\prime} \mathrm{E}$ (1 ㅇ, 2 o $^{\circ}$, PPRI), Buffelspoort Dam ($5 \sigma^{\circ}$, AMG), D'Nyala Nature Reserve (5 q, PPRI), Duiwelskloof at $23^{\circ} 42^{\prime} \mathrm{S} 30^{\circ} 06^{\prime} \mathrm{E}\left(1 \quad \circ\right.$, PPRI), Ellisras (3 or $^{\circ}$, AMG), Entabeni Forest Reserve at $23^{\circ} 00^{\prime} \mathrm{S} 30^{\circ} 16^{\prime} \mathrm{E}\left(1 \circ\right.$, PPRI), Guernsey Farm 15 km E ($1 \circ, 1$ o $^{\circ}$, PMA) and 15

 PMA), Nylsvley Nature Reserve (1 q , PPRI), Pafuri in Kruger National Park (3 old 3, PPRI), Pietersburg ($1 \mathrm{o}^{7}$, PPRI), 45 km N Pretoria ($1 \circ+1 \mathrm{o}^{\prime}$, MS), River Lodge near Strydom Tunnel at $24^{\circ} 22^{\prime} \mathrm{S} 30^{\circ} 41^{\prime} \mathrm{E}(1 \circ$, PPRI), 5 mi N Warmbad (12 ơ $^{\circ}$, USNM). North-West Province: Breedtsnek Pass (2 or 7, AMG), Rustenburg (1 or 7, PPRI; 10°, USNM), Swartruggens (1 \&, AMG), Whittlesea ($2 \sigma^{\circ}$, AMG). Western Cape Province: Ashton (2 if, $12 \delta^{\circ}$, OÖLM), Barrydale ($4 \delta^{\circ}$, OÖLM), Biedouw Valley at $32^{\circ} 08^{\prime} \mathrm{S} 19^{\circ} 14^{\prime} \mathrm{E}\left(1\right.$ ค, 60°, PPRI), Botterkloof Pass 54 and 56 km NE Clanwilliam at $31^{\circ} 50^{\prime} 22^{\prime \prime} \mathrm{S} 19^{\circ} 16^{\prime} 01^{\prime \prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{CSE}\right.$) and $31^{\circ} 48^{\prime} 46^{\prime \prime} \mathrm{S} 19^{\circ} 15^{\prime} 14^{\prime \prime} \mathrm{E}(1$ \& , CSE), 25 km S Bredasdorp ($4 \mathrm{o}^{\boldsymbol{*}}$, ÖOLM), Cape Peninsula: Hout Bay ($1 \stackrel{\circ}{\circ}$, ZMLU, determined as Tachysphex filicornis by de Beaumont), Cape Town: Constantia at $23^{\circ} 02.6^{\prime} \mathrm{S} 18^{\circ} 25.8^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$, USU), Cape Town: Kirstenbosch Botanical Garden at $33^{\circ} 59^{\prime} \mathrm{S} 18^{\circ} 26^{\prime} \mathrm{E}\left(2 \circ, 3\right.$ o $^{\circ}$), Cape Town including Milnerton (1 ơ $^{\circ} ; 4$ o $^{\circ}$, BMNH; 27 ㅇ, $238^{\delta^{\circ}}$, USNM), Cape Town: Table Mountain at $33^{\circ} 57^{\prime} \mathrm{S} 18^{\circ} 24^{\prime} \mathrm{E}\left(1 \mathrm{~d}^{\circ}\right)$, Ceres ($1 \circ$, BMNH), 8 mi N Citrusdal ($2 \circ$, SAM), 20 km N Citrusdal ($1 \mathrm{o}^{3}$, OÖLM), 40 km E Clanwilliam: Sevilla (5 우, 2 or $^{\circ}$, USU), 56 km NE Clanwilliam, 5 km S Clanwilliam at $32^{\circ} 11.4^{\prime} \mathrm{S} 18^{\circ} 52.5^{\prime} \mathrm{E}\left(2 \mathrm{o}^{\circ}\right)$, 31 km S Clanwilliam at $32^{\circ} 23.1^{\prime} \mathrm{S} 18^{\circ} 56.8^{\prime} \mathrm{E}\left(4 \mathrm{o}^{\top}\right)$, 11 km W Clanwilliam ($1 \stackrel{+}{ }$, AMG), 11 km W Clanwilliam: Ysterfontein Farm (2 ㅇ, USU), Clanwilliam-Citrusdal ($2 \delta^{\circ}$, AMG), Clanwilliam-Klawer ($1 \quad$, SAM),
 10 ơ $^{\circ}$, OÖLM), Hexriver Pass ($1+$, BMNH), Karoo National Park at $32^{\circ} 20^{\prime}$ S $22^{\circ} 30^{\prime}$ E ($3+1 \circ^{\circ}$, PPRI), Kleinmond: coast (30°, OÖLM), Knersvlakte: railroad station at $31^{\circ} 34^{\prime} 47^{\prime \prime} \mathrm{S} 18^{\circ} 30^{\prime} 13^{\prime \prime} \mathrm{E}$ (2 o $^{\circ}$, OHL), Knysna

 Loeriesfontein ($1 \delta^{7}$, OÖLM), Matjiesfontein ($1 \delta^{\circ}$), $7-10 \mathrm{mi}$ SW Matjiesfontein ($1 \circ$, SAM), Montagu ($1 \mathrm{o}^{7}$,

13.5 km ENE Clanwilliam at $32^{\circ} 08^{\prime} 18^{\prime \prime}$ S $19^{\circ} 01^{\prime} 14^{\prime \prime} \mathrm{E}\left(1 \delta^{\circ}\right.$, CSE), Pearly Beach ($4 \circ, 10^{\circ}$, SAM), Plettenberg Bay ($1 \delta^{\circ} ; 2 \delta^{\circ}$, AMG; $1 \delta^{\circ}$, USNM), Ratelfontein to Oloff Berghfontein at $32^{\circ} 02-15^{\prime}$ S $18^{\circ} 35-31^{\prime} \mathrm{E}$ (1 o , AMG), Struisbaai (o°, USU), Swartberg Pass (1 ค, AMG), Swartrivier 7 km NW Prince Albert (1 \& $)$, 12 km
 24 km W Worcester (O^{\star}, USU). SPAIN: Albacete (Tormos, Asís, and Gayubo, 1994): Donal, Valdeganga. Alicante (Gayubo and Mingo, 1988; Torregrosa, Gayubo, Tormos, and Asís, 1993): Alicante, La Barranca, Muchamiel, Novelda, Orihuela, San Vicente del Raspeig, Sax. Almería: Alpujarras (1 ơ), Laujar (Suárez, 1959), Paterna (Suárez, 1959). Baleares: Mayorca: Col d'en Rebassa (Compte Sart, 1959), Porto Pi (Saunders, 1904). Burgos (Gayubo and Sanza, 1986): Fuentelcésped, Fuentespina. Cáceres: Mesillas (Gayubo et al., 1990a). Canary Islands: Tenerife: San Andrés (de Beaumont, 1968; Simon Thomas, 1969). Gerona: Palamós (Königsmann, 1971). Granada: Granada. Guipúzcoa: Irún (Gayubo and Mingo, 1988). Huesca: Barbastro (Gayubo and Mingo, 1988). Jaen: Las Correderas. León: Villablino (Gayubo and Mingo, 1988). Madrid (Gayubo and Mingo, 1988, or as indicated): Alcalá de Henares, Arganda, El Escorial, El Pardo, Madrid (1 of), Móstoles, Parla, Ribas de Jarama, San Fernando de Henares, Vaciamadrid, Villaverde, Villaviciosa de Odon. Málaga: Málaga, Marbella (de Beaumont, 1962), San Pedro de Alcantara, Velez. Navarra: Tudela. Salamanca (Gayubo, 1984a): Aldearrubia, Valverdón. Segovia: Coca (1 \& 1 ơ , SCHL), Lastras de Cuéllar (Gayubo and Heras, 1986). Soria (Gayubo, García, Torres, and González, 1999): Alcubilla del Marqués, Bayubas de Abajo, Garray, Lubia, Quintana Redonda, Rejas de San Esteban, Riba de Escalot, San Esteban de Gormaz, Soria (2 ot $^{\circ}$, SCHL), Villaverde del Monte. Teruel: Oliete (Dusmet, 1915). Toledo: Alberche (Gayubo and Mingo, 1988), Escalona (Gayubo et al., 1990), Seseña (Gayubo and Mingo, 1988), Toledo. Valencia: Picasent (Giner Marí, 1935), Valencia (Gayubo and Mingo, 1988). Valladolid: Alcazarén (Gayubo and Heras, 1986), San Miguel del Arroyo (Gayubo, 1985a), Viana de Cega (Gonzáles, Gayubo, and Torres, 1998). Vizcaya: Bilbao (Gayubo and Mingo, 1988). Zamora: Fermoselle (Gayubo, 1985b), Peleas de Arriba (Gayubo, 1986a), Toro (Gayubo, 1986). Zaragoza (Gayubo and Mingo, 1988): Calatayud, Tiermas. Also: Cataluña (Antiga and Bofill): Pedralbes, Vallvidrera. SYRIA: Barzé near Damascus. TAJIKISTAN: Kabadian. TANZANIA: Coast Region: Pugu Forest near Kisarawe (1 d $^{\circ}$). Dar es Salaam Region: Bahari

 Kilimanjaro Region: 24 km NNE Same (2 o $^{\circ}$). Morogoro Region: 43 km E Morogoro (1 甲 \uparrow), 128 road km
 (6 ㅇ, 9 o $^{\circ}$), Ruaha River bank 7 km S Mikumi (7 ㅇ, 9 o $^{\circ}$). Mwanza Region: Mwanza (1 ㅇ, ZMAN). Tanga Region: East Usambara Mountains (Rodgers and Homewood, 1982), 33 km SW Korogwe (3 ® $^{\circ}$), 10 km WNW Mabokweni (1 \circ). Zanzibar Region: Pemba Island ($1 \circ$, AMM); Unguja (= Zanzibar Island): airport (1 ㅇ,

 25 km S Bizerte ($1 \delta^{\circ}, \mathrm{CSE}$), Nefta at $33^{\circ} 55^{\prime} \mathrm{N} 7^{\circ} 53^{\prime} \mathrm{E}\left(2 \sigma^{\circ} ; 2 \delta^{\circ}, \mathrm{CSE} ; 1 \sigma^{\circ}\right.$, MS), Shkira 50 km N Gabès (1 ค, CSE), Tozeur (${ }^{\circ}$ ® $^{\circ}$). TURKEY: Bursa: 10 km S Karacabey. Istanbul: Anadolu Kavagi 25 km N Úsküdar (Hensen and van Ooijen, 1987). Trabzon: Kadirga Yalasi (Gayubo, Özbek, and Yildirim, 2003). Urfa: Halfeti (Hensen and van Ooijen, 1987). TURKMENISTAN: Kara Kala. UGANDA: Ankole Kichwamba (2 ㅇ, USNM), 23 mi W Masindi ($\mathrm{c}^{\text {o }}$). UKRAINE: Kanev Nature Reserve (Gorobchishin, 1995, 1996). UNITED ARAB EMIRATES: Hatta ($1 \mathrm{o}^{*}$, KMG). UZBEKISTAN: Samarkand ($1 \mathrm{o}^{*}$, ZMMU, holotype of

 Gemena (2 ㅇ, FSAG). Federal District: Kinshasa (1 ค, MRAC). Haut-Zaïre: Kisangani ($1 \delta^{\circ}$, AMNH). Kivu: Ruindi Camp in Virunga National Park ($1 \delta^{\pi}$, CU), Uvira (1 早, MRAC). Shaba: Biano ($2 \delta^{\pi}$, BMNH), Kuwezi ($1 \mathrm{o}^{7}, \mathrm{FSAG}$) and Lusinga ($1 \mathrm{o}^{7}, \mathrm{FSAG}$) in Parc National de l’Upemba, Likasi (1 ㅇ, LACM, as Jadotville). Zaïre Central: Boma at $6^{\circ} 00^{\prime} \mathrm{S} 13^{\circ} 00^{\prime} \mathrm{E}\left(2\right.$ ㅇ, AMNH), Mbanza Ngungu at $5^{\circ} 30^{\prime} \mathrm{S} 15^{\circ} 00^{\prime} \mathrm{E}\left(48^{\circ}\right.$; $1 \stackrel{\circ}{\circ}$, AMNH), Zambi at $6^{\circ} 00^{\prime}$ S $12^{\circ} 50^{\prime} \mathrm{E}(1+$, AMNH). ZAMBIA: Eastern Province: 20 km SE Chipata (1 ㅇ, USU), Luwumbu Valley in Upper Luangwa ($1 \stackrel{\circ}{ }$, BMNH), 31 km E Petauke ($1 \AA^{\circ}$), 32 km E Petauke

15 km S Lusaka (1 ㅇ) , 21 km E Lusaka (1 ค, MSNT), ca 20 km E Lusaka International Airport (1 ㅇ, 4 ه ${ }^{\text {o }}$).
Northern Province: 65 road km NE Serenje ($2 \circ+3$ ơ; 2 \& \uparrow, NHMZ). Southern Province: 5 km E Choma

 Chishawasha near Harare ($1 \circ+1 \circ^{\circ}$, BMNH), Harare ($1 \circ$, AMG), near Harare [probably Chishawasha] (2 ค , RMNH), Hope Fountain ($1 \sigma^{\pi}$, TMP), Iwaba near Kwekwe ($1 \sigma^{\pi}$, BMNH), Joblings Farm ($1 \sigma^{\pi}$, ZMAN), Kami Ruins ($1 \circ+1 \boldsymbol{o}^{\circ}$), Lion and Cheetah Park 24 km W Harare ($1 \circ+2 \circ^{\circ}$), Mavuradonha Wilderness area 15 km E Muzarabani ($4 \mathrm{o}^{\text {º }}$, OÖLM), Mbizi Game Park (= Rocky Farm) 20 km SE Harare ($3 \mathrm{c}^{\text {o }}$), 11 km NE Nyamandhlovu ($1 \sigma^{\circ}$), 7 km WSW Nyamandhlovu at Kami River (1 σ^{*}), Nyika 80 km E Masvingo ($1 \mathrm{o}^{*}$,

 USNM).

Tachysphex fulgidus Arnold

Figures 153, 154.
Tachysphex fulgidus Arnold, 1924:67, ㅇ, © ${ }^{\text {o }}$. Lectotype: ㅇ, South Africa: Eastern Cape Province: Willowmore (TMP), here designated, examined.-Arnold, 1930:4 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:273 (listed).

Recognition.- Tachysphex fulgidus has the labrum convex and protruding beyond the clypeal free margin. It has an unique galea which is practically unsculptured proximally, and minutely, densely punctate in the distal third and whose crease is transverse and curving up dorsally (Fig. 153c). Also unique is the propodeum: the dorsum is dull, longitudinally ridged, whereas the side is punctate (except anteriorly), with practically unsculptured interspaces. Subsidiary recognition features are: erect body setae sinuous, including those on the postocellar area and the basal declivity of tergum I (as in hadronyx); mesothoracic punctures well defined; fore- and midfemoral venters, in both sexes, with a few, sparse punctures and alutaceous interspaces.

Description.- Labrum convex, markedly protruding beyond clypeal free margin. Galea as long as scape, practically unsculptured proximally, but distal third sharply delimited, with minute, nearly contiguous punctures; crease transverse, curving up dorsally (Fig. 153c). Mesothoracic punctures well defined (interspaces shiny); averaging several diameters apart on scutal disk; about 1-2 diameters apart near center of mesopleuron, less than one diameter apart on episcrobal area; 2-3 diameters apart on mesothoracic venter. Episternal sulcus complete. Propodeal dorsum dull, longitudinally ridged; side punctate (except ridged next to metapleural sulcus), interspaces shiny. Hindcoxal dorsum with inner margin carinate basally. Fore- and midfemoral venters with a few, minute punctures (interspaces alutaceous).

Setae (numbers in parentheses indicate setal length expressed as a fraction of basal mandibular width): sinuous, suberect to erect, on frons, postocellar area (0.5), lower gena (0.5), mesothorax (0.5 on scutum anteriorly), propodeal dorsum (0.6), and basal declivity of tergum I (up to 0.5).

Head and thorax black, mandible yellowish red except apically. Frontal setae silvery in female, golden in male. Wing membrane hyaline; forewing costal vein light brown, subcostal vein brown. Femora black except apically, tibiae and tarsi red. Gastral segments I-III red, remainder black. Terga not fasciate apically.

ㅇ.- Clypeus (Fig. 153a): bevel longer than basomedian area, delimited anterolaterally by oblique carina that emerges from lip corner; lip arcuate, shallowly sinuous laterally. Width of postocellar area $1.1 \times$ length. Dorsal length of flagellomere I $2.1 \times$ apical width. Midtrochanteral venter: punctures many diameters apart. Foretibial outer surface impunctate, glabrous, with one spine.

FIGURE 153. Tachysphex fulgidus Arnold: a - female clypeus and mandible; b - male clypeus and mandible; c - female galea; d - volsella; e - penis valve.

Forebasitarsus with eight or nine rake spines. Apical depression of tergum V impunctate, glabrous. Pygidial plate with a few, sparse punctures, interspaces alutaceous. Length 9.4 mm .
δ^{*}.- Mandibular inner margin with low, obtuse tooth, without cleft. Clypeus (Fig. 153b): bevel longer than basomedian area, delimited anterolaterally by oblique carina that emerges from lip corner; lip free margin obtusely pointed, with well-defined corner; distance between corners $0.6 \times$ distance between corner and orbit. Width of postocellar area $1.3 \times$ length. Dorsal length of flagellomere I $2.2 \times$ apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with three rake spines on one leg and four on the other; outer apical spine of foretarsomere II longer than tarsomere III. Sternal punctures minute but well defined, apical depressions of sterna III-VI impunctate. Length 7.5 mm . Volsella and penis valve: Figs. 153d, e.

Collecting dates.- The two known specimens were collected on 15 February 1903 (male) and 10 January 1912 (female).

Geographic distribution (Fig. 154).- Known only from Willowmore in Eastern Cape Province, South Africa.

Records.- SOUTH AFRICA: Eastern Cape Province: Willowmore ($1 \circ+1 \overbrace{}^{\circ}$, TMP, lectotype and paralectotype of fulgidus).

Tachysphex fulvitarsis (A. Costa)

Figures 154-156.
[N.B. There are more than 160 literature citations of fulvitarsis and its synonyms subsequent to the original descriptions, mainly locality records from southern and central Europe, but only the essential nomenclatural references are provided below. Previous revisionary works are by de Beaumont, 1936a:203 and Pulawski, 1971:90.]

Tachytes fulvitarsis A. Costa, 1867a:86, ․ . Holotype: \circ, Italy: Napoli area (NAPOLI), not exam-ined.- As Tachysphex fulvitarsis: de Beaumont, 1936c:6 (study of type, new combination).
Tachytes fulvitarsis A. Costa, 1867b:30, ㅇ. + Objective synonym of Tachytes fulvitarsis A. Costa, 1867a.
Tachytes acrobates Kohl, 1878:705, ㄴ. Lectotype: ㅇ, Austria: Tirol: Zams (NHMW), here designated, examined. Synonymized with Tachysphex

Figure 154. Collecting localities of Tachysphex fulgidus and fulvitarsis (African localities only). fulvitarsis by de Beaumont, 1936a:203, 1936b: 617, and 1936c:6.-Kohl, 1880:180, 234 (description of σ^{*}).—As Tachysphex acrobates: Kohl, 1883c:671 (new combination).
Tachytes strigosus Mocsáry, 1879:126, ㅇ. Syntypes: ㅇ, Hungary: Budapest (TMB), not examined. Synonymized with Tachysphex acrobates by Kohl, 1885:390.
Tachytes erythrogaster A. Costa, 1882a:197, sex not indicated (as erythrogastra, incorrect original termination). Holotype or syntypes: Italy: Sardegna: Cagliari (NAPOLI), not examined. Synonymized with Tachytes fulvitarsis by A. Costa, 1884:246 and 1885:17.- As Tachysphex erythrogaster: de Beaumont, 1936c:7 (new combination).- As Tachysphex fulvitarsis erythrogaster: Pulawski, 1971:95 (new status, in revision of Palearctic Tachysphex).
Tachytes erythrogaster A. Costa, 1883b:334, sex not indicated (as erythrogastra, incorrect original termination). Objective synonym of Tachytes erythrogaster A. Costa, 1882a.
Tachytes dubius Radoszkowski, 1886:31, ơ. Syntypes: đ̛, Russia: Orenburg; Turkmenistan: Askhabad; and Caucasus: no specific locality (KRAKÓW), not examined. Synonymized with Tachysphex acrobates by de Beaumont, 1936a:204, 1936b:617, and 1936c:6, who studied type material.
As Tachysphex caucasicus (Radoszkowski, 1886): Kohl, 1888a:143 ($\overbrace{}^{\circ}$ only; $\uparrow+=$ Tachysphex stachi de Beaumont).
Tachysphex bipunctatus F. Morawitz, 1891:207, ㅇ. Holotype: 우, Kazakhstan: Ryn-Peski (ZIN), examined before 1971. Synonymized with Tachysphex fulvitarsis by Pulawski, 1971:90.

RECOGNITION.- Tachysphex fulvitarsis has a dull mesopleuron, with shallow punctures that vary from less than one diameter apart to compressed against each other, a ridged propodeal side, and setae of the propodeal dorsum oriented anterad. The female has a unique combination of an obtusely pointed clypeal lip (Fig. 155a) and a mesally emarginate labrum (Fig. 155c). An unusually well-defined setigerous groove on the labrum's posterior surface, adjacent to its free margin, is also distinctive (Fig. 155c). The male can be recognized by its clypeal lobe that is pointed mesally and not angulate laterally, the clypeal free margin forming a single curved line from the point tip to orbit (Fig. 155b). The inner mandibular margin is not dentate, a subsidiary recognition feature.

JUSTIFICATION OF NEW SYNONYMY.- Pulawski (1971) considered Tachysphex erythrogaster to be a Corsican and Sardinian subspecies of fulvitarsis, based on an all red gaster of most females. Schmidt in Bitsch et al. (2001:151) regards it as a simple color form that he calls fulvitarsis form erythrogaster (an infrasubspecific name, not available according to Article 15.2 of the Code). Costa

Figure 155. Tachysphex fulvitarsis (A. Costa): a - female clypeus and mandible ($\times 20$); $\mathrm{b}-$ male clypeus and mandible ($\times 46$); c - female labrum, posterior surface ($\times 132$); d - male labrum, anterior surface ($\times 210$).
$(1884,1885)$ already treated these two names as synonyms, and I agree with his opinion now.
Description.- Scutal punctures less than one diameter apart. Mesopleural punctures shallow, varying from less than one diameter apart to compressed against each other. Propodeal dorsum rugose; side ridged. Hindcoxal dorsum with inner margin carinate basally or not carinate.

Setae appressed on postocellar area and scutum; suberect on each side of oral fossa next to occipital carina (setal length about $0.2 \times$ basal mandibular width); oriented obliquely anterad on propodeal dorsum (except oriented posterad on small, basomedian area).

Head and thorax black, mandible reddish mesally. Frontal setae silvery in both sexes. Wing membrane slightly infumate; forewing costal and subcostal veins brown. Legs and gaster varying from all red to all black (see Variation below). Terga I-III silvery fasciate apically.

ㅇ.- Labrum: free margin narrowly emarginate mesally, posterior surface with unusually welldeveloped row of setigerous punctures adjacent to free margin (Fig. 155c). Clypeus (Fig. 155a): bevel as long as basomedian area or longer; lip free margin obtusely pointed, shallowly concave laterally. Width of postocellar area 1.2-1.3 \times length. Dorsal length of flagellomere I $2.1-3.0 \times$ apical width. Dorsal foretibial surface with two spines; outer surface with one spine near midlength. Forebasitarsus with 7-9 rake spines. Apical depression of tergum V: see Variation below. Pygidial plate: punctures averaging $2-3$ to many diameters apart, interspaces conspicuously microsculptured to largely unsculptured. Length $9.0-14.0 \mathrm{~mm}$.
0^{7}. - Mandible: trimmal carina without tooth or cleft (Fig. 155b). Labrum free margin slightly emarginate (Fig. 155d) to slightly projecting mesally. Clypeus (Fig. 155b): bevel about as long as basomedian area to markedly shorter; lip free margin pointed mesally (obtusely so in some specimens), not angulate laterally (clypeal free margin thus forming single curved line from midpoint to orbit). Width of postocellar area $1.4-1.6 \times$ length. Dorsal length of flagellomere I 1.4-1.9 \times apical width. Forefemoral notch microscopically setose, somewhat smaller than average for the genus. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Length $6.0-13.0 \mathrm{~mm}$. Volsella and penis valve: Fig. 156.

Variation.- Color of legs. In most populations, the femora and tibiae are black, and the tarsal apex is reddish or (Zambian specimens) the tarsi are all black. In the specimens from the Ivory Coast, red are: the fore- and midfemoral apex, hindfemur, tibiae, and tarsi.

Figure 156. Tachysphex fulvitarsis (A. Costa): volsella with outlines showing individual variation and penis valve.

Color of gaster. In most populations, the gaster is red basally (segments I and II or I-III) and black apically. The entire gaster is black in some specimens from Spain, Portugal, Transcaspia, and in all specimens from Israel, Tanzania, Zambia, and South Africa. The gaster is all red in many females from Corsica and Sardinia.

Apical female tarsomeres. Unusually stout in Palearctic specimens (see Pulawski, 1971:Fig. 21), but of the average shape for the for the genus in sub-Saharan individuals.

Apical depression of female tergum V. Finely punctate throughout in most populations, but impunctate in some Palearctic specimens.

Nesting behavior.- Nesting habits of Tachysphex fulvitarsis were observed by Ferton, 1901a (Corsica) and 1912 (Algeria), Bernard, 1934 (France), Deleurance, 1946 (France), Olberg, 1959 (Germany), Bonelli, 1988 (Sardinia), and Kazenas and Nasyrova, 1991 (Kazakhstan). Their data are summarized below.

Adult individuals spend the nights in burrows that they dig in the ground (Olberg). The nest consists of an oblique gallery and a single cell and is permanently open during the provisioning period (Deleurance, Bonelli). Tettigoniid nymphs are used as prey: Ctenodecticus bolivarii Targioni Tozetti, Platycleis intermedia (Audinet-Serville), and Platycleis tessellata Charpentier; and Deleurance records "other undetermined locusts." Prey are flown to the nest, kept venter to venter (Bonelli). Kohl's (1885) record of fulvitarsis preying upon hemipteran nymphs was not confirmed by subsequent authors. From one (Ferton, 1901a) to several incompletely paralyzed prey are stored in a cell. The egg is glued by the cephalic end to the prey's forecoxa (Ferton, 1901a; Bonelli, 1988), perpendicularly to the victim's long axis; the incubation period is about $35-48$ hours.

Geographic distribution (Fig. 154).- Europe (excluding British Isles) north to southern Sweden (Perkins, 1942; Tjeder, 1951), Africa, Middle East, Pakistan, Kazakhstan, and Transcaspia, Siberia east to Kyakhta in Chita Oblast' and to Semenovka in Amur Oblast' (Kazenas, 1980), north to Yakutsk.

Records (only African and Pakistani localities).- ALGERIA: Oran (Pulawski, 1971). BURKI-
 MOROCCO (from de Beaumont, 1955, or as indicated): Arbalou 43 km SE Marrakech (1 9 , ZMAN), Asni,

Azrou in Moyen Atlas (Pulawski, 1971), Douet-Aoua (Pulawski, 1971), Ifrane, Ijoukak, Kenitra: Mehdia, Mikdane in Gebel Ayachi (Pulawski, 1971), Tafraout, Tiznit: Oued Massa. PAKISTAN: Sind: Kirthar National Park 150 km NE Karachi, $25^{\circ} 10^{\prime}-26^{\circ} 05^{\prime} \mathrm{N} 67^{\circ} 10^{\prime}-67^{\circ} 55^{\prime} \mathrm{E}$ (1 우). SOUTH AFRICA: Northern Province: 5 mi W Warmbad ($1 \quad \circ$, USNM). TANZANIA: Tanga Region: 73 km NW Korogwe (1 TUNISIA: Ain Soltan 40 km W Jendouba ($1 \quad+$, CSE), Tabarka ($1{ }^{\boldsymbol{*}}$, CSE). ZAMBIA: Eastern Province: 31 km E Petauke ($1 \mathrm{o}^{*}$). Southern Province: 56 road km NE Choma ($1 \mathrm{o}^{\circ}$), 25 km E Kalomo ($1 \circ$, MSNT),

Tachysphex gagates Arnold

Figures 157, 158.
Tachysphex gagates Arnold, 1940:119, ํ. . Holotype: 우, Zimbabwe: Kami (SAM), examined.— Bohart and Menke, 1976:274 (listed).

RECOGNITION.- Tachysphex gagates is easily recognized by its shiny propodeum whose dorsum and side have inconspicuous microscopic punctures, with interspaces unsculptured or aciculate; at most the posterior face is punctate or ridged. Subsidiary recognition features include: genal and thoracic setae sinuous, gaster all red, and legs largely red. The dentate free margin of the female clypeal lip is also distinctive (Fig. 157a).

Description.- Frons dull, microsculptured, with minute, ill-defined punctures. Scutal punctures about two to many diameters apart on disk in female and many males, but about one diameter apart in some males from Kenya. Mesopleural punctures minute, ill defined, about one diameter apart near episternal sulcus, up to several diameters apart posteriorly. Punctures of mesothoracic venter varying from about one diameter apart to about 2-3 diameters apart. Propodeum shiny, unsculptured or aciculate except for sparse, microscopic punctures, but posterior face in some specimens with well-defined punctures or transverse ridges. Hindcoxal dorsum with inner margin carinate basally.

Setae erect, straight on postocellar area; sinuous on lower gena, occiput, and thorax (including propodeum); setal length (expressed as a fraction of basal mandibular width): 0.2-0.4 on postocellar area, about 0.6 on each side of oral fossa next to occipital carina as well as on scutum anteriorly, and up to 0.8 between propodeal side and posterior face. Mesopleural setae largely concealing integument in female but not in male. Setae of propodeal dorsum variously oriented, but most median setae inclined obliquely anterad.

Head and thorax black, scapal venter and mandible yellowish red (mandible black apically), also clypeal bevel in some males; pronotal lobe light brown posteriorly in male. Frontal setae silvery in female, golden in male. Wing membrane hyaline; forewing costal vein reddish, subcostal vein dark brown. Femora, tibiae, and tarsi red or basal half of forefemur and basodorsal area of midfemur black. Gaster red but tergum V largely black in females from Kenya. Terga I-IV silvery fasciate apically.

ㅇ.- Labrum emarginate mesally. Clypeus (Fig. 157a): bevel markedly convex, longer mesally than basomedian area; lip free margin arcuate, emarginate mesally, with a pair of admedian teeth and three pairs of lateral teeth (lateral teeth ill defined in some specimens). Width of postocellar area $0.7-0.8 \times$ length. Dorsal length of flagellomere I $2.0-2.1 \times$ apical width. Dorsal foretibial surface with two or three spines; outer margin with one to three spines, punctures several to many diameters apart. Forebasitarsus with $10-12$ rake spines. Tarsi shortened: length of fore- and midtarsomeres II about 1.8-2.0 and 2.1-2.2 \times apical width, respectively; that of midtarsomere III $1.2 \times$ apical width; that of fore-, mid-, and hindtarsomeres IV about 1.1-1.2, 0.8-0.9, and $0.9-1.0 \times$ apical width, respectively; apicoventral margin of tarsomeres IV concave. Tarsomeres V elongate, markedly curved in lateral view, not angulate basoventrally, without spines on venter or lateral mar-

Figure 157. Tachysphex gagates Arnold: a - female clypeus and mandible; b - male clypeus and mandible; c - pygidial plate of female; d - volsella; $\mathrm{e}-$ penis valve.
gins; apicoventral margin convex; claws elongate, equal in size. Apical depression of tergum V impunctate. Pygidial plate broader than average for the genus, rounded apically (Fig. 157c), with punctures that are several to many diameters apart; interspaces aciculate or unsculptured. Length $8.0-9.8 \mathrm{~mm}$.
0^{8}. - Mandible: trimmal carina with tooth; cleft varying: present in most specimens from Namibia and South Africa, but ill defined or absent in those from Kenya and Tanzania. Clypeus (Fig. 157b): bevel shorter to longer than basomedian area; lip free margin arcuate, with welldefined corners; distance between corners about $0.7 \times$ distance between corner and orbit. Width of postocellar area $0.7-0.8 \times$ length. Dorsal length of flagellomere I $1.5-2.1 \times$ apical width. Forefemoral notch with microscopic setae, margined anteriorly. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II as long as tarsomere III or shorter. Punctures of tergum VII varying from less than one diameter apart to several diameters apart mesally. Sterna punctate and setose, except basal portions of sterna III-V asetose (asetose portions may be hidden); punctures becoming large on sterna IV-V; preapical setae suberect on sterna IV-VI. Length $5.6-9.1 \mathrm{~mm}$. Volsella and penis valve: Figs. 157d, e.

Habitat.- The Kenyan specimens collected at Olorgesailie and 120 km S Lodwar were all found on sand in a dry river bed under flowering trees, Ziziphus mucronata Willdenow (Rhamnaceae). They were landing on the ground, resting a short while, and then flying to a new place or coming back to the same place. Tanzanian specimens north of Korogwe were attracted to
the flowering small trees, Boscia angustifolia A. Rich. (Capparidaceae).

Geographic distribution (Fig. 158).Kenya to Namibia and South Africa.

Records.- KENYA: Coast Province: Taita Discovery Centre ($1 \mathrm{o}^{\circ}$). Eastern Province: 2 km S Archer's Post ($2 \delta^{\circ}$), 5 km NNE Isiolo ($1 \quad \circ, 1 \delta^{\circ}$), Ewaso Ng'iro River opposite Archer's Post ($1 \mathrm{o}^{\mathrm{r}}$). Rift Valley Province: Archer's Post at Ewaso Ng'iro River ($1+3$ of $)$, near W shore of Lake Turkana ($1 \mathrm{o}^{\text {o }}$), Lodwar road 4 km N road to Sigor (1 f), 120 km S Lodwar ($1+10 \sigma^{*} ; 4 \sigma^{\circ}$, NMK), Magadi road 46 air km SW Nairobi (1 \&, $9 \delta^{*} ; 4 \delta^{*}$, SAM), Marich Pass Field Studies Centre ($1 \circ$), Olorgesailie ($2 \delta^{\text {d }}$). NAMIBIA: Grootfontein District: 60 km SW Otavi (1 ㅇ, JG; 2 ㅇ, MS). Karasburg District: Farm Altdorn 330 km NE Ai Ais at $27^{\circ} 48^{\prime} 16^{\prime \prime} \mathrm{S}$ $17^{\circ} 40^{\prime} 02^{\prime \prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{CSE}\right)$. Keetmanshoop District:

Figure 158. Collecting localities of Tachysphex gagates. Noachabeb [Farm] 27 mi NNE Grünau (1 of,
 (3 0°, MS). Maltahöhe District: Naukluft at $24.3^{\circ} \mathrm{S} 16.2^{\circ} \mathrm{E}$ ($1 \delta^{\circ}$, CSE). Mariental District: 73 km S
 $5 \delta^{\top} ; 2 \delta^{\circ}$, NHMZ). Omaruru District: Okatjerute-Otjikoko 4 km E Omaruru ($1 \quad+$, NMN). Otjiwarongo
 N Kalkrand (4 $\sigma^{\circ}, \mathrm{MS}$). Tsumeb District: 30 km E Namutoni ($\mathrm{o}^{\mathrm{o}}, \mathrm{MS}$). Windhoek District: Aris (1 f),
 Province: Carnarvon ($2 \sigma^{\circ}, \mathrm{AMG}$), Olifantshoek (1 ค, $1 \mathrm{o}^{\circ}, \mathrm{FSCA}$), Ritchie 50 km SSW Kimberley (2 ค, OÖLM). Northern Province: Ellisras ($1 \sigma^{\text {or }}$, AMG). Western Cape Province: Prince Albert Road ($1 \mathrm{o}^{7}$, RMNH), Swartrivier 7 km NW Prince Albert ($3 \sigma^{\circ}$). TANZANIA: Arusha Region: Tarangiri National Park
 $2 \sigma^{\circ}$, CSE; $2 \sigma^{\pi}$, UDS), 10 km WNW Mabokweni (8 早, $8 \sigma^{\circ}$), 2 km NE Mkomazi ($4 \sigma^{\circ} ; 3 \sigma^{\circ}$, UDS). ZIMBABWE: Kami ($1+$, SAM, holotype of gagates).

Tachysphex gastrotrichus Pulawski, sp. nov.

Figures 159, 160.
Derivation of name.- Gastrotrichus is derived from two Greek nouns: gaster, stomach, belly, and trix, trichos, hair; with reference to the erect setae on tergum I in this species.

ReCOGNITION.- Tachysphex gastrotrichus has the labrum convex (markedly protruding beyond the clypeal free margin), the galea as long as the scape, the propodeal side ridged, and genal and thoracic setae markedly sinuous. Other species share this combination, but only gastrotrichus and ulothrix have straight, short setae on the postocellar area (at most slightly longer than the midocellar diameter). The largely glabrous hindfemoral venter is a subsidiary recognition feature. In gastrotrichus, however, the setae on the basal declivity of tergum I are erect (these setae may be lost in some old males), and the male forefemur is entire. In ulothrix, setae of tergum I are all appressed, and the male forefemur is emarginate. Tachysphex hadronyx also has erect setae on tergum I, but differs in having erect, sinuous setae on the postocellar area and many other characters given under that species.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea aciculate, sparsely punctate, as long as scape. Scutal punctures well defined, averaging 2-3 to several diam-
eters apart on disk (interspaces shiny). Mesopleural punctures well defined, averaging about one diameter apart (interspaces shiny). Propodeal dorsum irregularly ridged; side shiny, conspicuously ridged; upper metapleural pit oblong. Hindcoxal dorsum with inner margin carinate.

Setae (numbers in parentheses indicate setal length expressed as a fraction of basal mandibular width): fully concealing integument on frons but not on mesopleuron; sinuous on gena, scutum, mesopleuron, propodeum, fore- and midfemoral venters, and on outer surface of female scape; erect on lower gena ($0.7-1.0$), scutum anteriorly (0.7), and outer side of female scape; inclined on scutum posteriorly, on mesopleuron, and on fore- and midfemora; appressed to suberect on postocellar area, about as long as midocellar diameter; oriented anterad on propodeal dorsum (0.7). Hindfemoral venter asetose except basally. Basal declivity of tergum I, except mesally, with sinuous, suberect setae (up to 0.7).

Head and thorax black, but mandible (except apically), clypeus (except basally), and labrum yellowish red; pronotal lobe yellow posteriorly in some males. Frontal setae silvery in both sexes. Wing membrane hyaline; forewing costal vein light brown, subcostal vein brown. Coloration of femora: see below. Tibiae and tarsi red. Gaster red, but terga III-V or IV and V brown in some males (all terga largely brown in smallest male examined). Terga I-V in female, I-VI in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 159a): bevel about as long as basomedian area; lip free margin arcuate, with small, shallow notch mesally, not incised or sinuous laterally. Width of postocellar area $0.8 \times$ length. Dorsal length of flagellomere I 3.0-3.3 \times apical width. Base of forefemoral venter shiny, impunctate or with minute, sparse punctures. Dorsal foretibial surface with two spines; outer sur-

CS \& EH
Figure 159. Tachysphex gastrotrichus Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d - penis valve.
face shiny, sparsely punctate, with two or three spines. Forebasitarsus with eight or nine rake spines. Apical depression of tergum V punctate and setose. Length $7.5-10.0 \mathrm{~mm}$. Femora black, red apically.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 159b): bevel longer than basomedian area; lip free margin arcuate, emarginate mesally, straight on each side of emargination, with well-defined corner; distance between corners about $0.9 \times$ distance between corner and orbit. Width of postocellar area $0.8-1.0 \times$ length. Dorsal length of flagellomere I 2.0 $2.3 \times$ apical width. Base of forefemoral venter impunctate, shiny. Forefemoral venter entire, shiny and impunctate basally. Outer margin of forebasitarsus with five or six rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Sterna III-VI (except laterally) each with transverse, subbasal fringe of agglutinated setae (fringes visible only when the sterna are fully extended). Sternum VIII broadly, shallowly emarginate apically. Length $5.5-8.3 \mathrm{~mm}$. Volsella and penis valve: Figs. 159c, d. Femora red, dorsum black (except apically); hindfemur largely black in some specimens.

Geographic distribution (Fig. 160).Namib Desert.

Records.- Holotype: ${ }^{\text {ơ }}$, NAMIBIA: Swakopmund District: 10 km E Swakopmund at Swakop River, 23 Feb 1990, WJP (CAS). Paratypes: NAMIBIA: Swakopmund District: 20 mi W Gobabeb, 5 Oct 1967, E.S. Ross and A.R. Stephen (1 \&); 20 km NE Hentiesbaai, 10 Dec 1996, WJP (1 \& 3 , $31 \circ^{\circ}$); 10 km E Swakopmund at Swakop River, 23 Feb 1990, WJP (l^{c}); 63 km NE

Figure 160. Collecting localities of Tachysphex gastrotrichus, geniculatus and gessianus.
 30 km E Walvis Bay, 23 Jan 1988, R. Miller and L. Stange (o $^{\circ}$, FSCA). Walvis Bay District: 11 km E Walvis Bay, 7 Dec 1996, WJP (1 ㅇ, 3 o $^{\circ}$).

Tachysphex geniculatus (Spinola)

Figures 160, 161.
Lyrops geniculata Spinola, 1839:480, ${ }^{\circ}$. Holotype or syntypes: $\boldsymbol{\circ}$, Egypt: no specific locality (MSNT), exam-ined.- de Beaumont, 1952b:48 (redescription of holotype or unique surviving syntype); Casolari and Casolari Moreno, 1980:113 (specimen in M. Spinola collection).- As Larrada geniculata: F. Smith, 1856:281 (new combination, listed).- As Tachysphex geniculatus: Kohl, 1885:395 (new combination, original description copied); Dalla Torre, 1897:680 (in catalog of world Hymenoptera); de Beaumont, 1952a:190 (Algeria); Pulawski, 1964:88 (Egypt), 1971:346 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:274 (listed); Guichard, 1991:339 (Jordan).
As Tachysphex No. 8: de Beaumont, 1940:168, synonymized with Tachysphex geniculatus by Pulawski, 1971:346.

Interpretation of the species name.- The only specimen of geniculatus present in the Spinola collection, Torino, is poorly preserved (covered with dirt, partly squashed, with the gaster reglued to the thorax), but its essential characteristics can be easily recognized. In particular, the anteriorly glabrous propodeal side and the few remaining erect setae on the postocellar area allow unequivocal recognition of the species.

RECOGNITION.-Tachysphex geniculatus shares the following unique combination with horus, inextricabilis, luxuriosus, and niloticus: labrum markedly convex and protruding beyond the clypeal lip; postocellar area unusually broad: width more than twice length (Figs. 161a, b); female mandible with cleft unusually broad, widely open (Fig. 161c), female clypeus with lip conspicuously emarginate laterally (Fig. 161c); and male forefemur not emarginate. Also, the mesopleuron is coriaceous (integument concealed by vestiture in some species), and the setae are short on the postocellar area (setal length no more than one midocellar diameter) and appressed on tergum I.

In the female of geniculatus the setae are erect or nearly so on the postocellar impression and on each side of it and not completely concealing the sculpture beneath the midocellus. In addition, the gaster is all black in many specimens. In horus, inextricabilis, luxuriosus, and niloticus, the setae are appressed or nearly so on the postocellar area and fully concealing the integument beneath the midocellus, and the gaster is red at least basally. As in horus and niloticus, the propodeal side of geniculatus is glabrous anteriorly, a subsidiary recognition feature.

The male of geniculatus shares with horus and niloticus the erect setae of the postocellar area and the propodeal side glabrous along the metapleural sulcus (setae of postocellar area appressed and propodeal side all setose in inextricabilis and luxuriosus). Unlike niloticus, the dorsal volsellar process is low, rounded (Fig. 161e) rather than high, narrow (Fig. 250). The integument of most specimens is visible from most angles between the midocellus and antennal socket (all or largely concealed by vestiture in the other four species, at least in the ventral half). The penis valve is thin apically, whereas rounded in the Egyptian specimens of horus, but horus from other areas are difficult to distinguish.

Description.-Labrum convex, conspicuously protruding beyond clypeal free margin. Galea with punctures several diameters apart, about as long as 0.9 of scape in female, 1.1 in male. Clypeus with short, obtuse carina emerging from lip corner; lip ill defined, forming single convex surface with bevel (at least mesally). Scutal hindcorner more prominent than average for the genus (scutal flange broadening posterad); scutal punctures well defined, averaging from about one diameter to several diameters apart on disk. Mesopleuron coriaceous, dull. Punctures of mesothoracic venter, anterad of each midcoxa, varying from 2-3 (some males) to many diameters apart (punctures about one diameter apart anteriorly and adjacent to midline). Propodeal dorsum dull, coarsely microsculptured, with ill-defined, longitudinal ridges at least basally; side ridged. Hindcoxal dorsum with inner margin not carinate.

Setae erect on postocellar impression and on each side of it in female (suberect in some specimens), on entire postocellar area in male, about as long as midocellar diameter; not concealing integument between midocellus and antennal socket from most angles; erect on each side of oral fossa next to occipital carina and equal to 0.4 of basal mandibular width; suberect on scutum anteriorly and on mesopleuron; variously oriented on propodeal dorsum; propodeal side asetose anteriorly. Sternum I all or largely glabrous.

Head and thorax black, mandible yellowish red mesally in female, brown or yellowish brown mesally in male. Frontal setae silvery in both sexes. Wing membrane hyaline; costal and subcostal veins of forewing light brown. Femora black; tibiae black except reddish basally and apically, hindtibial dorsum, in most specimens, partly to all red, and all tibiae red in a female from Saudi Arabia (Pulawski, 1971). Gaster all black (most specimens) or terga I and II partly or all red, apical depressions of terga translucent. Terga I-V silvery fasciate apically (fascia of tergum V ill defined in some females).

ㅇ. - Mandible: cleft unusually broad, widely open (Fig. 161c). Clypeus (Fig. 161c): bevel about as long as basomedian area; lip free margin straight or arcuate, roundly emarginate laterally. Width of postocellar area 2.2-2.4 \times length (Fig. 161a). Dorsal length of flagellomere I 2.4-3.0 \times

Figure 161. Tachysphex geniculatus (Spinola): a - female head in frontal view; b - male head in frontal view; c - female clypeus and mandible; d - male clypeus and mandible; e - volsella; f - penis valve.
apical width. Midtrochanteral venter with a few, large punctures. Forefemoral base, on anteroventral surface, with a few large punctures that are many diameters apart (interspaces aciculate). Dorsal foretibial surface with three spines; outer surface with one to three spines. Forebasitarsus with 7-9 rake spines. Venters of tarsomeres V each with thin, preapical spine. Sternum I all or largely asetose. Apical depression of tergum V unsculptured, glabrous. Pygidial plate with minute punctures that average many diameters apart (interspaces aciculate to unsculptured); lateral carina effaced near apex, apical margin truncate or slightly convex. Length $7.5-12.5 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with low, obtuse tooth and no cleft. Clypeus (Fig. 161d): bevel and lip ill defined; lip free margin slightly arcuate to nearly straight, with ill-defined corner; distance between corners $1.2-1.3 \times$ distance between corner and orbit. Width of postocellar area $2.3-2.5 \times$ length (Fig. 161b). Dorsal length of flagellomere I 1.7-2.25 \times apical width. Forefemur not emarginate. Outer margin of forebasitarsus with 3-6 rake spines; outer apical spine of foretarsomere II mostly longer than tarsomere III, but as long as tarsomere III in some specimens. Sternum VIII emarginate apically, bottom of emargination slightly prominent to slightly incised mesally. Length $6.5-9.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 161e, f.

Collecting period.- The specimen from the Hoggar Mountains, Algeria, was collected between 15 and 30 April, those from Egypt were collected between 3 March and 19 April, and those from Jordan between 6 and 10 March and on 1 April.

Geographic distribution (Fig. 160).—Algeria, Egypt, Jordan, Syria, Saudi Arabia.
Records.- ALGERIA: Idjef Mélène in the Hoggar Mountains (de Beaumont, 1952a). EGYPT: Al
 (11 \circ, 2 o $^{\circ}$). Al Qahirah (= Cairo): Gebel Asfar (Pulawski, 1971), Maadi (1 \&), Wadi Digla (1 \&) . Al Uqsur
 ARABIA: El Riyadh (Pulawski, 1971). SYRIA: Palmyra (Pulawski, 1971).

Tachysphex georgii Arnold

Figures 162-164.
Tachysphex georgii Arnold, 1940:122, ㅇ (as Georgii, incorrect original capitalization). Holotype: \circ, South Africa: Western Cape Province: George (TMP), examined .— Bohart and Menke, 1976:274 (listed).

ReCognition.- Tachysphex georgii has the labrum convex and markedly protruding beyond the clypeal free margin, galea about as long as the scape, propodeal side unridged to finely ridged, at least terga I-III silvery fasciate apically, setae appressed on the postocellar area and scutum, oriented posterad on the propodeal dorsum apicomesally, and shorter than the midocellar diameter adjacent to hypostomal carina. The female differs from similar African species in having tergum V punctate and setose throughout (including the apical depression) in combination with all black femora and at least hindtibiae. The male can be recognized by the black femora and the forefemoral notch either unsculptured and glabrous or with sparse, microscopic punctures and setae (Fig. 163); also the tibiae, at least the hindtibia, are black in many specimens. In similar African species, the forefemoral notch is densely, microscopically punctate and setose and at least the tibiae are red (all or partly). Subsidiary recognition features of the male georgii are: foretarsal rake well developed, dorsal volsellar process long, narrow (Fig. 162c).

Similar unassigned specimens.- Two \circ from Nigeria (BMNH) are identical, including all black tibiae, but they are likely to be a different species.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea closely punctate, as long as 0.9 of scape in female, 1.1 in male. Scutal punctures about one diameter apart, some punctures 2-3 diameters apart in many males. Mesopleuron dull, uniformly microsculptured.

Figure 162. Tachysphex georgii Arnold: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.

Propodeal dorsum evenly areolate; side dull, finely microsculptured, finely ridged anteriorly in most specimens, finely ridged throughout in some. Hindcoxal dorsum with inner margin carinate basally.

Setae suberect on each side of oral fossa next to occipital carina, shorter than midocellar diameter; appressed on postocellar area and scutum; oriented posterad on propodeal dorsum except oriented anterad basomedially.

Head and thorax black, mandible reddish mesally. Frontal setae with golden tinge in female (at least dorsally), golden in male (silvery adjacent to antenna in many specimens). Wing membrane slightly infumate (moderately so in some females); costal vein of forewing brown, subcostal vein black. Femora black; tibiae all black or inner foretibial surface red, but all tibiae red except hindtibia partly darkened in some males from Marich Pass area, Kenya. Terga I-III red in most females, but largely black in one specimens from South Africa (remainder black); in male terga I and II red (also part of III in some Kenyan specimens) or (many South African specimens) all gaster black. Terga I-III silvery fasciate apically (I-V in Kenyan females).

ㅇ.- Clypeus (Fig. 162a): bevel longer than basomedian area; lip free margin arcuate, emarginate mesally, sinuous laterally. Width of postocellar area $0.8 \times$ length. Dorsal length of flagellomere I 2.4-2.6× apical width. Dorsal foretibial surface with two or three spines; outer surface with two or three spines. Forebasitarsus with 8-10 rake spines. Apical spines of hindtarsomere IV reaching claw bases. Apical depression of tergum V punctate throughout. Pygidial plate with well-
defined punctures that average several to many diameters apart, at least mesally. Length $10.0-12.0 \mathrm{~mm}$.
ơ.- Mandible: trimmal carina with tooth, with or without cleft. Clypeus (Fig. 162b): bevel longer than basomedian area, delimited anterolaterally by oblique carina that emerges from lip corner; lip free margin arcuate (nearly straight in some specimens), emarginate mesally, with well-defined corner; distance between corners $1.1-1.3 \times$ distance between corner and orbit in most specimens, but 0.9 in single male from Cederberg, South Africa. Width of postocellar area $0.7-0.8 \times$ length. Dorsal length of flagellomere I 2.0-2.2 \times apical width. Forefemoral notch shiny, either unsculptured and glabrous or with sparse, microscopic punctures and setae (Fig. 163). Outer margin of forebasitarsus with 4-6 rake spines. Outer apical spine of foretarsomere II longer than tarsomere III. Hindfemoral venter with inner (= posterior) margin sharp in distal half. Sternum VIII evenly, shallowly emarginate apically. Length $7.8-10.1 \mathrm{~mm}$. Volsella and penis valve: Figs. 162c, d.

Prey.- A female from Hilton Farm, South Africa (AMG) is pinned with her prey, an acridid nymph (det. F.W. Gess).

Geographic distribution (Fig. 164).Uganda, Kenya, Lesotho, Zambia, Namibia, South Africa.

Records.- Kenya: Eastern Province: Pt. Hall to Embu road ($1 \overbrace{}^{\circ}, \mathrm{BMNH}$). Nyanza Province: Papenditi ($1 \overbrace{}^{\circ}$). Rift Valley Province: Marich Pass Field
 Nakuru at $0^{\circ} 08^{\prime} \mathrm{S} 36^{\circ} 05^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\prime}$, LACM). LESOTHO: Leribe at Hensley's Dam (1 ㅇ, AMG), Mamathes
 ($1 \mathrm{o}^{\circ}$, ZMLU). Otjiwarongo District: 18 km NE Kalkfeld ($1 \mathrm{o}^{\circ}$). Outjo District: Gemsbokvlakte in Etosha National Park (10^{7}, NMN). SOUTH AFRICA: Eastern Cape Province: Clifton Farm 18 km NW Grahamstown ($1 \circ$, AMG), 18 km WNW Grahamstown: Hilton Farm ($2 \circ$, AMG), Table Farm 10 km NW
 Van Reenen ($1 \quad \circ$, BMNH). Mpumalanga: Skukuza in Kruger National Park (3 $\stackrel{\circ}{ }$, PMA). Northern Cape
 OÖLM), Victoria West (o^{1}, AMG). Northern Province: Beacon Ranch 20 km NW Gravelotte ($1 \mathrm{o}^{\boldsymbol{7}}, \mathrm{AMG}$).
 Kloof in Wit River Valley ($1 \sigma^{\circ}, \mathrm{SAM}$), Barrydale ($2 \sigma^{\circ}$, OÖLM), Bulshoek between Klawer and Clanwilliam (1 ㅇ, SAM), Caleta Cove at Clanwilliam Dam at $32^{\circ} 14^{\prime} 20^{\prime \prime}$ S $18^{\circ} 55^{\prime} 45^{\prime \prime}$ E (10°, AMG), Cape (10°, BMNH ex F. Smith coll.), Cape Peninsula: Camps Bay ($1 \mathrm{o}^{\top}$, BMNH), Cape Town: Kirstenbosch Botanical Garden at $33^{\circ} 59^{\prime} \mathrm{S} 18^{\circ} 26^{\prime} \mathrm{E}\left(3 \mathrm{o}^{\circ}\right)$, Cederberg $15-30 \mathrm{~km}$ SE Clanwilliam ($1 \mathrm{o}^{\circ}$, USU), Ceres ($1 \circ$, BMNH), Citrusdal District (2 ㅇ, $10^{\circ}, \mathrm{SAM}$), 21.5 km ENE Clanwilliam at $32^{\circ} 04^{\prime} 45^{\prime \prime} \mathrm{S} 19^{\circ} 05^{\prime} 00^{\prime \prime} \mathrm{E}\left(10^{\circ}, \mathrm{CSE}\right.$), Clanwilliam Dam
at $32^{\circ} 11^{\prime} 50^{\prime \prime} \mathrm{S} 18^{\circ} 53^{\prime} 42^{\prime \prime} \mathrm{E}\left(10^{\circ}, \mathrm{AMG}\right), 31.5 \mathrm{~km}$ from Clanwilliam on road to Klawer ($1 \delta^{\prime}$, AMG), Du Toit's Kloof (1 \& \uparrow, BMNH), George (1 \&, TMP, holotype of georgii), Greyton ($4 \delta^{\circ}$, ÖLM), Hottentots 40 mi from Cape Town ($1 \delta^{\circ}$, BMNH), Klein [= Little] Karoo SE Groot River (1 ơ, ÖLM), Kliprand 60 km W Loeriesfontein ($1 \delta^{*}$, OÖLM), Montagu ($1 \delta^{*}, \mathrm{BMNH}$), 10 km N bridge on Olifants River on road to Vanrhynsdorp (1 ค, AMG), Oudtshoorn ($1 \sigma^{*}$, AMG), Pakhuis Pass ($2 \sigma^{*} ; 5 \delta^{\circ}$, UCD), E of Pakhuis Pass (1 0^{\top}), Paleisheuwel ($1+$, SAM), Sea Point ($1 \sigma^{\pi}$, BMNH), Swartberg Pass ($1 \sigma^{\circ}$, SAM), near Swartberg Pass ca 1450 m at $33^{\circ} 20^{\prime} \mathrm{S} 22^{\circ} 02^{\prime} \mathrm{E}\left(30^{\circ}\right), 10 \mathrm{~km}$ NE Vanrhynsdorp ($20^{\circ} ; 70^{\circ}$, OÖLM), Wellington: Rooshoek (3 q 9 ,
 DA: Lake Edward ($1+$, BMNH). ZAMBIA: 100 km NE Livingstone (1 ơ, OÖLM).

Tachysphex gessianus Pulawski, sp. nov.

Figures 160, 165.
Derivation of name.-Gessianus is a Neolatin masculine adjective derived from the last name of Frederick W. Gess and Sarah K. Gess in recognition of their work on South African wasps and as a sign of gratitude for their hospitality and unselfish help during this study.

Recognition.- Tachysphex gessianus, an endemic of South Africa, has an all black gaster (also the legs are black in the female and many males), an essentially flat labrum (insignificantly protruding beyond the clypeal free margin), galea slightly longer than wide in lateral view, hindwing crossvein cu-a vertical, and apical tarsomeres without ventral spines. Also, the mesopleural punctures are markedly sparser below scrobe than above, the propodeal dorsum is evenly microareolate, the propodeal side not ridged, and the setae are appressed on the postocellar area (shorter than the midocellar diameter) and oriented posterad on the propodeal dorsum.

In addition to the above, the female of gessianus can be recognized by the combination of two features: the fore- and midfemoral posteroventral surfaces with only a few setigerous punctures (hence nearly glabrous) and flagellomeres III-VIII with well-defined sensory areas. Also, the tarsi are slightly shortened (e.g., length of midtarsomere II 1.9-2.0× apical width, length of tarsomeres IV equal to width). The female of karoo is similar, but lacks a sensory area on flagellomere III and the sensory areas on flagellomeres IV-VIII are ill defined.

In the the male, the forefemur may be either impunctate ventrally or (most specimens) densely, uniformly punctate. The forebasitarsus has no preapical spines on the outer margin, the clypeal lip is obtusely pointed, with well-defined corner (Fig. 165b), and the sternal setae are fully appressed. Tachysphex barkeri, brachypus, and eurystoma share these characteristics, but they have an unusually short flagellomere I whose ventral length is slightly less than apical width (Fig. 55c). In gessianus, this flagellomere's ventral length slightly exceeds its apical width. Also, the clypeal lip of gessianus is more prominent than in the other three (compare Figs. 165b, 54b, and 136b). Specimens with red legs resemble ovambo, paulus, and saevus, but differ in having a longer clypeal lobe (midlength about $1.2 \times$ distance between lip corner rather than about 1.0) and the dentate portion of the penis valve expanded basally (Fig. 165d) rather than simple.

Description.- Labrum flat except for narrow distal portion that is curved toward head's posterior face (insignificantly so in male). Galea slightly longer than wide in lateral view, about as long as 0.8 of scape. Scutal punctures: see below. Mesopleural punctures well defined to evanescent, several diameters apart below scrobe, interspaces microsculptured, somewhat shiny to dull. Episternal sulcus complete in female, incomplete in male. Propodeal dorsum evenly microareolate, side microsculptured, with minute punctures that are several diameters apart. Hindcoxal dorsum with inner margin carinate basally. Sternum I with median carina apically.

Setae slightly longer than midocellar diameter on each side of oral fossa next to occipital carina; appressed on postocellar area, scutum, and midfemoral venter; oriented posterad on propodeal dorsum.

Figure 165. Tachysphex gessianus Pulawski, sp. nov.: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.

Head, thorax, and gaster black, mandible reddish mesally. Frontal setae silvery in both sexes. Wing membrane infumate; costal and subcostal veins of forewing brown. Legs black in female and most males (tarsal apex reddish in male), but partly red in two males from Pearly Beach: foretibial inner margin and mid- and hindtibial bases red in one; all femora, tibiae, and tarsi red in the other (fore- and hindfemora somewhat darkened basally). Terga I-III silvery fasciate apically (fascia evanescent on tergum III in females and some males from Pearly Beach).

ㅇ. - Labrum free margin arcuate. Clypeus (Fig. 165a): bevel longer than basomedian area; lip free margin arcuate or somewhat pointed mesally, with two lateral incisions on each side (inner incision inconspicuous in some specimens). Width of postocellar area $1.3 \times$ length. Dorsal length of flagellomere I $1.5-1.6 \times$ apical width; flagellomeres III-VIII with well-defined sensory areas; length of flagellomere VIII $1.5 \times$ width. Scutal punctures of two sizes: small punctures that average about one diameter apart near margins and up to 2-3 diameters on disk; and somewhat larger punctures that are many diameters apart. Fore- and midfemoral posteroventral surfaces finely microsculptured, with setigerous punctures that are many diameters apart. Dorsal foretibial surface with one or two spines; outer surface with narrow, glabrous zone and two or three bristles. Tarsi shortened: length of fore- and midtarsomeres II 1.2 and 1.9-2.0 \times apical width, respectively; that of midtarsomere III $1.2 \times$ apical width, and tarsomeres IV of all legs as long as wide. Forebasitarsus with $10-12$ rake spines. Apical depression of tergum V impunctate, glabrous. Pygidial plate with punctures that are up to many diameters apart on disk. Length $8.8-11.3 \mathrm{~mm}$.
d 7.- Mandible: trimmal carina with tooth and cleft (Fig. 165b). Clypeus (Fig. 165b): bevel shorter than basomedian area; lip free margin obtusely pointed (longer at midpoint than laterally), with well-defined corner; distance between corners $0.9 \times$ distance between corner and orbit. Width of postocellar area 1.1-1.2 \times length. Dorsal length of flagellomere I 1.3-1.4 \times apical width. Scutal punctures about one diameter apart. Forefemoral venter densely, uniformly punctate in most specimens, but impunctate in some, notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Length $8.3-8.8 \mathrm{~mm}$. Volsella and penis valve: Figs. 165 c , d.

Floral records.- One of the females from Hilton Farm was collected on flowering Maytenus linearis L. f. Marais (Celastraceae), and the females from Koonap River area were collected on flowering Ziziphus mucronata Willdenow (Rhamnaceae), as recorded by the collectors.

Geographic distribution (Fig. 160).- Southern South Africa.
Records. - Holotype: \circ, SOUTH AFRICA: Eastern Cape Province: 18 km WNW Grahamstown: Hilton Farm, 6 Dec 1964, C. Jacot-Guillarmod (AMG). Paratypes (CJG = C. Jacot-Guillarmod, ISP = M.E. Irwin, E.I. Schlinger and F.D. Parker, FWG = F.W. Gess): SOUTH AFRICA: Eastern Cape Province: Algoa Bay, date illegible, H. Brauns ($10^{\circ} ; 10^{\circ}$, TMP); Colchester at $33^{\circ} 42^{\prime} \mathrm{S} 25^{\circ} 50^{\prime}$ E, 5 Jan 1997, WJP (1 ㅇ) ; Elandsheuwels Farm 40 km W Steytlerville, 18-22 Nov 1999, ISP (2 ơ, CAS, USU); 17 mi NW Grahamstown, 21-23 Nov 1966, J.D. Rozen and D.J. Brothers (1 ㅇ, AMNH); 18 km WNW Grahamstown: Hilton Farm, 1-16 Jan 1971, FWG (1 ค, 1 ơ, AMG), 16 Jan 1996, WJP (1 \&), 20-30 Nov 1970, FWG (1 ơ,
 19-31 Dec 1970, FWG (1 ํ, AMG), 6 and 20 Dec 1977, FWG (2 ㅇ, AMG), 16-22 Dec 1979, FWG (1 q, 1 or 3); Howison's Poort 6 km WSW Grahamstown, 8-14 Dec 1971, FWG (1 ${ }^{\text {of }}$); Koonap River 17 km from Adelaide on the Grahamstown road, 20-22 Dec 1972, CJG (1 $\circ ; 1$ ㅇ, AMG); Steynsburg, 1915,
 Farm 5 air km W Grahamstown, 19 Nov 1967, CJG (1 +) and 8 Jan 1969, FWG (1 ㅇ, AMG); Willowmore, 1 Jan 1920, H. Brauns (10^{\star}, TMP); 37 km NW Willowmore in Grootrivierberg Range, $19-24$ Nov 1999, ISP (1 ㅇ, 2 o $^{\circ} ; 2$ ㅇ, 5 ơ $^{\text {, }}$ USU). Western Cape Province: Langberg, 15 Dec 2002, Marek Halada (1 ㅇ, OÖLM);

Tachysphex glaber Kohl

Figures 166, 167.
Tachysphex glaber Kohl, 1906:217, 우 (erroneously mentioned as ơ on p. 218). Lectotype: $\stackrel{+1}{ }$, Yemen: Abd el Kuri Island (NHMW), here designated, examined.- Bohart and Menke, 1976:274 (listed); Dollfuss, 1989:13 (type material in NHMW).

Recognition.- Tachysphex glaber, known only from Abd el Kuri Island, has an all black body, setae sinuous and erect on the postocellar area and propodeal dorsum and suberect on the midfemoral venter, and nonfasciate terga. The southern African species crassipes and punctatiformis are similar, but in the female of glaber (the male is unknown) the free margin of the clypeal lobe is neither emarginate mesally nor incised laterally, whereas one or both of these conditions are found in the other two species.

Description (female only).- Scutal and mesopleural punctures well defined, large, averaging several diameters apart on scutal disk and more than one diameter apart below mesopleural scrobe. Propodeal dorsum irregularly ridged longitudinally; side ridged. Hindcoxal dorsum with inner margin carinate.

Setae erect, sinuous on postocellar area (Fig. 166a), scutum, on each side of oral fossa next to occipital carina, and on propodeal dorsum; sinuous and suberect on midfemoral venter. Setal length compared to basal mandibular width: about 0.8 on postocellar area and next to oral fossa, about 0.5

Figure 166. Tachysphex glaber Kohl: a - head in frontal view; b - clypeus and mandible.
on scutum anteriorly and on propodeal dorsum.
Head, thorax, gaster, and legs black, mandible narrowly dark reddish at two thirds of its length. Frontal setae silvery in female. Wing membrane almost hyaline, veins dark brown. Terga without silvery apical fasciae.

ㅇ.- Clypeus (Fig. 166b): bevel about as long as basomedian area; lip free margin arcuate, not emarginate mesally nor incised laterally. Width of postocellar area $1.2 \times$ length (Fig. 166a). Dorsal length of flagellomere I 2.4-2.6 \times apical width. Forecoxa with short but well-defined apicomedian process. Punctures of forefemoral venter mostly many diameters apart except basal punctures close to each other. Foretibial outer surface with one spine. Forebasitarsus with six or seven rake spines. Apical depression of tergum V impunctate, glabrous, shiny. Pygidial plate with punctures that average many diameters apart, interspaces all aciculate or unsculptured near apex. Length $6.9-8.9 \mathrm{~mm}$.
0^{7}.-Unknown.
Collection period.- The only known specimens, four females, were collected in January 1899.

Geographic distribution (Fig. 167).- Abd el Kuri Island (between Socotra and Somalia). RECORDS.- YEMEN: Abd el Kuri Island: no specific locality (4 ㅇ, NHMW).

Tachysphex gracilicornis Mercet

Figures 167, 168.
Tachysphex gracilicornis Mercet, 1909:194, ㅇ, ơ' Syntypes: Morocco: Melilla (IEE, Madrid), not examined.— Nadig, 1933:78 (Morocco, diagnostic characters); de Beaumont, 1940:165 (in revision of Egyptian Tachysphex), 1947a:165 (in revision of Egyptian Tachysphex), 1955:178 (Morocco), 1956a:196 (Libya), 1960b:237 (Libya); Pulawski, 1971:305 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:274 (listed).
Tachysphex eduardi Morice in E. Saunders, 1910:527, ơ, \mp (as Eduardi, incorrect original capitalization). Syntypes: Algeria: Biskra (OXUM), not examined. Synonymized with Tachysphex gracilicornis by de Beaumont, 1947a:165.- Morice, 1911:103 (Algeria); von Schulthess, 1926:215 (Tunisia, as Edwardi).
Tachysphex gracilicornis baal Pulawski, 1971:307, ㅇ, ơ'. Holotype: ㅇ. Israel: Beersheba (H. Bytinski-Salz collection, now Tel Aviv University), examined before 1971. New synonym.- de Beaumont, BytinskiSalz, and Pulawski, 1973:10 (Israel); Bohart and Menke, 1976:274 (listed).

Figure 167. Collecting localities of Tachysphex glaber and gracilicornis.
Recogntion.- Tachysphex gracilicornis is one of the species in which the labrum is markedly convex and protruding from beneath the clypeus, and the galea is markedly longer than wide. It differs in having the following combination: femora all black or nearly so, terga without silvery, apical fasciae, wings markedly infumate, setae of propodeal dorsum oriented posterad (except basally), forefemur densely, uniformly microsculptured, and the male foretarsus without preapical rake spines. In addition, the propodeal side is ridged in many specimens (but unridged in some).

JUSTIFICATION OF NEW SYNONYMY.- I previously recognized a subspecies gracilicornis baal for the specimens from Israel. The current reexamination of the Israeli material and comparison with additional material from other areas convinced me that they differ no more from other populations than these populations differ from each other. I think now, therefore, that formal recognition of subspecies within gracilicornis is unnecessary, and I synonymize baal.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea micropunctate except anteriorly (some punctures less than one diameter apart, others markedly more), as long as $0.9-1.1$ of scape. Scutal punctures averaging less than one diameter apart, interspaces dull. Mesopleuron dull, microareolate, with ill-defined, superficial punctures. Propodeal dorsum evenly microsculptured; side all ridged in many females and some males, but unridged anteriorly and/or mesally in many specimens, or all unridged (particularly in males). Hindcoxal dorsum with inner margin carinate basally.

Setae erect on each side of oral fossa next to occipital carina, slightly shorter than midocellar diameter; appressed on postocellar area, scutum, and midfemoral venter; oriented posterad on propodeal dorsum (except basally).

Head and thorax black, mandible reddish mesally. Frontal setae silvery in female, golden in male. Wing membrane markedly infumate; costal vein of forewing brown and subcostal vein black (most specimens), or light brown and brown, respectively. Femora all black except for a preapical reddish streak in Mauritanian specimens (on dorsum in female, on outer side in male) and for red apex in some Israeli males. Tibiae in female all black except for red foretibial inner surface (at least partly so); in male varying from all black (except for red foretibial inner surface) to all red; tarsi brown to red. Gaster with segments I-III red and remainder black in most specimens, but pygidial
plate red basally in Tunisian females, segment VI red in female from El Kala, Algeria, and gaster all red in female from Terjit, Mauritania (gaster red with darker tip in male from Terjit). Terga without silvery, apical fasciae.

ㅇ.- Clypeus (Fig. 168a): bevel longer than basomedian area; lip free margin arcuate, emarginate mesally, sinuous laterally. Width of postocellar area $0.6-0.7 \times$ length. Dorsal length of flagellomere I $1.8-5.0 \times$ apical width. Forecoxa with small apicomedian process in largest specimens. Dorsal foretibial surface with two or three spines; outer surface with two or three preapical spines, mostly densely setose, but sparsely setose in some Moroccan specimens, and asetose in Israeli specimens. Forebasitarsus with 7-10 rake spines. Apical spines of hindtarsomere IV long, reaching claw base. Apical depression of tergum V varying from setose to asetose (even within specimens from the same country, e.g., Morocco). Pygidial plate with punctures that are many diameters apart mesally but may be less than one diameter apart adjacent to margin. Length $10.5-14.0 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 168b): bevel nearly as long as basomedian area to markedly longer, delimited anterolaterally by obtuse carina that emerges from lip corner; lip free margin arcuate, entire or emarginate mesally, with well-defined corner; distance between corners $0.9-1.1 \times$ distance between corner and orbit. Width of postocellar area $0.4-0.7 \times$ length. Dorsal length of flagellomere I $1.8-3.3 \times$ apical width. Forefemoral notch smaller and shallower than average for genus, microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II at least slightly shorter than this tarsomere's width. Hindfemoral venter with inner (= posterior) margin sharp in distal half in some specimens. Length $6.8-11.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 168c, d.

C

Figure 168. Tachysphex gracilicornis Mercet: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.

Variation.- Antennal flagellum varies greatly in length. For example, length to width ratio of female flagellomere IV is 5.0 (Mauritania), 3.0-3.4 (Algeria and Morocco), and 2.5-3.0 (Israel). In the male, the ratio is, respectively, 2.4-3.3 (Mauritania, Tunisia), 2.4-2.6 (Morocco, Algeria), 3.0 (Libya), and 1.8-2.0 (Israel).

Prey.-A female from Homs, Libya, was collected with her prey, a nymph of a Sphodromerus sp., an acridid (de Beaumont, 1960b).

Geographic distribution (Fig. 167).- Morocco to Mediterranean coast of Egypt amd Sinai, south to Mauritania.

Records (from Pulawski, 1971, if the number of specimens examined or a bibliographic source is not indicated).- ALGERIA: Annaba (Morice, 1911, as Bône), Biskra (Saunders, 1910), El Kala (1 \circ), Nemours (® $^{\circ}$). EGYPT: Matruh: NW Solum (de Beaumont, 1947). Sina (=Sinai): Wadi el Lega (Roche and Zalat, 1994). ISRAEL (all paratypes of gracilicornis baal): Beersheba ($2 \circ, 1 \circ^{\circ}$), Bir Rehme (1 ${ }^{\text {o }}$). LIBYA (de Beaumont, 1960b, if not indicated otherwise): Cyrenaica: Apollonia, Bersis, Cyrene, Gasr Shahaden ($1 \sigma^{\circ}$), Latroun, Ras el Hillal. Tripolitania: Garian Hills (de Beaumont, 1956a), Homs. MAURITA-
 Beaumont, 1955, if not indicated otherwise): Agadir ($1 \stackrel{+}{\circ} \mathbf{1}^{\circ}$), Amismiz, Anezal 30 km W Ouarzazate ($1 \delta^{*}$, CSE), Aoulouz, Asni in Moyen Atlas (1 ㅇ) , Assaka, Azemmour (1 早, $3 \delta^{*}$), Azrou ($1 \circ^{*}$), Beni Mellal, Djebel Ayachi in Haut Atlas (Pulawski, 1971), Goundafa (Nadig, 1933), Ijoukak, Ksar es Souk, Marrakech (Pulawski, 1971), Melilla (Pulawski, 1971), Midelt (1 $\overbrace{}^{\star}$), Ouarzazate ($1 \sigma^{\circ}$, CSE), 10 km SE Ouarzazate ($2 \sigma^{\pi}$, CSE), 40 km SW Ouarzazate ($1 \sigma^{\circ}$, CSE), Quirgane S Arni in Haut Atlas ($1 \mathrm{o}^{\circ}$), Tafraout ($1 \delta^{\circ}$), Tassademt in Agadir area ($2 \sigma^{\circ}$), 10 km W Tazenakht in Anti-Atlas ($1 \sigma^{\circ}, \mathrm{CSE}$), Tifermit, Tinerhir, Tiznit: Oued Massa (2 o $^{\circ}$). TUNISIA: Beni Kheddache 40 km W Medenine at $33^{\circ} 15^{\prime} \mathrm{N} 10^{\circ} 15^{\prime} \mathrm{E}(1+9)$, Chenini ($4 \circ$, SCHL), Gafsa (von Schulthess, 1926), Ghar el Melh at $37^{\circ} 10^{\prime} \mathrm{N} 10^{\circ} 13^{\prime} \mathrm{E}\left(1+\right.$, CSE), Kairouan ($1 \mathrm{o}^{\circ}$), Matmata ($1 \mathrm{o}^{7}$, MS), 12 km W Matmata at $33^{\circ} 32^{\prime} \mathrm{N} 9^{\circ} 50^{\prime} \mathrm{E}(1$ 單, CSE), Nefta ($1 \mathrm{q}, \mathrm{SCHL}), 5 \mathrm{~km} \mathrm{~N}$ Sidi Bou Goubrine at $35^{\circ} 36.3^{\prime} \mathrm{N} 10^{\circ} 36.0^{\prime} \mathrm{E}\left(10^{\circ}, \mathrm{CSE}\right), 25 \mathrm{~km}$ S Tabarka ($1 \mathrm{o}^{\circ}, \mathrm{CSE}$), Tamelest ($1 \circ+\mathrm{SCHL}$).

Tachysphex gracilitarsis Morice

Figures 169, 170.
Tachysphex gracilitarsis Morice in E. Saunders, 1910:572, ㅇ. Lectotype: \uparrow, Algeria: Biskra (OXUM), designated by Pulawski, 1971:335, reexamined in 2004.- Morice, 1911:103 (Algeria:); von Schulthess, 1926:214 (Tunisia, Libya); Guiglia, 1934:304 (Libya); Giner Marí, 1945b:362 (Western Sahara); de Beaumont, 1947c:663 (as Tachysphex pygidialis ssp. gracilitarsis; redescription); Pulawski, 1971:334 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:274 (listed); Gayubo, 1984a:96 (Spain); Gayubo and Mingo, 1988:79 (Spain); Schmidt and Bitsch in Bitsch et al., 2001:251 (in Sphecid Fauna of Western Europe).

ReCognition.- Tachysphex gracilitarsis, known only from Biskra, Algeria, is one of many species in which the labrum is convex and conspicuously protruding beyond the clypeal free margin and the galea is longer than wide in profile (length equal to 0.8 of scape). Additionally, the scutal punctures are less than one diameter apart, the propodeal dorsum is all setose (setae oriented posterad), and the apical depression of tergum V is impunctate, glabrous. The female (the male is unknown) is characterized by a laterally sinuous clypeal lip (Fig. 169), setae on each side of oral fossa next to occipital carina about $1.5 \times$ midocellar diameter, and tergum V with minute punctures that average many diameters apart.

Sex assocation.- The males that Pulawski (1971) associated with the females of gracilitarsis are not conspecific: the setae adjacent to the oral fossa next to the occipital carina are about as long as midocellar diameter and median setae of the propodeal dorsum are oriented obliquely anterad or toward the midline. Their identity remains unknown.

Description (female only).- Labrum convex, markedly protruding from beneath clypeus.

Galea with minute punctures that are several diameters apart, its length equal to 0.8 of scape. Scutal punctures less than one diameter apart. Mesopleuron microsculptured. Propodeal dorsum evenly microareolate; side microsculptured. Hindcoxal dorsum with inner margin carinate basally.

Setae on each side of oral fossa next to occipital carina about $1.5 \times$ midocellar diameter; appressed on postocellar area and scutum; fully obscuring mesopleural integument; oriented posterad on propodeal dorsum.

Head black except the following are reddish: clypeal bevel, ventral half of lateral clypeal section, labrum, basal two thirds of mandible, and scape. Frontal setae silvery in female. Thorax black, but pronotum partly, pronotal lobe, and part of mesothoracic venter reddish in one specimen. Wing membrane infumate; costal vein of forewing reddish brown, subcostal vein dark brown. Parts of coxae, trochanters, femora, tibiae and tarsi red (fore- and midcoxal dorsum black in basal half or so in one specimen). Gastral terga essentially red, but with irregular black spots covering most of surface. Terga I-III silvery fasciate apically.

ㅇ.- Clypeus (Fig. 169): bevel longer than basomedian area; lip free margin arcuate, emarginate mesally, straight or broadly emarginate laterally. Width of postocellar area $0.7 \times$ length. Dorsal length of flagellomere I 2.8-3.1 \times apical width. Foretibial outer surface with two spines. Forebasitarsus with seven rake spines. Inner apical spines of hindtarsomere IV nearly reaching claw base. Tergum VI with minute punctures that average many diameters apart; apical depression impunctate, glabrous. Pygidial plate with minute punctures that are many diameters apart; interspaces unsculptured. Length $10.0-12.5 \mathrm{~mm}$.
0^{7}.- Unknown.
Collecting period.- The type series of gracilitarsis was collected on 6 June 1898.

Geographic distribution (Fig. 170).Known from Biskra, Algeria. Records from other localities are uncertain and probably wrong.

Records.- ALGERIA: Biskra (4 of, OXUM, lectotype and paralectotypes of gracilitarsis).

Figure 169. Tachysphex gracilitarsis Morice, female: clypeus and mandible.

Figure 170. Collecting localities of Tachysphex gracilitarsis and harpax.

Tachysphex grandissimus Gussakovskij

Figures 171, 172.
Tachysphex grandissimus Gussakovskij, 1933:282, 우, $\boldsymbol{\sigma}^{*}\left(ठ^{*}=\right.$ Tachysphex sordidus). Lectotype: 우, Iran: Baluchestan va Sistan: Bampur-Kaskin (ZIN), designated by Pulawski, 1971:422, examined before 1971.- de Beaumont, 1940:169 (in revision of Egyptian Tachysphex); Honoré, 1942:56 (in checklist of

Egyptian Sphecidae); de Beaumont, 1947a:177 (in revision of Egyptian Tachysphex), 1950b:18 (Egypt); Balthasar, 1954:269 (Palestine); de Beaumont, 1955:181 (Morocco), 1960b:238 (Libya); Pulawski, 1971:420 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:13 (Israel); Bohart and Menke, 1976:274 (listed); Kazenas, 1978:113, 126 (in key to Sphecidae of Kazakhstan and Central Asia); Krombein and Pulawski, 1994:98 (in revision of Sri Lankan Tachysphex); Roche and Zalat, 1994:115 (Egypt: Sinai Peninsula); Nazarova, 1998:41 (Tajikistan); Kazenas, $2001: 29$ (in checklist of Sphecidae of Kazakhstan and Central Asia).
As Tachysphex argyrius (ơ only): Gussakovskij, 1933:280 (Iran), corrected to Tachysphex grandissimus by Gussakovskij, 1952:237.

Recognition.- Tachysphex grandissimus has the apical depression of sternum I intersected by a longitudinal carina (as in Fig. 132a) and hindwing vein cu-a oblique (anal end further away from wing base than cubital end).

The female resembles osiris in having a dense thoracic vestiture: the setae entirely conceal the mesopleuron and scutal forecorner and nearly completely the sides of the propodeal dorsum. Unlike osiris, the labrum of grandissimus is emarginate (emargination evanescent in osiris), clypeal lip incised laterally (rather than entire), frons of the usual shape (markedly convex in osiris), scutal disk not hidden by vestiture (hidden in osiris), hindfemoral venter setose throughout (largely glabrous in osiris), and flagellum all black (partly red in osiris). Unlike sordidus, the clypeal bevel of grandissimus is at most minimally step-like (rather than clearly step-like) and the gena is practically absent in dorsal view (rather than well developed).

The male can be recognized by its shallow, dense punctures on the scutal disk and mesopleuron (practically compressed against each other) and its uniformly setose sternum II, contrasting with sterna III-V whose apical depressions are covered with appressed, long, dense (as if agglutinated) setae (Figs. 171c-e). In addition, the setae are silvery on the frons. Tachysphex sordidus is similar, but has the punctures separated by small interspaces on the scutal disk (mostly less than one diameter apart) and at mesopleuron center (about one diameter apart), and frontal setae mostly golden (silvery in small specimens).

Description.- Gena unusually narrow in dorsal view. Scutal and mesopleural punctures almost compressed against each other, with inconspicuous interspaces (a few scutal punctures about one diameter apart in female); punctures of mesothoracic venter about one diameter apart in female, several diameters apart mesally in male. Propodeal dorsum finely, irregularly reticulate, intersecting posterior face at about right angle; propodeal side ridged but ridges anastomosed in many specimens and effaced in smallest ones; posterior surface, in dorsal third or so, with wide median impression. Hindwing jugal lobe enlarged (as in Fig. 102a), crossvein cu-a oblique (anal end further away from wing base than cubital end). Hindcoxal dorsum with inner margin carinate basally, carina not expanded. Sternum I with apical depression bisected by longitudinal, obtuse carina (as in Fig. 132a).

Setae appressed on scape, interocellar area, postocellar area, scutum, and midfemoral venter; suberect on each side of oral fossa next to occipital carina (setal length $0.4 \times$ basal mandibular width); on forecoxa appressed in female, suberect in male; sinuous, oriented posterad on propodeal dorsum except oriented anterad basomedially; fully concealing integument of female mesopleuron and scutal forecorner.

Head and thorax black (clypeus and part of thorax red in some females). Frontal setae silvery in both sexes. Wing membrane hyaline; costal vein of forewing yellow brown, subcostal vein brown Coloration of gaster and legs: see below. Terga I-IV (I-III in some males) silvery fasciate apically.

ㅇ. - Labrum with well-defined notch. Clypeus: bevel convex, markedly shorter than basomedian area; lip free margin arcuate, entire or emarginate mesally, incised laterally. Width of postocel-

Figure 171. Tachysphex grandissimus Gussakovskij: a - female tarsomere V in dorsal view ($\times 33$); b-same in ventral view ($\times 65$); c - apical portion of male gaster in lateral view $(\times 31)$; $\mathrm{d}-$ setal fringes of male sternum IV and V in ventral oblique view $(\times 120)$; e - setal fringe of male sternum IV, ventral view $(\times 120)$.
lar area $0.7 \times$ length. Dorsal length of flagellomere I $2.5-2.8 \times$ apical width. Dorsal foretibial surface with three spines; outer surface with three spines. Forebasitarsus with nine or ten rake spines. Apical tarsomeres long, without spines on lateral margins (Figs. 171a, b), with two preapical spines on venter (Fig. 171b). Apical depression of tergum V impunctate, glabrous. Pygidial plate: punctures averaging several diameters apart, interspaces practically unsculptured, lateral carina convex
basally and concave distally, effaced near apex. Length 14.5-18.0 mm. Gastral segments I-II or I-III red, remaining black. Femora, tibiae, and tarsi red.
σ^{7}.- Inner mandibular margin with tooth and cleft. Clypeus: bevel rudimentary; free margin of lobe arcuate or slightly sinuate, with well-defined corner; distance between corners $1.5-1.6 \times$ distance between corner and orbit. Width of postocellar area $0.3-0.7 \times$ length. Dorsal length of flagellomere I $2.0-2.5 \times$ apical width. Forefemoral notch extending far onto femoral anterior surface, with unsculptured area that is larger than midocellar diameter; its bottom compressed into obtuse, longitudinal carina; notch base, in some specimens, with a few erect setae. Outer margin of forebasitarsus with 2-6 rake spines; outer apical spine of tarsomere II as long as tarsomere III or shorter. Sternum II: setae as long on apical depression as on remaining surface; apical depressions of sterna III-V covered with appressed, dense setae that appear agglutinated and that are markedly longer than on remaining surface (Figs. 171c-e). Length $11.0-13.5 \mathrm{~mm}$. Volsella and penis valve as in costae (Fig. 102). Gaster black in African and Arabian specimens, and segments I and II red in those from other Asian countries. Femora all black or red apically, hindfemur all red in some specimens; tibiae and tarsi red or slightly darkened.

Geographic distribution (Fig. 172).-Sahara from Morocco to Egypt in the north and from Mali to Chad in the south, also Israel, Arabian Peninsula, Turkmenistan, Tajikistan, Iran, Pakistan, and Gujarat State of India.

Figure 172. Collecting localities of Tachysphex grandissimus.
 2 ㅇ, CSE; 1 ㅇ, 7 o $^{\circ}$, STUTTGART). Al Fayyum: Karanis (1 o $^{\circ}$), Kom Osheim ($1 \delta^{\circ}$). Al Jizah (= Ghiza):
 Wadi Hof ($\mathbf{1}^{\circ}$). Al-Wadi al-Jadid: Dakhla oasis (de Beaumont, 1940); Siwa oasis: Lake Shiata (de Beaumont, 1950b). Sina (= Sinai): Romani (de Beaumont, 1940), Wadi Gharandal 30 km NW Abu Zenima ($2 \sigma^{\pi}$, MSNT), Wadi Khreza 40 km N Sharm el Sheikh ($1 \mathrm{o}^{\text {º }}$). INDIA: Gujarat: Deesa ($1 \mathrm{o}^{\mathrm{r}}$). IRAN: Baluchestan va Sistan: Bampur-Kaskin (Gussakovskij, 1933), Hurmuk (Pulawski, 1971). ISRAEL: Elat (Pulawski, 1971), Masada (Pulawski, 1971), Revivim 20 km SW Beersheba (o $^{\circ}$), Wadi el Kelt near Jericho (Balthasar, 1954). LIBYA (de Beaumont, 1960b): Cyrenaica: Baltet er Ramla, Brega. MALI: Anefis (1 q, KMG), 30 km S Ansongo ($1 \mathrm{o}^{\text {o }}, \mathrm{KMG}$). MOROCCO: Dar Bou Naila (Pulawski, 1971), Maader Telmaout (Pulawski, 1971), Marrakech ($2 \sigma^{\circ}$). PAKISTAN: Karachi ($1 \delta^{\circ}$, BMNH). QATAR: Al Shahanieh ($2 \sigma^{\circ}$, KMG). SAUDI ARABIA: Abu Arish ($1 o^{\circ}$, KMG), El Riyadh ($1 \circ^{\circ}$), Wadi Nissah: Shaib Luha near Al Ha'ir
(1 σ^{7}, FSCA). TAJIKISTAN (Pulawski, 1971, or as indicated): Ajigarm, Ayvaj in mouth of Kafirnigan River (1 ㅇ, 2 o *), Djilikul, Nizhniy Pyandj, Tigrovaya Balka Nature Reserve (Nazarova, 1998). TUNISIA: Jemna ($1 \sigma^{\prime}$, SCHL), 15 km W Nefta at $33^{\circ} 50^{\prime} \mathrm{N} 7^{\circ} 43^{\prime} \mathrm{E}(1 \stackrel{+}{ }$, CSE). TURKMENISTAN (Pulawski, 1971): AkhchaKuyma near Nebit-Dagh, Merghen-Ulya in Kopet-Dagh, Repetek, Sary-Chop 180 km S Mary, Uzun-Ada on E shore of Krasnovodsk Golf.

Tachysphex gujaraticus Nurse

Figures 173, 174.
 Pulawski, 1975:310, examined in 1974.- Bohart and Menke, 1976:274 (listed); Roche and Zalat, 1994:115 (Egypt: Sinai Peninsula); Nazarova, 1998:41 (Tajikistan); Kazenas, 2001:29 (in checklist of Sphecidae of Kazakhstan and Central Asia).
As Tachysphex No. 18 (part, other specimens = Tachysphex erythrophorus): de Beaumont, 1940:178 (in revision of Egyptian Tachysphex), corrected to Tachysphex laniger by Pulawski, 1971:129.
 Synonymized with Tachysphex gujaraticus by Pulawski, 1975:310.— Pulawski, 1971:129 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:8 (Israel); Kazenas, 1978:123, 129 (in key to Sphecidae of Kazakhstan and Central Asia), 2001:29 (in checklist of Sphecidae of Kazakhstan and Central Asia).

RECOGNition.- Tachysphex gujaraticus has the setae sinuous on the gena, scutum anteriorly, mesopleuron, and propodeal dorsum (largely concealing the integument of the mesopleuron and scutum anteriorly, oriented posterad on the propodeal dorsum). In addition, the labrum is flat, the cubital and anal ends of hindwing vein cu-a are equidistant from the wing base, and in the male the postocellar area is wide (width $1.4-1.7 \times$ length), the clypeal lip is broad (corners closer to the respective orbit than to each other), and the sterna are densely, evenly setose (setae appressed).

The female of gujaraticus can be recognized, in addition to the above features, by a denticulate clypeal margin, with a pair of admedian teeth bordering the median emargination (Fig. 173a), and the red legs (all or largely so) help in recognition. Tachysphex gagates is similar, but in gujaraticus the propodeum is dull (dorsum rugose or partly ridged, side ridged in most specimens), and the width of postocellar area is $1.0-1.3 \times$ length. In gagates, the propodeal dorsum and side are shiny, largely unsculptured, and the width of postocellar area equals $0.7-0.8$ of length. Also the ranges of the two species are exclusive: gujaraticus occurs in northern Africa south to Nigeria and Sudan (also in Asia), whereas gagates is found in southern Africa north to Kenya.

The male of gujaraticus resembles erythrophorus, but has the usual mesothoracic venter (the anterior portion is shorter than the posterior part), the dorsal length of its flagellomere I is $1.0-1.4$ \times apical width, the ventral length in most specimens approximates the apical width, and the forefemoral notch of some specimens is acutely angulate basally. In erythrophorus, the mesothoracic venter is unusual, with the anterior (oblique) portion longer than the posterior (horizontal) part (Fig. 130), the dorsal length of flagellomere I is $1.5-2.2 \times$ apical width, the ventral length conspicuously more than the apical width, and the forefemoral notch is obtusely angulate basally.

Description.- Scutal punctures about one diameter apart except discal punctures two to many diameters apart in most females and some males. Mesopleuron dull, granulose. Propodeum dull; dorsum irregularly rugose, partly ridged in some specimens; side ridged or ridges evanescent. Hindcoxal dorsum with inner margin not carinate.

Setae (numbers in parentheses refer to setal length expressed as a fraction of basal mandibular width): appressed on postocellar area, erect on each side of oral fossa next to occipital carina ($0.4-0.5$); sinuous or curved on gena, scutum anteriorly ($0.5-0.6$), and mesopleuron, sinuous on propodeum (except straight on propodeal side anteriorly); on scutal disk curved (semicircular), with

Figure 173. Tachysphex gujaraticus Nurse: a - female clypeus and mandible; b-male clypeus and mandible; c-volsella; d - penis valve.
tips nearly reaching scutal surface; oriented posterad on propodeal dorsum (0.4-0.6); appressed on midfemoral venter.

Head largely black, but the following are reddish yellow: mandible (except apical third), clypeal bevel and lip (lip black in many males), and scapal venter (black in many specimens). Frontal setae silvery in both sexes. Wing membrane hyaline; forewing costal vein reddish brown, subcostal vein brown. Color of legs and gaster: see below. Terga I-IV silvery fasciate apically (I-V in specimens from West Africa).

ㅇ.- Clypeus (Fig. 173a): bevel shorter than basomedian carina; lip free margin arcuate, with a pair of admedian teeth and three pairs of lateral teeth; lateral teeth irregularly shaped in many specimens, confluent in some. Width of postocellar area 1.0-1.3 \times length. Dorsal length of flagellomere I 1.4-2.2 \times apical width. Dorsal foretibial surface with two spines; outer surface with one to three spines, with punctures sparser than on remaining surface. Forebasitarsus with eight or nine rake spines. Pygidial plate smooth, shiny, with fine, scattered punctures. Length $6.5-9.0 \mathrm{~mm}$. Thorax black, but pronotal lobe yellow apically and mesothoracic venter reddish between midcoxae. Legs red except fore- and midcoxae black in some specimens and forefemur largely black in Sri Lankan females. Gaster red or partly black (see Geographic Variation below).
σ^{π}.- Mandible: trimmal carina with small tooth and cleft. Clypeus (Fig. 173b): bevel shorter than basomedian area; lip free margin arcuate, with obtuse, somewhat ill-defined corner; distance between corners 1.4-1.6 \times distance between corner and adjacent orbit. Width of postocellar area $1.4-1.7 \times$ length. Dorsal length of flagellomere I 1.0 $-1.4 \times$ apical width. Forefemoral notch asetose. Outer margin of forebasitarsus with four or five rake spines; outer apical spine of tarsomere II
longer than tarsomere III. Length $4.8-7.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 173c, d. Thorax black, pronotal lobe black or (most specimens) yellow apically. Femora, tibiae, and tarsi red or femora black (hindfemur less frequently so than fore- and midfemora); tibiae partly black in specimens from Tajikistan. Gaster red with brown apical segments or all dark brown (with apical depressions of segments translucent).

Correction to earlier description.- Pulawski (1971:131 and Fig. 60) incorrectly described the male clypeus as having the lip rounded laterally. A reexamination of voucher specimens from Egypt using better optics revealed that the lip is obtusely angulate laterally.

Geographic variation.- In most males, the forefemoral notch has a flat bottom, and its proximal margin is not prominent. The bottom is somewhat compressed to an obtuse, longitudinal crest in males from Egypt; and the proximal margin is sharply prominent in males from Egypt and Senegal.

The gaster is all red in females from Egypt, Israel, Saudi Arabia, Turkmenistan, and Tajikistan, but terga II and III or II-IV are largely black in those from Sri Lanka.

Geographic distribution (Fig. 174).- North Africa south to Mali, Nigeria and Sudan, also Israel, Arabian Peninsula, Tajikistan and Turkmenistan, India, and Sri Lanka.

Figure 174. Collecting localities of Tachysphex gujaraticus.
Records.- EGYPT: Al Buhayrah: Bir Hooker in Wadi Natrun (1 ${ }^{\circ}$), Sahara Inn Hotel 117 km SE
 (= Ghiza): Abu Rawash ($1+$ olotype of laniger, 5 o $^{\circ}$), Ghiza ($3 \sigma^{\circ}$), Manshiet Radwan (Pulawski, 1971). Al Qahirah (= Cairo): Maadi ($1 \delta^{\circ}$). Al-Qalyubiyah: Abu Zab'al at $30^{\circ} 15^{\prime} \mathrm{N} 31^{\circ} 21^{\prime} \mathrm{E}$ (Pulawski, 1971). AlUqsur (= Luxor): near Medinet Habu temple 3 km W Luxor ($1 \delta^{\circ}$). Al-Wadi al-Jadid: Dakhla oasis: Mut (1 of, ZMAN), Kharga oasis (3 \&). Aswan: Kom Ombo (3 \&, 5 o $^{\circ}$). Sina ($=$ Sinai): Dahab (Roche and Zalat, 1994). INDIA: Gujarat: Deesa (1 \& lectotype of gujaraticus, 2 ơ, BMNH). Karnataka: Bangalore (1 \& \& , 1 0°). ISRAEL: En Gedi (Pulawski, 1971), Revivim (1 o $^{\circ}$). MALI: central Adrar ($10^{\circ}, \mathrm{KMG}$), Ansongo (1 \&, $1 \sigma^{\circ}, \mathrm{BMNH}$), 30 km S Ansongo ($1 \mathrm{\sigma}^{7}, \mathrm{KMG}$), 10 km E and 30 km NE Hombori ($2 \sigma^{\circ}, \mathrm{MS}$). MAURITANIA: 25 km NE Aleg (1 ㅇ, MSNT), Oued Henné ca 50 air km NE Moudjéria ($1 \circ ; 1 \circ+$, MSNT). MOROCCO: Taroudannt: Oued Souss (1 + , BMNH), Tassademt (1 甲 \uparrow). NIGER: Diffa Region: 13 km SW Nguigmi at $14^{\circ} 10.3^{\prime} \mathrm{N} 13^{\circ} 01.3^{\prime} \mathrm{E}(1+q)$. Dosso Region: Dosso ($1 \circ+\mathrm{KMG}$). NIGERIA: Azare in SE Kano ($1+$, BMNH). SAUDI ARABIA: Ad Diriyah (1 ơ $^{\circ}, \mathrm{KMG}$), El Riyadh (Pulawski, 1971). SENEGAL: Kaolack ($1 \circ$, MSNT), near Koumpentoum ($1 \sigma^{\top}, \mathrm{UCD}$), Ndangane 45 air km SE Mbour ($1 \sigma^{\circ} ; 4 \sigma^{\circ}$ FB). SRI LANKA: Hambantota

District: Bundala Sanctuary ($1 \mathrm{o}^{*}$, USNM). Mannar District: Kokmotte Bungalow 0.5 mi NE Wilpattu

Trincomalee District: Amarivayal ($1+$ USNM), China Bay Ridge Bungalow ($1 \circ ; 11 \circ, 1 \sigma^{\prime}$, USNM), Tennamaravadi (σ°, USNM). SUDAN: Ed Damer: Hudeiba ($1 \circ$ ㄱ, ZSBS), Narga 150 km SE Khartum (1 ㅇ, CSE). TAJIKISTAN (Pulawski, 1971): Ajigarm, Djilikul, also Tigrovaya Balka Nature Reserve (Nazarova, 1998). TUNISIA: 5 km W Douz at $33^{\circ} 29^{\prime} \mathrm{N} 8^{\circ} 59^{\prime} \mathrm{E}$ ($1+$, CSE). TURKMENISTAN: Askhabad (Pulawski,
 ZMAN).

Tachysphex hadronyx Pulawski, sp. nov.

Figures 175-177.
Derivation of name.- Hadronyx is derived from two Greek words: hadros, thick, bulky, stout; and onyx, fingernail, claw; a noun in apposition to the generic name. With reference to the unusually thick female claws.

Recognition.- Tachysphex hadronyx has the labrum convex and protruding beyond the clypeal free margin and the galea about as long as the scape. Unlike most other species with these characteristics, hadronyx has sinuous, erect setae on both postocellar area (as in fulgidus and tenuicornis) and basal declivity of tergum I (as in fulgidus and gastrotrichus), although only laterally so on tergum I in some males. Unlike these three species, hadronyx has an unusually broad postocellar area whose width markedly exceeds length. Additional recognition features include: gastral base red, mandibular notch unusually small (as in Figs. 385c, d); forecoxa with apical process except in small males (Fig. 175c); hindfemoral venter all asetose or with a few setae basally; propodeal side uniformly ridged (ridges evanescent in many males); and in the female: antenna unusually long (e.g., length of flagellomere I $4.2 \times$ apical width), inner mandibular margin with largely reduced tooth (Fig. 175a).

Two female characters are unique within the genus: hindfemur and claws conspicuously thickened (Figs. 175d, f), and a grotesque, conspicuously thickened and curved seta under each claw (Fig. 175f).

DESCRIPTION.- Labrum convex, markedly protruding from beneath clypeus. Galea with punctures about one diameter apart posteriorly and several diameters apart anteriorly (interspaces aciculate to practically unsculptured), as long as $0.9 \times$ scape in female, $1.0 \times$ in male. Postocellar area concave except in smallest males. Scutal punctures, on disk, varying from about one to several diameters apart. Mesopleural punctures well defined to ill defined, about 1-2 diameters apart anteriorly and several diameters apart posteriorly; interspaces aciculate and dull to unsculptured and shiny. Punctures of mesothoracic venter varying from less than one diameter apart to several diameters apart. Propodeal dorsum and side ridged, but ridges evanescent or absent in smallest males. Forecoxa with apical process (Fig. 175c) except in smallest males. Hindcoxal dorsum with inner margin carinate (except posteriorly).

Setae erect and sinuous on postocellar area, gena, scutum, mesopleuron, propodeal dorsum and posterior face, and basal declivity of tergum I (only laterally in smallest males). Setal length about $0.7 \times$ basal mandibular width on postocellar area, on each side of oral fossa next to occipital carina, on scutum anteriorly, and on propodeal dorsum; up to $0.3-0.5$ on tergum I. Hindfemoral venter all asetose or with a few setae basally. Sternum I asetose (except laterally).

Head and thorax black, mandible yellowish red mesally. Frontal setae silvery in female, golden in male (only slightly so in smallest specimens). Wing membrane hyaline; forewing costal and subcostal veins light brown or subcostal vein somewhat darkened. Femora black (except at very apex), tibiae and tarsi red. Gastral segments I and II or I-III red, remainder black. Terga without silvery, apical fasciae.

Figure 175. Tachysphex hadronyx Pulawski, sp. nov.: a - female clypeus and mandible ($\times 30$); b - male clypeus and mandible $(\times 39)$; c - female forecoxa $(\times 72)$; d - female hindfemur $(\times 33)$; e - apical female tarsomere in dorsal view $(\times 60)$; $\mathrm{f}-$ female claws with thickened seta beneath $(\times 180)$.

ㅇ.- Mandible: trimmal carina with largely reduced tooth (Fig. 175a). Clypeus (Fig. 175a): lobe somewhat compressed laterally, bevel slightly longer mesally than basomedian area; lip free margin arcuate, not incised laterally. Postocellar area concave, its width $1.7-1.8 \times$ length. Dorsal length of flagellomere I $4.2 \times$ apical width. Dorsal foretibial surface with two or three spines; outer surface impunctate, glabrous, with two spines. Forebasitarsus with 7-9 rake spines. Hindfemur
unusually thick (Fig. 175d). Apical spines of hindtarsomere IV unusually long, almost reaching claw bases (Fig. 175e). Apical tarsomeres elongate (Fig. 175e). Claws markedly thickened, with thickened, curved seta beneath (Fig. 175f). Apical depression of tergum V asetose. Pygidial plate with microsculpture that varies from conspicuous to evanescent; punctures averaging many diameters apart. Length $7.6-11.5 \mathrm{~mm}$.
$\delta^{\boldsymbol{\pi}}$.- Mandible: trimmal carina angulate but without real tooth or cleft. Clypeus (Fig. 175b): bevel about as long as basomedian area; lip free margin slightly arcuate, corner obtuse; distance between corners $1.2 \times$ distance between corner and orbit. Width of postocellar area 1.8-1.9 \times length. Dorsal length of flagellomere I 3.0 $3.2 \times$ apical width. Forefemoral notch glabrous. Outer margin of forebasitarsus with five or six rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Hindfemoral venter with inner (= posterior) margin sharp in distal half. Tergum VII: punctures 1-2 to several diameters apart mesally. Sterna without subbasal, setal fringes, punctures of sterna II-V up to several diameters apart mesally. Length $5.5-8.5 \mathrm{~mm}$. Volsella and penis valve: Fig. 176; apex of gonoforceps curved toward midline (as in Fig. 386d).

Floral records.- Specimens from Agate Beach, Namibia, were collected on flowers of Zygophyllum clavatum Schltr. and Diels, and those from Aus to Rosh Pinah on flowers of Galenia sp. (Aizoaceae), as recorded by F.W. and S.K. Gess, the collectors.

Geographic distribution (Fig. 177).Namibia (Namib Desert only) and South Africa (Namaqualand and Little Karoo).

Records.- Holotype: io, NAMIBIA: Swakopmund District: 63 km NE Swakopmund at $22^{\circ} 24^{\prime} \mathrm{S} 15^{\circ} 02^{\prime} \mathrm{E}, 9$ Dec 1996, WJP (CAS). Paratypes: NAMIBIA: Lüderitz District: Lüderitz: Agate Beach, 29 Feb 2000, $\operatorname{FSG}\left(1 \circ+1 \delta^{\circ}\right.$, AMG), same data but $15^{\circ} 11^{\prime} \mathrm{E}\left(1 \mathrm{~d}^{\circ}\right)$; Aus to Rosh Pinah at $26^{\circ} 50.07^{\prime} \mathrm{S} 16^{\circ} 17.65^{\prime} \mathrm{E}, 11$ Sept 2003, FSG
 7-15 Oct 1970, collector unknown ($1 \mathrm{o}, \mathrm{NMN}$). Opuwo District: Carlowa's Camp, Angra Fria, 14-16 Nov 1970, collector unknown (1 ठ̛, NMN). Swakopmund District: Swakopmund, 26-30 Jan 1972, BMNH Southern Africa Expedition (1 ㅇ, 3 ơ, BMNH); Swakopmund, 12 Feb 1993, J. Gusenleit-

Figure 176. Tachysphex hadronyx Pulawski, sp. nov.: volsella and penis valve.

Figure 177. Collecting localities of Tachysphex hadronyx and helveticus aegyptiacus. Swakopmund, 8 Feb 1993, MS (1 ơ, MS); 63 km NE Swakopmund, WJP, 15 Feb 1996 (1 ㄴ, 6 o *), 19 Feb 1996 (1 ㅇ, 5 ơ *, 5 Mar 1996 (5 ơ *), 5 Dec 1996
 AFRICA: Northern Cape Province: Wallekraal in Namaqualand at $30^{\circ} 24^{\prime} \mathrm{S} 17^{\circ} 31^{\prime} \mathrm{E}$, Oct 1950, [South African] Museum Expedition (1 , SAM). Western Cape Province: Lammerskraal in Prince Albert District, Sept 1947, [South African] Museum Expedition (1 \& , SAM).

Tachysphex harpax Arnold

Figures 170, 178-180.
Tachysphex harpax Arnold, 1923a:161, ㅇ. Holotype: 우, Zimbabwe: Sawmills (SAM), examined.— Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:274 (listed).
Tachysphex unguiculatus Arnold, 1924:63, ㅇ, ${ }^{7}$. Lectotype: + , South Africa: Eastern Cape Province: Willowmore (TMP), here designated, examined. New synonym.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:277 (listed).
Tachysphex verhoeffi Pulawski, 1971:220, ㄷ, $\overbrace{}^{+}$. Holotype: ㅇ, Israel: Bat Yam (RMNH), examined before 1971. New synonym. - de Beaumont, Bytinski-Salz, and Pulawski, $1973: 9$ (Israel); Bohart and Menke, 1976:277 (listed).

Lectotype selection.- Of the two specimens designated as types of unguiculatus by G. Arnold, I have selected the female as the lectotype and the male as the paralectotype.

Recognition.- The female of harpax has conspicuously modified tarsi: tarsomeres III are short (e.g., length of midtarsomere III 1.2-1.4× apical width), the dorsoapical emargination of midand hindtarsomeres IV is rounded proximally rather than angulate, and tarsomeres V have the apicoventral margin produced into a lobe and, in the vast majority of specimens, $1-3$ spines near midlength of each lateral margin (Figs. 179a-c). In the vast majority of specimens, the apical tarsomeres and claws are elongate, the length of arolium being equal to about one third of a claw (Figs. 179b, c). In addition, the labrum free margin has a row of short, thickened setae (Fig. 178c). The females of rapax and scopa are similar, but unlike these species the scutal and femoral setae of harpax are all straight and appressed (rather than sinuous and erect).

The male of harpax is difficult to recognize because of considerable variation and lack of apparent diagnostic characters. The most distinctive, although somewhat difficult to see, are short, thickened setae at the free margin of the labrum (Fig. 178c). These setae are similar in aburi, mzingeli, rapax, and scopa. Tachysphex harpax and aburi differ only minimally: in harpax the venter of each apical tarsomere has a group of small, preapical spines (Fig. 179d), only two in some specimens, but only one or two such spines in aburi. Unlike rapax and scopa, the cephalic and thoracic setae of harpax are straight and appressed rather than erect and sinuous, the propodeal dorsum is evenly microareolate, rugose or longitudinally ridged (transversely ridged posteriorly in some rapax), and sternal setae are not unusually developed (sterna II-VI, in scopa, have unusually dense, suberect setae). Unlike mzingeli (in which the thoracic setae are strikingly golden and the wings yellow in basal half), the setae of harpax are all silvery on the thorax, and the wings are slightly to conspicuously infumate but not yellow. Subsidiary recognition features of harpax include: penultimate tarsomeres about as long as wide, galea at least slightly longer than wide in profile; and clypeal lobe narrow in most specimens (clypeal midline $1.2 \times$ distance between lip corners). The clypeal midlength is equal to the distance that separates the lip corners in a specimen from Redbank, Zimbabwe; like other males from Redbank and many males from other localities, the specimen has a conspicuously tridentate sternum VIII (Fig. 180b).

Species delineation.- The specimens that I attribute to harpax can be recognized by the distinctive labral setae and female tarsi in combination with the appressed thoracic setae, yet populations from various areas differ considerably in sculpture, pilosity, female tarsal spines, shape of male sternum VIII, and coloration. There seems to be almost as many permutations of these characters as there are collecting localities, suggesting geographic or local variation rather than a series of discrete species.

JUSTIFICATION OF NEW SYNONYMY.- The type specimens of harpax, unguiculatus, and verhoeffi are clearly conspecific. These names are therefore synonyms.

DESCRIPTION.- Galea at least slightly longer than wide in profile, as long as $0.7-0.8$ of scape
in most specimens, as 1.1 of scape in single male from Namutoni area, Namibia. Setae emerging from labrum free margin unusually short and stout (Fig. 178c). Scutal punctures well defined, about one diameter apart. Episternal sulcus complete in one of the females from Cape of Good Hope Nature Reserve. Mesopleural punctures varying from well defined to inconspicuous. Propodeal dorsum and side varying from evenly microareolate to markedly ridged. Hindcoxal dorsum with inner margin carinate basally. Sternum I, in some males, with inconspicuous, obtuse carina bisecting apical depression.

Setae sparse to dense and straight or sinuous on each side of oral fossa next to occipital carina, about as long as one midocellar diameter; appressed on postocellar area and scutum; on propodeal dorsum varying, straight or partly sinuous, oriented either posterad or anterolaterad.

Head and thorax black, mandible reddish mesally. Frontal setae silvery in female, silvery or golden in male. Wing membrane nearly hyaline; forewing costal vein light brown, subcostal vein brown. Femora all black, red at least apically in specimens with red tibiae; mid- and hindfemora all red in single male from Taita Discovery Centre, Kenya, and all femora red in single female from Nigeria and one female and several males from Emanguzi, South Africa. Tibiae, tarsi, and gaster varying from all black to all red. The female from Nigeria is unusual in having the frontal and thoracic setae all golden, as well as gastral fasciae. Terga I-III silvery fasciate apically, also tergum IV fasciate laterally in specimens from Redbank and Victoria Falls, Zimbabwe, a female from Magadi road, Kenya, and in single female from Mooketsi, South Africa.

ㅇ.- Labrum arcuate or slightly, shallowly emarginate mesally. Clypeus (Fig. 178a): bevel

Figure 178. Tachysphex harpax Arnold: a - female clypeus and mandible ($\times 34$); b - male clypeus and mandible $(\times 36)$; $\mathrm{c}-$ female labrum seen obliquely from below ($\times 120$); $\mathrm{d}-$ female forebasitarsus $(\times 72)$.
about as long as basomedian area; lip free margin arcuate, incised or not incised laterally. Width of postocellar area 0.8-0.9 \times length. Dorsal length of flagellomere I 1.8-2.0 \times apical width. Dorsal foretibial surface with at most one spine that is located near apex; outer surface with a few fine bristles. Forebasitarsus with 11-18 rake spines (Fig. 178d). Length of fore-, mid-, and hindtarsomeres III 1.2-1.3, 1.2, and $1.0-1.4 \times$ apical width, respectively. Tarsomeres IV: length equal to apical width, dorsoapical emargination rounded proximally (Fig. 179a). Venter of apical tarsomeres with row of erect setae along each lateral margin and with 1-3 spines about midlength of each lateral margin (Figs. 179a, b), but spines lacking in single female from Kirkwood, South Africa; also with up to several spines on each lateral margin basally in some specimens; apicoventral margin produced into lobe (Fig. 179c). Outer claws of mid- and hindtarsi minimally thinner than inner claws (oppo-

Figure 179. Tachysphex harpax Arnold: a - female tarsomeres IV and V dorsally ($\times 72$); b - female hindtarsomere V laterally $(\times 60)$; $\mathrm{c}-$ female hindtarsomere V in ventral view $(\times 60)$; d - apical tarsomere of male in ventral view ($\times 240$). site on foretarsus). Apical depression of tergum V unsculptured and asetose, at least partly. Pygidial plate slightly emarginate apically (not emarginate in single female from Nigeria), its punctures widely spaced to nearly contiguous. Length $7.1-9.1 \mathrm{~mm}$ ($9.8-11.0 \mathrm{~mm}$ in those from Iringa and Morogoro Regions, Tanzania).
δ^{7}.- Mandible: trimmal carina with tooth, cleft present or absent. Clypeus (Fig. 178b): bevel mostly shorter than basomedian area but about as long as basomedian area in specimens from Redbank, Zimbabwe, and ill defined or absent in those from Kenya and Tanzania; lip free margin arcuate (shallowly emarginate mesally in specimens from Middle East), but shallowly concave between midpoint and corner in some Kenyan and southern African specimens; lip corner well defined but not prominent; distance between corners $0.9-1.0 \times$ distance between corner and orbit. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I $1.3-1.5 \times$ apical width. Forefemoral notch microscopically setose, setae either easily visible or evanescent. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Tarsomeres IV about as long as wide. Apical tarsomeres each with a group of at least two subapical spines on venter (Fig. 179d); some 8-10 small ventral spines present in one of the two males from Bat Yam, Israel; also with spines on lateral margin in specimens from Morogoro

Figure 180. Tachysphex harpax Arnold: a-c - male sternum VIII; d-f - volsella; g-i - penis valve.
area, Tanzania. Sternum VIII: apical margin with median projection that varies from conspicuous to rudimentary (Figs. 180a-c). Length $5.0-7.5 \mathrm{~mm}$ (9.7 mm in those from Morogoro area, Tanzania). Volsella and penis valve: Figs. 180d-f and 180 g -i.

Variation.- Supraantennal swelling. Well defined in most specimens (shape usual for the genus), but reduced in size or vestigial in some southern African specimens and a male from Mkomazi area, Tanzania, and all finely punctate in a female from Arusha, Tanzania, and in both Tanzanian males.

Mesopleural punctures. Well defined in many specimens (including the female from Senegal and that from Magadi road, Kenya), but ill defined in those from Israel and Syria, Nigeria, other Kenyan specimens, female from Arusha, Tanzania, those from Zimbabwe: Bulawayo, Kami,

Nyamandhlovu area, Victoria Falls, and one female from Redbank, and ill defined or intermediate in many from South Africa.

Propodeal dorsum. Ridged or rugose in most specimens (slightly so in some), but evenly microareolate in males from Karasburg District, Namibia, Kami and Victoria Falls, Zimbabwe, and some from Bedford area, Colchester, Kirkwood, Pretoria, Tembe Elephant Park, and Willowmore, all South Africa.

Propodeal side. Ridged in most specimens (evanescent ridges present only anteriorly in many including those from Israel and Syria), unridged in many males.

Genal setae. Setae, next to oral fossa, straight in most specimens but sinuous in females from Middle East; mostly suberect but erect in single female from Angola and females from Middle East.

Propodeal setae. Mostly straight, oriented posterad on dorsum (in some specimens oriented anterad adjacent to foremargin), but in specimens from Israel and Syria sinuous between side and posterior face and oriented anterolaterad on dorsum.

Color of tibiae. Tibiae black except red in specimens from the following areas: Nigeria, Kenya: Archer's Post area, Kisima Rock, Marich Pass, Mount Kasigau, 26 mi SW Nairobi, and Taita Discovery Centre; Mkomazi area, Tanzania; Angola and Zambia; Namibia: Mariental, Karasburg and Windhoek districts, and Namutoni area; Zimbabwe: Nyamandhlovu area, Redbank (males only), and Victoria Falls; South Africa: Algoa Bay, Arkoep Farm, Bedford area, Cape of Good Hope Nature Reserve (males only), 20 km N Citrusdal (male only), Colchester, Fort Beaufort, Hilton Farm, Lambert's Bay, Langjan Nature Reserve (tibiae black in some specimens), Platriver (foretibia largely black), Sandveld Nature Reserve, Swartrivier, Tierberg Farm, Willowmore area, and Worcester.

Color of gaster. Gaster all black in most specimens (including those from Redbank, Zimbabwe, collected January 1995), but red basally (segments I and II or I-III) in specimens from Nigeria, from Gouph and Sandveld Nature Reserve, in one female and some males from Emanguzi, South Africa, those from Mariental to Keetmanshoop, Namutoni area, and 114 km N Swakopmund, Namibia, those from Bubye River and Victoria Falls, Zimbabwe, and the males from Nyamandhlovu area and Redbank, Zimbabwe (collected December 1995); the gaster is black except for a reddish basomedian spot on tergum II in single male form Taita Discovery Centre, Kenya; the following are red in the single male from Arkoep Farm, South Africa: tergum I mesally, tergum II basomedially, and most of sternum II; gaster all red in most specimens from Namibia, in single female from Angola, and single male from Mkomazi area, Tanzania; and gaster black with red apex in single females from Bulawayo and Marondera, Zimbabwe (red are segments V and VI) and from Arusha, Tanzania (also sternum V red) and in males from Magadi Road, Kenya, and Kami, Zimbabwe (red are terga VI and VII and apical sterna mesally).

Female clypeal lip. Not incised laterally in specimens from Israel; minimally incised in specimens from Angola, Namibia, most from Zimbabwe, and many from South Africa; and with two incisions on each side in specimens from Senegal, Nigeria, Kenya (incisions well defined in that from Karen), and Tanzania, some from Zimbabwe, from Mooketsi, South Africa (incisions moderately well defined), and from Zambia (inner incision minimal).

Female scutellum. In the specimens from Middle East and Kenya, the scutellum is evenly convex, with punctures about equal on the whole surface. In most specimens from Angola, Namibia, South Africa, Tanzania, Zambia, and Zimbabwe, and many from South Africa, the central portion of the scutellum is slightly concave, with punctures conspicuously smaller and denser, contrasting in size with those on the axilla (including specimens from Redbank, Zimbabwe, collected in January 1995). The punctures, however, are only slightly smaller in the holotype female of harpax, and all about equal (not reduced in size at the center) in single Zimbabwean females from

Bulawayo, Nyamandhlovu area, Victoria Falls, and in two females from Redbank (those collected December 1995). In many females from South Africa, the punctures of the concave central area are of two sizes: smaller and larger.

Female apical tarsomeres and claws: length. In the vast majority of specimens, the apical tarsomeres and claws are elongate, claw length being about $3.0 \times$ that of arolium (Figs. 179b, c). The apical tarsomeres and claws are not elongate in the single specimen from Magadi road, Kenya, and those from Morogoro Region, Tanzania, the claw length being about $2.0 \times$ that of arolium.

Female apical tarsomeres: spines. Apical tarsomeres have no basal spines in most specimens, but have subbasal spines on each lateral margin in many (e.g., South African females from Bedford area, Fort Beaufort, Mooketsi, Platriver, Swartberg River, Tierberg Farm, and Willowmore, and single females from Rundu and Windhoek districts, Namibia). The number of subbasal spines on each lateral margin varies from one to three (spines lacking in single female from Kirkwood, South Africa), and the numbers may differ on the two sides of each tarsomere. In one female from Tierberg Farm, the spines form a continuous row from base to midlength.

Female tergum V. Apical depression unsculptured and asetose in most specimens, with a few evanescent punctures in a female from Redbank, Zimbabwe, and with many punctures mesally in females from Nigeria; Kenya; Arusha, Tanzania; Bulawayo, Zimbabwe; and those from Guernsey Farm, Pretoria Botanical Garden, Skukuza, and one of several females from Bedford area, all South Africa. The number of mesal punctures varies from a few to many in the females from Tierberg Farm.

Female pygidial plate. Punctures averaging several to many diameters apart in most specimens, but most punctures no more than one diameter apart in single female from Karen, Kenya.

Male forefemoral notch. Notch setae are evanescent in Zimbabwean and southern African specimens, but easily visible in those from Israel, Kenya, and Tanzania.

Male sternum VIII (Figs. 180a-c). The apicomedian projection may be either broad, conspicuous (e.g., specimens from Karen and Marich Pass, Kenya, Namutoni area, Namibia, and Redbank, Zimbabwe, January 1995; one from Kami Ruins, Zimbabwe), or well defined, narrow (other specimens from Zimbabwe including those from Redbank, December 1995; those from Mount Kasigau, Kenya, Mkomazi area, Tanzania, and Karasburg District, Namibia; most from South Africa), short and rounded (single male from Taita Discovery Centre, Kenya, some from Pretoria), or short and divided (some from Pretoria), or evanescent (specimens from Bat Yam, Israel, some from Pretoria).

Male frontal setae. Golden in males with partly or all red gaster, in those with an all black gaster mostly silvery but golden in some.

Geographic distribution (Fig. 170).— Middle East (Israel, Syria), Senegal, Nigeria, Kenya and Tanzania, and southern Africa: Angola, Namibia, Zambia, Zimbabwe, South Africa. The gaps between Middle East, Senegal, Nigeria, and Kenya most likely result from inadequate collecting.

Records.- ANGOLA: River Giraul 10 mi NE Namibe (1 ㅇ, BMNH). ISRAEL (Pulawski, 1971, if not indicated otherwise): Bat Yam 3 km S Jaffa ($4 \stackrel{+}{ }+2 \delta^{\star}$, paratypes of verhoeffi), Beersheba, Haifa, Jaffa, Nir Am 10 km E Ghaza, Raanana 15 km NNE Tel-Aviv. KENYA: Coast Province: Kisima Rock at $3^{\circ} 51^{\prime} \mathrm{S}$ $38^{\circ} 46^{\prime}$ E ($1 \delta^{\star}$), Mount Kasigau ($2 \delta^{\circ}$), Taita Discovery Centre: Galla Hill area ($1 \delta^{\circ}$). Eastern Province: near Ewaso Ng'iro River opposite Archer's Post (1 \&) . Nairobi: Karen (1 \&) . Rift Valley Province: Magadi road
 NAMIBIA: Mariental District: Mariental to Keetmanshoop at $24^{\circ} 50^{\prime} \mathrm{S} 17^{\circ} 56^{\prime} \mathrm{E}\left(10^{\circ}\right.$, AMG). Karasburg District: Gelaus 6 [Farm] (1 \&, 1 ơ, NMN). Otjiwarongo District: 18 km NE Kalkfeld (1 \&) , 20 km NE Otjiwarongo (1 +). Rundu District: 125 km SW Rundu (1 ค, MS). Swakopmund District: 114 km N Swakopmund at $21^{\circ} 51^{\prime} \mathrm{S} 14^{\circ} 05^{\prime} \mathrm{E}\left(1+\right.$, AMG). Tsumeb District: 30 km E Namutoni (10°, MS). Windhoek District: Arnhem Farm 110 km E Windhoek (1 \&, LACM), Nam Lodge at approximately $22.8^{\circ} \mathrm{S} 18.2^{\circ} \mathrm{E}(1$ q, BMNH). NIGERIA: Ibadan (1 , BMNH). SENEGAL: Simenti in Nikolo Koba National Park (1 + ,

OÖLM). SOUTH AFRICA: Eastern Cape Province: Algoa Bay (3 ${ }^{\text {or, TMP }}$), 28 air km N Bedford at $32^{\circ} 29^{\prime} \mathrm{S} 26^{\circ} 02^{\prime} \mathrm{E}\left(2 \circ+3\right.$ o $\left.^{\circ}\right)$, NNW Bedford at $32^{\circ} 33^{\prime} \mathrm{S} 26^{\circ} 00^{\prime} \mathrm{E}(4+\circ)$, Colchester at $33^{\circ} 42^{\prime} \mathrm{S} 25^{\circ} 50^{\prime} \mathrm{E}\left(9 \mathrm{o}^{\circ}\right)$, 7 km S Cradock (1 \& \uparrow OÖLM), Fort Beaufort: "Umdala" (1 \& SAM), Goodehoop Farm 16 km W Steytlerville ($1 \mathrm{~d}^{\circ}$, USU), Grahamstown: Botanical Garden at $33^{\circ} 18^{\prime} 26^{\prime \prime} \mathrm{S} 26^{\circ} 31^{\prime} 41^{\prime \prime} \mathrm{E}\left(1 \mathrm{~d}^{\circ}, \mathrm{OHL}\right.$), 30 km W Grahamstown
 Olifantskop Pass 30 km W Grahamstown ($1 \delta^{\circ}$, OÖLM), Papiesfontein at $33^{\circ} 58^{\prime} \mathrm{S} 24^{\circ} 59^{\prime} \mathrm{E}$ ($1+$, SAM), 28 km S Steytlerville: Wolwekraal Farm (2 q, USU), Table Farm 10 km NW Grahamstown (3 q, AMG), Willowmore ($2 \sigma^{\star}$, OHL; $1 \circ+1 \sigma^{\text {º }}$, TMP, lectotype and paralectotype of unguiculatus), 9 km E Willowmore ($2 \mathrm{c}^{\circ}$), 43 km NE Willowmore: Plessierivier ($1 \mathrm{o}^{\circ}$, USU), 37 km NW Willowmore in Grootrivierberg Range (10°, USU), 6 km S Willowmore at $33^{\circ} 20^{\prime} \mathrm{S} 23^{\circ} 27^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right), 11 \mathrm{~km}$ SW Willowmore at $33^{\circ} 22.3^{\prime} \mathrm{S} 23^{\circ} 24.7^{\circ} \mathrm{E}$ ($6 \sigma^{\circ}$, USU). Free State: Sandveld Nature Reserve ca 5 air km E Bloemhof at $27^{\circ} 40^{\prime} \mathrm{S} 25^{\circ} 41^{\prime} \mathrm{E}$ (60°). Gauteng: Pretoria ($1 \circ^{7}$, AEI), Pretoria: Botanical Garden (2 ㅇ, $7 \circ^{7}$), Tswaing (1 \circ). Kwazulu-Natal: SW
 ($1 \sigma^{\pi}$, OÖLM). Mpumalanga: Skukuza in Kruger National Park (1 甲 +3 o $^{\pi}$, PMA). Northern Cape Province: Arkoep Farm 6 km N Kamieskroon at $30^{\circ} 19^{\prime} \mathrm{S} 17^{\circ} 56^{\prime} \mathrm{E}$ (1 o^{\prime}, PPRI). Northern Province: Ellisras (2 우, AMG), Guernsey Farm 15 km E Klaserie ($1 \stackrel{\circ}{\circ}$, PMA), Langjan Nature Reserve ($3 \mathrm{o}^{*}$, PPRI), Mooketsi (1 우, USNM), 7 km E Mopane which is about $22^{\circ} 40^{\prime} \mathrm{S} 29^{\circ} 50^{\prime} \mathrm{E}$ (1 ㅇ, AMNH), Nwanblya waterhole near Shingwedzi in Kruger National Park (1 ㅇ, ZMAN), 5 mi W Warmbad (1 ค, USNM). North-West Province: Platriver ($1 \stackrel{\circ}{\circ}$, TMP, paratype of harpax). Western Cape Province: Bo Kouga in Uniondale District (1 \& ,
 1 \& , 1 ơ, OÖLM), Clanwilliam (1 \& , AMNH), Gouph in Laingsburg District (1 \& , SAM), Lambert's Bay (1 ơ, $^{\circ}$, OÖLM), Langberg (1 ơ $^{\circ}$, OÖLM), Ratelfontein in Graafwater District ($1 \circ$, AMG), Swartrivier 7 km NW Prince Albert (3 \& , 5 o $^{\circ}$), Swellendam ($1 \circ$, BMNH), Tierberg Farm 23 km NE Prince Albert (13 우, $11 \mathrm{o}^{\circ}$), Worcester ($1 \mathrm{ơ}^{\circ}$, BMNH). SYRIA: Qualalat-el-Hosn (= Krak des Chevaliers) 40 km W Homs (1 ㅇ, MSNT, paratype of verhoeffi). TANZANIA: Arusha Region: Arusha ($1 \stackrel{\circ}{ }$, ZMAN). Coast Region: 60 km
 Tanga Region: 2 km NE Mkomazi ($1 \mathrm{ol}^{\text {f }}$). ZAMBIA: Eastern Province: lower Luangwa River (1 \&, BMNH), upper Luangwa River (1 \& , BMNH), Nyamadzi River near Nawalia [N Sinda] ($1 \stackrel{\circ}{\circ}$, BMNH). ZIMBABWE: Antelope 100 km S Bulawayo ($\mathrm{o}^{\boldsymbol{\circ}}$, OÖLM), Bubye River 80 km NE Beit Bridge (2 ㅇ, 2 ơ, OÖLM), Bulawayo ($1 \quad$ ค, AMG), Bulawayo: Hillside ($1 \delta^{\star}$), Kami Ruins ($2 \delta^{\star}$, AMG), Marondera (as Marandellas,
 ($3 \circ+8 \circ^{\circ}$), Sawmills ($1 \circ$, SAM, holotype of harpax), Victoria Falls ($1 \circ+9$ o $^{\circ}$).

Tachysphex helveticus aegyptiacus Morice

Figures 177, 181.
Tachysphex aegyptiacus Morice, 1897:306, 우, $\overbrace{}^{7}$. Lectotype: $\boldsymbol{o}^{¹}$, Egypt: Choubra (OXUM), present designation, examined.- Storey, 1916:110 (Egypt); Honoré, 1942:55 (in checklist of Egyptian Sphecidae).-As Tachysphex helveticus var. aegyptiacus: de Beaumont, 1940b:176 (new status).- As Tachysphex helveticus aegyptiacus: de Beaumont, 1947a:200 (new status, in revision of Egyptian Tachysphex); Pulawski, 1971:177 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:274 (listed).
Type locality.- I have examined two syntypes of aegyptiacus, a female and a male, and have selected the male as the lectotype. It is labeled "Choubra 16.5.[18]96". The locality Choubra is not listed in the available maps and gazetteers, but according to Morice (1897) the species was collected near Cairo and at Suez. I accept that Choubra is in the vicinity of Cairo.

Recognition.- Tachysphex helveticus Kohl is an all black species, with a flat labrum, midtarsomere II more than twice as long as apically wide, apical tarsomeres without spines on venter or lateral margins, and the anal end of hindwing crossvein cu-a as far from the wing base as the cubital end or slightly closer. Furthermore, the mesopleural punctures are well defined, the setae are erect on the postocellar area and midfemoral venter, diverging obliquely anterad from the propodeal dorsum's midline, and at least terga I-III are silvery fasciate.

Figure 181. Tachysphex helveticus aegyptiacus Morice: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d - penis valve.

The female share with aterrimus and fugax an almost flat middle clypeal section. As in fugax, most punctures of this section are about one diameter apart, and the clypeal setae are dense, concealing the integument (except anteromesally). In aterrimus, the punctures of the middle clypeal section are more than one diameter apart, and the clypeal setae are sparse, not concealing the integument. Unlike fugax, the female flagellum is short in helveticus (e.g., the dorsal length of flagellomere I is about $2.3 \times$ apical width rather than $4.0-4.5$).

The male of helveticus differs from similar species in having a well-defined corner of the clypeal lip and the outer apical spine of foretarsomere II longer than foretarsomere III.

The punctate frons with shiny interspaces and the presence of a silvery setal fascia on terga I-IV are subsidiary recognition features of the African populations of this species, i.e., of helveticus aegyptiacus.

Subspecies in Tachysphex helveticus.- Pulawski (1971) recognized three subspecies of helveticus Kohl: helveticus aegyptiacus (Egypt, now also known from Niger), helveticus helveticus (Europe to Kazakhstan, Uzbekistan, Tajikistan, and Mongolia), and helveticus quadrifasciatus Pulawski (Cyprus, Jordan, Tajikistan), characterizing them as follows: in helveticus helveticus, the frons is markedly microsculptured and dull between the punctures, slightly punctatorugose in some specimens, and only terga I-III are silvery fasciate apically. In helveticus quadrifasciatus, the frons is also dull and microsculptured, but silvery fasciate apically are terga I-IV. In helveticus aegyptiacus, the frontal integument is shiny, unsculptured or only finely microsculptured between the punctures, and terga I-IV are silvery fasciate apically. Contrary to the original description, the cor-
ner of the male clypeal lip in helveticus quadrifasciatus may be either obtuse or sharp.
In reality, the relationships of these subspecies appear to be more complex. First, in specimens from Kazakhstan, the frons is somewhat shiny, although less so as in the Egyptian populations. Second, I now know specimens of both helveticus helveticus and helveticus quadrifasciatus from Cyprus, although not from identical localities. This suggests either full intergradation or reproductive isolation. Third, in a paratype male of helveticus quadrifasciatus from Turkey, the frons is as shiny as in some Egyptian specimens. Possibly these subspecies do not warrant recognition and should be synonymized. On the other hand, helveticus aegyptiacus is geographically isolated from the other populations (e.g., no helveticus has ever been found in North Africa west of Egypt) and may be a vicariant species.

Description.- Scutal punctures well defined, mostly less than one diameter apart, but many discal punctures up to two or three diameters apart. Mesopleural punctures well defined, averaging more than one diameter apart below scrobe, several diameters apart in many specimens; interspaces shiny. Episternal sulcus complete except in some females. Propodeal dorsum irregularly rugose or irregularly ridged longitudinally; side ridged. Hindcoxal dorsum with inner margin carinate.

Setae erect on postocellar area, erect on each side of oral fossa next to occipital carina (about $1.5 \times$ midocellar diameter long), suberect on scutum anteriorly (about two midocellar diameters long), on propodeal dorsum diverging obliquely anterad from midline, suberect on midfemoral venter (longest setae about one midocellar diameter long).

Head and thorax black, mandible yellowish red mesally. Frontal setae, in both sexes, silvery except with golden tinge near midocellus. Wing membrane slightly infumate in female, almost hyaline in most males; costal vein of forewing yellowish brown, subcostal vein brown. Gaster and legs black, tarsal apex brown. Terga I-IV silvery fasciate apically.
¢.- Clypeus (Fig. 181a): middle section almost flat, bevel markedly shorter than basomedian area in most cases, but almost as long as bevel in some specimens; lip free margin arcuate, not incised laterally. Width of postocellar area 2.1-2.4 \times length. Dorsal length of flagellomere I 1.6-1.9 \times apical width. Dorsal foretibial surface with a few fine bristles; outer surface with one spine. Forebasitarsus with 5-7 rake spines. Apical depression of tergum V varying from unsculptured and asetose to microscopically punctate and setose. Pygidial plate with ill-defined punctures that average many diameters apart; interspaces unsculptured. Length $5.8-7.8 \mathrm{~mm}$.
0^{7}. - Mandible: trimmal carina with tooth and rudimentary cleft. Clypeus (Fig. 181b): bevel about as long as basomedian area to nearly reduced, in most specimens markedly shorter than basomedian area; lip free margin straight or slightly arcuate, with well-defined corner; distance between corners $1.2-1.6 \times$ distance between corner and orbit. Width of postocellar area $2.5-3.1 \times$ length. Dorsal length of flagellomere I 1.0-1.3 \times apical width, ventral length equal to apical width or nearly so. Forefemoral notch setose to glabrous. Outer margin of forebasitarsus with 3-6 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Tergum VII mesally with minute punctures that are several to many diameters apart. Length $4.4-5.9 \mathrm{~mm}$. Volsella and penis valve: Figs. 181c, d.

Nesting behavior. - No observation has been conducted on the behavior of helveticus aegyptiacus, but Olberg (1959) and Bonelli (1972) studied helveticus helveticus, respectively, in Germany and Italy. Their data are summarized below.

The nest is established in sandy soils, and the female digs the gallery with her forelegs, the evacuated sand being thrown behind under her body. From time to time, she levels the accumulated sand mound, also using her forelegs. Small pebbles (some of which may be three times the wasp's head in diameter) are removed in her mandibles and deposited at some distance, either by dragging them backward, or in flight. According to Olberg, removal of pebbles preceded digging
because the nesting site was densely covered with them. All the nests studied by Olberg were unicellular, but Bonelli observed bicellular nests as well. After completion of the nest, the mother wasp performs an orientation flight or walks around the entrance, then goes hunting. The nest entrance remains opened when she is away. The prey, nymphal acridids, are flown to the nest, head to head and venter to venter, and deposited at the nest entrance. The wasp then enters the nest headfirst, turns around, grabs the prey, and pulls it inside. Two to five nymphs are stored per cell. The prey observed by Krombein (1972) on the island of Crete was probably Calliptamus italicus (Linnaeus).

Geographic distribution (Fig. 177).— Egypt to Niger.
Records.- EGYPT: Al Fayyum: Kom Osheim (6 ค \uparrow, $5{ }^{\circ}$) . Al Jizah (= Ghiza): Abu Rawash (3 \circ,

 cus). NIGER: Niamey ($1+$, KMG).

Tachysphex hermia Arnold

Figures 182, 183.
Tachysphex hermia Arnold, 1924:53, \uparrow, 0° (as Hermia, incorrect original capitalization). Lectotype: + , Zimbabwe: Bulawayo (SAM), here designated, examined. - Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:274 (listed).

Recognition.- Tachysphex hermia, known from Zimbabwe and Namibia, is characterized by: gaster, femora, and tibiae black; mesopleuron shiny, with well-defined punctures (that are less than one diameter apart); setae erect on postocellar area (Figs. 182a, b), nearly erect on scutum and midfemoral venter, and inclined obliquely anterad on propodeal dorsum; labrum flat, not emarginate; and tarsi unspecialized (length of midtarsomere II more than twice length and that of hindtarsomere IV more than width, apical tarsomeres without spines on venter or lateral margins).

The female of hermia differs from other species with these characteristics except some titania in having a mesally projecting clypeal lip (Fig. 182c). Subsidiary recognition features include: apical part of galea (distad of crease) densely punctate (denser than basal area) and slightly wider than long in profile (in titania sparsely punctate and slightly longer than wide), clypeal lip not incised laterally and middle section evenly convex, setae straight on scutum and mesopleuron (sinuous in many diversilabris), and tarsi not elongate (length of hindtarsomere IV about $1.2 \times$ apical width, whereas $1.7 \times$ apical width in longipes).

The male of hermia, like that of diversilabris, longipes, and titania, has a pointed clypeal lobe, but the oblique carina that emerges from the clypeal midpoint ends in a small tubercle (Fig. 182d); the carina simply effaces in the other species. Also, the male of hermia has simple flagellomeres (flagellomeres III-X each with a longitudinal sulcus in diversilabris), the distal portion of the galea densely punctate and slightly wider than long in profile (slightly longer than wide in titania), apical tarsomeres not elongate (length of hindtarsomere IV $1.2 \times$ apical width, whereas $1.5 \times$ apical width in longipes), and sternum VIII evenly emarginate (sternum VIII tridentate in most diversilabris).

Description.- Apical portion of galea (distad of crease) densely punctate, markedly more so than basal portion, in profile slightly shorter than wide. Mandible: outer ridge somewhat swollen and expanded over notch. Scutal and mesopleural punctures well defined, relatively large; scutal punctures averaging less than one diameter apart (several discal punctures may be 1-2 diameters apart); mesopleural punctures less than one diameter apart anteriorly and more that one diameter posteriorly. Propodeal dorsum irregularly rugose, mostly also with irregular, longitudinal ridges; side ridged. Hindcoxal dorsum with inner margin carinate basally.

Figure 182. Tachysphex hermia Arnold: a - female head in frontal view; b - male head in frontal view; c - female clypeus and mandible; d - male clypeus and mandible with outline showing variation of clypeal free margin and of mandible; e - volsella; f - penis valve.

Setae erect, straight or sinuous on postocellar area (Figs. 182a, b); suberect, curved or sinuous on scutum anteriorly; inclined anterad on propodeal dorsum. Setal length (expressed as a fraction of basal mandibular width): 0.8 on postocellar area, $0.4-0.5$ on each side of oral fossa next to occipital carina, $0.5-0.7$ on scutum anteriorly.

Head, thorax, legs, and gaster black except mandible reddish mesally and tarsal apex brown. Frontal setae silvery in both sexes, but golden in single female from Harare area. Wing membrane slightly infumate to nearly hyaline, forewing costal and subcostal veins brown. Terga I-IV (I-III in some males) silvery fasciate apically.

ㅇ.- Clypeus (Fig. 182c): bevel shorter than basomedian area; lip free margin arcuate, roundly prominent mesally, not incised laterally. Width of postocellar area 1.8-2.0 \times length (Fig. 182a). Dorsal length of flagellomere I $2.2-2.4 \times$ apical width. Forefemoral venter with minute punctures that are several diameters apart. Foretibial outer surface without spines or with one spine near midlength. Forebasitarsus with seven or eight rake spines. Apical depression of tergum V microsculptured and setose throughout. Length $8.0-9.2 \mathrm{~mm}$.
σ^{\top}.- Mandible: trimmal carina with obtuse tooth, without cleft. Clypeus (Fig. 182d): bevel shorter than basomedian area; lip free margin acutely pointed, without corner (forming single curved line with rest of clypeal margin); oblique carina emerging from clypeal midpoint ends in minuscule tubercle that is close to free margin. Width of postocellar area $2.0-2.2 \times$ length (Fig. 182b). Dorsal length of flagellomere I 1.4-1.6 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Length $5.2-6.7 \mathrm{~mm}$. Volsella and penis valve: Figs. 182e, f.

Collecting period.- 24 May through 27 July (Zimbabwe), 27 August (Namibia).

Geographic distribution (Fig. 183).Zimbabwe, Namibia.

Records.-NAMIBIA: Lüderitz District: 31 km SSE Grillenthal at $27^{\circ} 14^{\prime} \mathrm{S} 15^{\circ} 28^{\prime} \mathrm{E}$, ex shell of snail Trygonephrus ($1 \stackrel{\circ}{+}$, AMG). ZIMBABWE: Bulawayo ($1+1$ ơ, paratypes; 2 ค, 3 or $^{\text {B }}$, SAM, including + lectotype, $1 \circ^{\circ}$ paralectotype, $1 \circ$ and $1 \delta^{\pi}$ paratypes; 1 ơ, TMP), near Harare [probably Chishawasha] (1 ㅇ, RMNH), Umguza River near Bulawayo ($2 \sigma^{\pi}$, SAM).

Figure 183. Collecting localities of Tachysphex hermia, iaphetes, and incanus.

Tachysphex hippolyta Arnold

Figures 184-186.
Tachysphex hippolyta Arnold, 1924:59, ㅇ (as Hippolyta, incorrect original capitalization). Holotype: \uparrow Zimbabwe: Sawmills (SAM), examined.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); de Beaumont, 1967:509 (misdetermination, actually Tachysphex argentifrons); Bohart and Menke, 1976:274 (listed).
Tachysphex viarius Arnold, 1947:149, σ^{7}. Holotype: σ^{7}, Zimbabwe: Vumba Mts. (SAM), examined. New synonym. - Bohart and Menke, 1976:277 (listed).
Recognition.- The female of hippolyta has tarsomeres IV wider than long, with the dorsoapical emargination broadly obtuse (almost straight), apicoventral margins of tarsomeres III-V projecting or at least convex mesally, tarsomeres V angulate basoventrally, and on each leg one claw smaller than the other. It differs from most other species with these characteristics in having the following combination: legs and gaster all black, forebasitarsus with $8-10$ rake spines (of which at least the apical three have their sockets confluent), and dorsal length of flagellomere I equal to
1.8-1.9 of apical width. Unlike argentifrons, the forefemur of hippolyta is densely setose (Fig. 184c), at most with a narrow, sparsely setose area ventrally, and the outer and inner margins of foretarsomere IV are almost equal in length (rather than conspicuously unequal); unlike venator, the clypeal lip of hippolyta has two lateral incisions on each side (Fig. 184a), rather than one. Also, proportions of flagellomere I are slightly different (dorsal length 1.8-1.9 \times apical width, while 1.4-1.6 \times in argentifrons, $2.5 \times$ in venator).

The male of hippolyta has a distinctive, obtusely expanded lateral margin of the apical tarsomeres, best seen in the oblique, dorsolateral view (Fig. 184e). The apical tarsomeres are also expanded in auropilosus, the Madagascan scaurus, and the Oriental changi Tsuneki, in which, however, a few small spines emerge from the expansion (spines absent in hippolyta). Subsidiary recognition features of hippolyta are: free margin of clypeal lip pointed mesally and with well-defined corner, concave between midpoint and corner (Fig. 184b); propodeal dorsum with setae slightly inclined posterad, nearly erect; apical tarsomeres with central cluster of small spines (Fig. 184f); gaster black and tibiae in most specimens red.

Justification of new synonymy.- The holotypes of hippolyta and viarius are opposite sexes of one species. These two names are therefore synonyms.

Description.- Scutal punctures well defined, averaging 1-2 diameters apart in female, about one diameter in male; interspaces microsculptured. Mesopleural punctures well defined in female and many males, ill defined in some males; interspaces varying from dull to shiny. Propodeal dorsum rugose, evenly microareolate in many males; side varying from ridged to not ridged. Hindcoxal dorsum with inner margin carinate basally. Sternum I with obtuse, longitudinal carina.

Setae erect on each side of oral fossa next to occipital carina; erect on postocellar area (length about $1.5 \times$ midocellar diameter), nearly erect on scutum (length less than midocellar diameter); nearly erect (slightly inclined posterad) on propodeal dorsum.

Head and thorax black, mandible dark red at about two thirds of length. Frontal setae silvery in female, golden in male. Wing membrane slightly infumate; forewing costal vein light brown, subcostal vein dark brown. Femora black; tibiae and tarsi black in female (tarsal apex brown), red in most males but black in those from 128 km NW Morogoro, Tanzania. Gaster black. Terga I-III silvery fasciate apically.

ㅇ.- Labrum emarginate mesally. Clypeus (Fig. 184a): bevel as long as basomedian area or shorter; lip free margin arcuate, emarginate mesally in most specimens, with two lateral incisions on each side. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I 1.8-1.9 \times apical width. Scutum and scutellum flattened. Forefemoral venter with minute punctures that average several diameters apart, densely setose (Fig 184c), at most narrow, ventral zone sparsely setose. Dorsal foretibial surface with a few, fine bristles; outer surface without spines, with a few bristles. Forebasitarsus with 8-10 rake spines, of which at least the apical three have confluent sockets. Tarsomeres III with apicoventral margin arcuate. Tarsomeres IV wider than long, with dorsoapical emargination very broad (almost straight) and apicoventral margin obtusely prominent. Tarsomeres V angulate basoventrally, with central cluster of small spines on venter; each lateral margin with row of small spines subbasally; apicoventral margin produced into lobe (Fig. 184d). Outer claws of mid- and hindtarsi shorter, thinner than inner claws (opposite on foretarsus). Apical depression of tergum V impunctate, glabrous (all or largely so). Pygidial plate with punctures that average many diameters apart; interspaces shiny, aciculate or unsculptured. Length $7.0-9.0 \mathrm{~mm}$.
σ°.- Mandible: trimmal carina with tooth and cleft in most specimens, but tooth low, obtuse, and cleft absent in one specimen from Umguza River, Zimbabwe. Clypeus (Fig. 184b): bevel not differentiated; lip free margin pointed mesally, with well-defined corner (margin somewhat concave between midpoint and corner); distance between corners $0.9-1.0 \times$ distance between corner and

Fourth Series, Volume 58, Supplement I

Figure 184. Tachysphex hippolyta Arnold: a - female clypeus and mandible ($\times 41$); b - male clypeus and mandible $(\times 40)$; c - female forefemur ($\times 48$); d - female hindtarsomere V in ventral view $(\times 203)$; e - male hindtarsomere V in lateral oblique view $(\times 151)$; $\mathrm{f}-$ male hindtarsomere V in ventral view $(\times 129)$.
orbit. Width of postocellar area $0.7-1.0 \times$ length. Dorsal length of flagellomere I 1.3-1.6 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Tarsomeres V: each lateral margin obtusely angulate, without spines (Fig. 184e), venter with central cluster of small spines (Fig. 184f). Length 6.6-8.3 mm. Volsella and penis valve: Fig. 185.

Geographic distribution (Fig. 186).South Africa to Angola and Kenya.

Records.- ANGOLA: 16 mi W Paiva Couceiro (1 0^{7}). KENYA: Coast Province: Wundanyi (2 ơ'; $^{\circ}$ is, 7 ơ , OÖLM). Eastern Province: 94 km E Thika (1 \uparrow). MOZAMBIQUE: Maputo (10°, ANSP). NAMIBIA: Karibib District: 62 km E Karibib ($1 \mathrm{o}, \mathrm{MS}$). SOUTH AFRICA: Eastern Cape Province: 18 km WNW Grahamstown: Hilton Farm ($1 \quad \uparrow, 1$ of, AMG). Gauteng: Pretoria (2 ㅇ, $4 \delta^{\circ}$, AEI; 2 ㅇ, OÖLM),
 ($=$ van Riebeck) Nature Reserve at $25^{\circ} 52^{\prime} \mathrm{S} 28^{\circ} 16^{\prime} \mathrm{E}$ (1 \circ), Tswaing (1 o). Kwazulu-Natal: Fanies Island Camp, St. Lucia, at $28^{\circ} 10^{\prime} \mathrm{S} 32^{\circ} 25^{\prime} \mathrm{E}(1 \quad$,, PPRI). Mpumalanga: Barberton (1 ơ, PPRI), Kaapsehoop (1 ค, AMG), Kruger National Park: Pretoriuskop ($1 \circ+$ USNM), Satara (1 ở, PMA), and Skukuza $^{\circ}$ (1 ㅇ, 2 ơ $^{\circ}, \mathrm{PMA}$), Loskop Dam Nature Reserve (1 우, PPRI). Northern Province: D'Nyala Nature Reserve ($1 \sigma^{\text {T, }}, \mathrm{PPRI}$), Ellisras ($1 \mathrm{o}^{\mathrm{d}}, \mathrm{AMG}$), Guernsey Farm 15 km E Klaserie ($14 \div$, $32 \mathrm{o}^{\circ}, \mathrm{PMA}$), Guernsey Farm 20 km E Klaserie (1 ㅇ, PMA), Langjan Nature Reserve ($1 \begin{gathered} \\ \text { or }\end{gathered}$, PPRI), Modjadji Nature Reserve (1 ㅇ, PPRI), 30 km E Nylstroom ($80^{\circ}, \mathrm{PMA}$), Nylsvley Nature Reserve ($1 \mathrm{o}^{7}$, PPRI), Pafuri in Kruger National Park (1 ㅇ, PPRI), 20 km SE Potgietersrus (2 of, PMA), Thabazimbi: Ben Alberts Nature Reserve at $24^{\circ} 37^{\prime} \mathrm{S} 27^{\circ} 23^{\prime} \mathrm{E}(1 \mathrm{P})$), 5 mi W Warmbad (1 o , USNM). North-West Province: Rustenburg Nature Reserve ($3 \circ$, PPRI). TANZANIA: Kilimanjaro Region: Mkomazi Game Reserve: Ibaya ($1 \mathrm{o}^{\circ}, \mathrm{SAM}$) and Kikolo Plot (1 ở 7 1 o^{7}, SAM). Morogoro Region: 128 road km NW Morogoro (2 ${ }^{\circ}$). ZAMBIA: 60 km NW Kapiri Mposhi (2 ơ, OÖLM). ZIMBABWE: Bulawayo
 Chipinge near Mt. Selinda (2 ค, OÖLM), Chirinda Forest Land near Mt. Selinda (2 甲, OÖLM), 30 km W
 FSCA; 1 ㅇ, OÖLM), Mt. Selinda (11 ơ, OÖLM), Nyika 80 km E Masvingo (1 ㅇ, OÖLM), Redbank: Kami
 Vumba Mts. (5 o $^{\circ}$, SAM, including holotype and paratype of viarius).

Tachysphex horus de Beaumont

Figures 186, 187.
Tachysphex horus de Beaumont, 1940:168, ㅇ, $\boldsymbol{o}^{\boldsymbol{*}}\left(\boldsymbol{\sigma}^{\boldsymbol{*}}=\right.$ Tachysphex luxuriosus). Holotype: ${ }^{\circ}$, Egypt: Heliopolis (Ministry of Agriculture of Egypt), not examined.- de Beaumont, 1947a:171 (in revision of Egyptian Tachysphex, $\sigma^{\boldsymbol{*}}=$ Tachysphex luxuriosus), nec 1956a:197 (= Tachysphex luxuriosus); Pulawski, 1964:91 (Egypt; redescription), 1971:350 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:11 (Israel); Bohart and Menke, 1976:274 (listed); Roche and Zalat, 1994:115 (Egypt: Sinai Peninsula).

Recognition.- Tachysphex horus is similar to geniculatus, inextricabilis, luxuriosus, and niloticus, with which it shares the shape of the labrum, postocellar area, female mandible, and clypeus, setae short on the postocellar area and appressed on tergum I, and nonemarginate male forefemora (see geniculatus, p. 306, for details). As in geniculatus and niloticus, its propodeal side is glabrous along the metapleural sulcus, scutal hindcorner is not prominent, and the setae of the postocellar area are erect in the male.

The female of horus differs from geniculatus in having the setae appressed on the postocellar area, and concealing the integument of the anterolateral scutum and of mesopleuron (at least in fresh specimens). Also, the gaster is red at least basally in horus, but all black in many geniculatus. Unlike niloticus, the setae of horus conceal the integument of the forecoxa and the hindfemoral outer surface.

The male of horus differs from geniculatus in having a somewhat denser body vestiture. The setae, in particular, fully conceal the integument between the midocellus and antennal socket, at least in the lower half, whereas in most geniculatus the integument is visible from all or most angles. The Egyptian specimens differ from geniculatus in having a rounded apex of the penis valve, but the penis valve is practically identical in specimens from other areas. The rounded dorsal volsellar process of horus (Fig. 187) immediately differentiates it from niloticus, the outer apical spine of foretarsomere II is shorter than tarsomeres III and IV combined, and the punctures of the mesothoracic venter are about one diameter apart (about two diameters in occasional specimens). In niloticus, the

Figure 187. Tachysphex horus de Beaumont: volsella and penis valve. outer apical spine of foretarsomere II is as long as tarsomeres II and III combined, and the puncture are many diameters apart anterad on each midcoxa.

Description.- Labrum convex, conspicuously protruding beyond clypeal free margin. Galea minutely punctate (punctures about 1-2 diameters apart except anteriorly), as long as scape. Scutal punctures well defined, on disk averaging about one diameter in female and 1-2 diameters in male. Mesopleuron coriaceous, dull. Punctures of mesothoracic venter, anterad of midcoxa, many diameters apart in female, mostly about one diameter apart in male (about two diameters in occasional males). Propodeal dorsum microscopically areolate to microscopically rugose, in many specimens also with irregular longitudinal ridges; side ridged. Hindcoxal dorsum with inner margin not carinate.

Setae appressed on postocellar area in female but erect in male (about as long as midocellar diameter); erect on each side of oral fossa next to occipital carina (setal length up to $0.4 \times$ basal mandibular width); appressed on scutum; in fresh females fully concealing integument of frons, scutum anterolaterally, and mesopleuron; in male suberect on mesopleuron; variably oriented on propodeal dorsum (either anterad or posterad); propodeal side asetose next to metapleural sulcus. Sternum I varying from glabrous to setose.

Head and thorax black, mandible reddish except apically in female, reddish mesally in male; clypeal bevel reddish, also lip in many females. Frontal setae silvery in both sexes. Wing membrane hyaline; costal and subcostal veins of forewing yellowish. Femora black except apically, tarsi red. Color of tibiae and gaster: see below. Terga I-V silvery fasciate apically.

ㅇ. - Clypeus (as in Fig. 161c): bevel about as long as basomedian area, delimited anterolaterally by oblique carina that emerges from lip corner; lip somewhat ill defined, its free margin slightly convex to nearly straight, at most minimally concave mesally, roundly emarginate laterally. Width of postocellar area $2.1 \times$ length. Dorsal length of flagellomere I 2.3-2.9 \times apical width. Forefemoral base, on anteroventral surface, with a few large punctures that are several diameters apart. Dorsal foretibial surface with three spines; outer surface with three spines. Midtrochanteral venter mostly shiny, unsculptured, except for a few, sparse punctures (impunctate zone evanescent in occasional specimens). Forebasitarsus with 7-9 rake spines. Venters of tarsomeres V each with thin, preapical spine. Apical depression of tergum V largely impunctate and glabrous. Pygidial plate with minute punctures that are many diameters apart, interspaces unsculptured or nearly so. Length $8.3-9.8 \mathrm{~mm}$. Gastral segments I and II red or with black spots, remainder black. Tibiae red or foretibia partly black.
0^{7}.- Mandible: trimmal carina without tooth or cleft. Clypeus (as in Fig. 161d): bevel about as long as basomedian area or shorter; lip ill defined, its free margin almost straight to slightly arcuate, with obtuse corner; distance between corners about $1.2 \times$ distance between corner and orbit. Width of postocellar area 2.0-2.6 \times length. Dorsal length of flagellomere I 1.6-2.0 \times apical width. Forefemur not emarginate. Outer margin of forebasitarsus with 3-5 rake spines; outer apical spine of foretarsomere II as long as or longer than tarsomere III. Sternum VIII: apical margin with or without median prominence (prominence rounded or emarginate mesally). Length $4.8-7.5 \mathrm{~mm}$. Volsella and penis valve: Fig. 187. Gastral segments I and II or I-III red and remainder black, but all gaster black in some specimens. Tibiae largely black (red basally and apically) or midtibia largely and hindtibia all red.

Collecting period.- 12 February (Saudi Arabia), 31 March through 15 May (Egypt), 11 May (Israel), 6-7 August (Burkina Faso), 8-12 December (Oman).

Geographic distribution (Fig. 186).- Burkina Faso, Tunisia, Lower Egypt, Israel, Arabian Peninsula.

RECORDS.- BURKINA FASO: 4 km NW Ouahigouya at $13^{\circ} 37.0^{\prime} \mathrm{N} 2^{\circ} 27.6^{\prime} \mathrm{W}\left(1+8,1 \mathrm{o}^{\circ}\right)$. EGYPT:
 Heliopolis (de Beaumont, 1940), Maadi (2 ㅇ). As Suways (= Suez): 13-22 km N Ain Sokhna (1 ㅇ) . Sina (= Sinai): no specific locality (Roche and Zalat, 1994). ISRAEL (Pulawski, 1971): Ivulot, Revivim, also 32 km SE Beersheba $=5 \mathrm{~km}$ E Yeroham ($1+1$ ơ $^{\circ} ; 2$ ㅇ, 2 o $^{\circ}$, CSE). OMAN: 253 km S Nizwa at $20^{\circ} 43.3^{\prime} \mathrm{N}$ $57^{\circ} 04.4^{\prime} \mathrm{E}(1 \quad$ ㅇ $)$, Wahiba Sands 22 km S Al Qabil $22^{\circ} 22.6^{\prime} \mathrm{N} 58^{\circ} 38.7^{\prime} \mathrm{E}\left(2 \delta^{\circ}\right)$. SAUDI ARABIA: Wadi Majarish below Taif ($1+$, KMG). TUNISIA: 10 km SE Tataouine at $32^{\circ} 51^{\prime} \mathrm{N} 10^{\circ} 30^{\prime} \mathrm{E}\left(10^{\prime}\right.$, CSE). YEMEN:

Tachysphex iaphetes Pulawski, sp. nov.

Figures 183, 188.
Derivation of name.- Iaphetes, Greek for archer; with reference to Archer's Post, Kenya, where the holotype was collected, a place established in 1909 by the District Commissioner Geoffrey Archer, subsequently Governor General of Sudan.

Recognition.- The female of iaphetes is characterized by a unique foretarsal rake and a unique pygidial plate: the rake spines (except basal and apical ones) are shorter than the basitarsus width, and the apical spine is slightly shorter than tarsomere II (Fig. 188c); the pygidial plate is narrowly ovoid, rounded apically, and near the apex densely punctate and densely setose (Fig. 188d).

Description (based on holotype only).- Mandible: outer ridge somewhat swollen and expanded over notch. Scutal and mesopleural punctures well defined, averaging several diameters apart on scutal disk and at center of mesopleuron; interspaces unsculptured, shiny. Propodeal dor-

Figure 188. Tachysphex iaphetes Pulawski, sp. nov., female: a - head in frontal view; b - clypeus and mandible; c - forebasitarsus and tarsomere II; d - pygidial plate.
sum rugose and with irregular, longitudinal ridges; side ridged (ridges somewhat ill-developed at center). Hindcoxal dorsum carinate, carina slightly prominent basally.

Setae: erect on postocellar area, about as long as midocellar diameter (Fig. 188a), suberect on scutum anteriorly; nearly erect on each side of oral fossa next to occipital carina, almost as long as midocellar diameter; lacking on wide, median area on propodeal dorsum (probably due to abrasion), diverging anterad from asetose area; suberect on midfemoral venter (longest setae slightly exceed midocellar diameter).

Head, thorax, legs, and gaster black except mandible reddish preapically and apical tarsomeres brownish. Frontal setae silvery in female. Wing membrane slightly yellowish; costal vein of forewing yellowish brown, subcostal vein brown. Terga I-III silvery fasciate apically.

ㅇ.- Head transverse in frontal view (Fig. 188a). Clypeus (Fig. 188b): bevel about as long as basomedian area; lip free margin arcuate, with two lateral incisions on each side. Width of postocellar area $1.0 \times$ length (Fig. 188a). Dorsal length of flagellomere I $1.6 \times$ apical width. Dorsal foretibial surface with a few, inconspicous bristles; outer surface with four bristles. Forebasitarsus with nine rake spines, a few of which (near basitarsus midlength) are shorter than basitarsus width; length of apical spine about $0.8 \times$ tarsomere II; the latter about $2.0 \times$ as long as wide apically (Fig. 188c). Hindtarsomere IV about as long as apically wide. Apical tarsomeres without spines on venter or lateral margins, apicoventral margin convex. Claws elongate, outer claw in each pair minimally shorter and thinner than inner claw (opposite on foretarsus), inner claw more than twice
length of arolium. Apical depression of tergum V impunctate, glabrous. Pygidial plate narrowly ovoid, rounded apically, with punctures sparse mesally except less than one diameter apart on apical one fifth or so, where the integument is also densely setose (Fig. 188d). Length 7.1 mm .
0^{7}.- Unknown.
Geographic distribution (Fig. 183).— Kenya.
Records.- Holotype: ${ }^{\circ}$, KENYA: Rift Valley Province: Archer's Post, 30 Nov 1982, T.L. and R.T. Griswold (CAS).

Tachysphex ibi Pulawski, sp. nov.

Figures 189, 190.
Derivation of name.- Ibi, beautiful in the San (= Bushman) language.
Recognition.- Tachysphex ibi, an endemic of South Africa, has a black gaster, flat labrum, galea slightly longer than wide in profile, the setae erect on the postocellar area (about as long as the midocellar diameter), the propodeal dorsum finely, irregularly rugose, with setae erect or slightly inclined posterad (a small apicomedian area is glabrous), and the propodeal side ridged.

The female can be recognized, in addition to the above characters, by the femoral sculpture: the forefemoral venter (except apical third or so) and posteroventral midfemoral surface have welldefined punctures that are many diameters apart and aciculate interspaces. In addition, the tarsi are not modified, i.e., length of each tarsomere II is more than twice apical width, length of each tarsomere IV more than apical width, and tarsomeres V have no spines on the venter or lateral margins. Unlike limatus, the gena is uniformly, finely and closely punctate, the clypeal lip is not prominent mesally, and flagellomeres III-X are at least twice as wide as long, without specialized sensory areas.

In the male, the following combination is diagnostic: posteroventral midfemoral surface sparsely punctate (punctures many diameters apart); forefemoral notch extending far onto posterior surface, with a narrow (almost crest-like), elevated, platform; foretarsus without rake; clypeal lip obtusely pointed mesally (free margin shallowly concave on each side of the midpoint), lip corners closer to each other than to adjacent orbit; and sterna III-VI with suberect setae that are about one midocellar diameter long.

Description.- Galea longer than wide in profile, about as long as 0.7 of scape. Scutum with well-defined punctures that average about $1-2$ diameters apart in male and some females, $2-3$ diameters apart in other females, and also with fine, longitudinal ridges adjacent to posterior margin. Mesopleural punctures averaging about 2-3 diameters beneath scrobe, interspaces shiny to dull. Propodeal dorsum finely, irregularly rugose, partly with irregular, longitudinal ridges; side with well-defined ridges. Hindcoxal dorsum with inner margin carinate basally.

Setae erect on postocellar area and on each side of oral fossa next to occipital carina (setal length about equal to midocellar diameter), suberect on scutum (no longer than midocellar diameter), erect or slightly inclined posterad on propodeal dorsum (except small apicomedian area glabrous).

Head, thorax, and gaster black, mandible reddish at about two thirds of length. Frontal setae silvery in female, golden in male. Wing membrane moderately infumate; costal vein of forewing light brown, subcostal vein brown. Femora black; color of tibiae and tarsi: see below. Terga I-III silvery fasciate apically.

ㅇ.- Labrum free margin straight or minimally emarginate mesally. Mandibular cleft wide open (Fig. 189a). Clypeus (Fig. 189a): bevel longer than basomedian area; lip free margin arcuate, in most specimens with two lateral incisions on each side, but with only a small, lateral sinuosity in some. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I $2.0-2.2 \times$ api-

Figure 189. Tachysphex ibi Pulawski, sp. nov.: a - female clypeus; b-male clypeus and mandible; c - volsella with outline showing individual variation; d - penis valve.
cal width; length of flagellomere VIII about $2.0 \times$ width. Forefemoral venter (except apical third or so) and midfemoral posteroventral surface with well-defined punctures that are many diameters apart; interspaces aciculate. Dorsal foretibial surface with two spines; outer surface with one or two spines, with punctures sparser than on remaining surface. Forebasitarsus with 9-12 rake spines. Midtrochanteral venter shiny, almost unsculptured, with a few, sparse, well-defined punctures. Apical depression of tergum V unsculptured, glabrous. Pygidial plate with well-defined punctures that average many diameters apart (a few punctures adjacent to margin less than one diameter apart); interspaces aciculate. Length $9.8-10.4 \mathrm{~mm}$. Tibiae black except inner foretibial surface red; foretarsus red, mid- and hindtarsi black basally, reddish apically.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 189b) with small, oblique carina emerging from each lip corner; bevel as long as basomedian area or longer; lip free margin obtusely pointed mesally (shallowly concave on each side of midpoint), with obtuse, somewhat ill-defined corner; distance between corners about $0.7 \times$ distance between corner and orbit. Width of postocellar area $0.6-0.8 \times$ length. Dorsal length of flagellomere I $1.6-1.8 \times$ apical width. Forefemoral notch extending far onto posterior surface, with microscopically setose bottom and narrow (almost crest-like), elevated platform near anterior femoral surface. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Posteroventral midfemoral surface sparsely punctate (punctures many diameters apart). Sternal punctures well defined, relatively large; apical depression of sternum II and sterna III-VII with suberect setae that are about one midocellar diameter long. Length 7.4-9.5 mm. Volsella and
penis valve: Figs. 189c, d. Flagellum all black in most specimens, but flagellomeres V-X yellowish brown ventrally in some. Tibiae all red (except hindtibia darkened ventrally) or midand hindtibiae all black; tarsi red or hindtarsus black basally.

Geographic distribution (Fig. 190).South Africa.

RECORDS.- Holotype: + , SOUTH AFRI-

 CA: Eastern Cape Province: Belmont Valley 10 km E Grahamstown at $33^{\circ} 19^{\prime} \mathrm{S} 26^{\circ} 38^{\prime} \mathrm{E}, 12-15 \mathrm{Nov}$ 1971, F.W. Gess (AMG). Paratypes: SOUTH AFRICA: Eastern Cape Province: Clifton Farm 18 km NW Grahamstown, 20 Nov 1990, FSG (1 ${ }^{\circ}$); Grahamstown, Jan 1979, G.L. Prinsloo (1 \& , PPRI); Kenton-on-Sea, 15-30 Nov 1970, R.A. Jubb (2 $\frac{+}{}$; 1 , AMG); Strowan Farm 5 air km W Grahamstown, 19 Dec 1971, F.W. Gess (1 \circ, AMG). Northern Cape Province: W Calvinia, 12 Oct 1999,

Figure 190. Collecting localities of Tachysphex ibi and incertus (African and Arabian localities only). M. Halada ($1 \mathrm{o}^{7}$); Garies, H. Townes, 27 Sept 1970 (2 o $^{\text {o }}$, AEI, CAS) and 29 Sept 1970 (1 ㅇ, AEI); 10 km E Kamieskroon, 17 Oct 1977, R. Miller ($1 \mathrm{o}^{7}$, PMA); SW Loeriesfontein, 13 Oct 1999, Marek Halada (ở, OÖLM); Skuinshoogte Pass near Niewoudtville at $^{\text {a }}$ $31^{\circ} 16^{\prime} \mathrm{S} 19^{\circ} 08^{\prime} \mathrm{E}$, 23-30 Sept 1994, FSG ($1 \delta^{\circ} ; 2$ ơ' $^{\prime}$, AMG). Western Cape Province: Cape Peninsula, Sept
 OÖLM); Rust en Vrede in Oudtshoorn District, Oct 1951, [South African] Mus. Expedit. (1 ơ, SAM); Uniondale District, Oct 1952, [South African] Mus. Expedit. (1 ö, SAM). $^{\text {St }}$

Tachysphex incanus de Beaumont

Figures 183, 191.
Tachysphex incanus de Beaumont, 1940:173, \uparrow, \circlearrowleft^{\top}. Lectotype: \odot, Mauritania: Mederdra (MNHN), here designated, examined (type locality erroneously placed in southern Algeria in the original description, corrected to Mauritania by de Beaumont, 1947a:192).- de Beaumont, 1947a:192 (in revision of Egyptian Tachysphex); Pulawski, 1971:372 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:274 (listed).

Recognition.- The southern Saharan incanus is one of the species in which the galea is membranous and not sclerotized, the maxillary stipes has short, inconspicuous setae, the frons is not bulging near the midlength, the mesopleuron is dull, with shallow, inconspicuous punctures, the hindwing vein cu-a is vertical, and the length of the marginal cell is more than $3.0 \times$ width. Additionally, the mesopleural setae are dense and abundant, completely concealing integument in fresh specimens, and the gaster and femora are all or largely red. In the female, the pygidial plate is unusually broad, widely rounded apically, and with a shallow, transverse sulcus or impression near the midlength, and the preapical setae of sterna IV and V are somewhat thickened. In the male, sterna III-VII are sparsely punctate and essentially glabrous.

The female of incanus has the clypeal bevel shorter than the basomedian area, the free margin of the clypeal lip obtusely protruding mesally (Fig. 191a), and reflective setae of the hindfemoral outer surface concealing the integument along the ventral margin. Almost identical is argentatus, which differs in having the free margin of the clypeal lip either evenly arcuate or with a small, obtuse point, and the cleft of the trimmal carina narrow. In incanus, the point of the clypeal lip is
slightly larger and the cleft of the trimmal carina is broader (compare Figs. 27a and 191a). Tachysphex curvipes is similar, but in incanus the pygidial plate is clearly divided by a transverse impression, unsculptured anterad of impression and contrastingly microsculptured posterad of it. In curvipes, the entire pygidial plate is unsculptured.

The male of incanus has the clypeal free margin with a conspicuou, narrow projection mesally, and a deep forefemoral notch (about $0.3 \times$ forefemoral diameter in posterior view). The forefemur is less curved than in curvipes (compare Figs. 109d and 191c) and its notch has a well-defined platform with a few, inconspicuous setae (platform ill defined in curvipes and desertorum, glabrous in curvipes, with minute but conspicuous erect setae in desertorum).

Description.- Mandible: outer ridge somewhat swollen and expanded over notch. Galea membranous. Supraantennal swelling covered by vestiture. Scutal punctures less than one diameter apart or a few punctures more than one diameter apart. Mesopleuron dull, with shallow, inconspicuous punctures that are no more than 1 diameter apart. Punctures of mesothoracic venter, anterior-

JK
Figure 191. Tachysphex incanus de Beaumont: a - female clypeus and mandible; b-male clypeus and mandible; c - male forefemur in dorsal view; d - male forefemur in posterior view showing notch; $\mathrm{e}-$ volsella; $\mathrm{f}-$ penis valve.
ly of each coxa, with punctures that are up to 2-3 diameters apart in female and up to several diameters apart in male. Propodeal dorsum evenly microsculptured (also with longitudinal ridges in some specimens); side finely ridged (unridged in one male). Hindcoxal dorsum with inner margin obtusely carinate basally.

Setae appressed on postocellar area and scutum, concealing supraantennal swelling, in fresh specimens largely concealing integument on scutum and fully so on mesopleuron; appressed and concealing integument on most of gena, except in female suberect on each side of oral fossa next to occipital carina, about as long as midocellar diameter; on propodeal dorsum diverging obliquely anterad from midline, oriented laterad on remaining surface; on outer surface of female hindfemur conspicuous, reflective along ventral margin. Propodeal side all setose, sternum I all or largely glabrous.

Head and thorax black, mandible yellowish red mesally, clypeal lip reddish brown. Frontal setae silvery in both sexes. Wing membrane nearly hyaline; costal and subcostal veins of forewing reddish brown. Femora, tibiae, and tarsi red except forefemur black basally (midfemoral dorsum dark in one male). Gaster red or segments IV-VII black in male. Terga I-IV silvery fasciate apical1 l .

ㅇ.- Mandible: trimmal carina with broad cleft (Fig. 191a). Clypeus (Fig. 191a): bevel shorter than basomedian area; lip free margin arcuate, obtusely pointed mesally, not incised laterally. Width of postocellar area $0.5-0.6 \times$ length. Dorsal length of flagellomere I 3.0-3.2 \times apical width. Dorsal foretibial surface with two or three spines; outer surface with two or three spines. Forebasitarsus with seven rake spines. Midtrochanteral venter shiny, unsculptured except for a few, sparse punctures. Apical spines of hindtarsomere IV exceeding claw bases. Most punctures of tergum V several to many diameters apart, apical depression impunctate, glabrous. Pygidial plate unusually broad, broadly rounded apically; with transverse sulcus which corresponds to ridge on internal surface, unsculptured anterad of ridge, longitudinally microridged posterad of ridge. Preapical setae (bordering apical depressions) of sterna IV and V thickened, although less so than in julliani. Length 10.0 mm .
σ^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 191b): bevel absent (dense punctation extending to lip base); lip free margin pointed mesally, with ill-defined, obtuse corner in one specimens, without corner in other (here forming single curved line with rest of clypeal margin); distance between corners $3.0 \times$ distance between corner and orbit. Width of postocellar area $0.6 \times$ length. Dorsal length of flagellomere I $2.0-2.1 \times$ apical width. Forefemur curved in dorsal view, but less so than in curvipes (compare Figs. 109d and 191c); forefemoral notch deep, about $0.3 \times$ femoral diameter in posterior view (Fig. 191d), its bottom with well-defined platform and a few, inconspicuous setae. Outer margin of forebasitarsus with six rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Venter of tarsomeres V with one subbasal and one subapical spine. Tergum VI with punctures that are several diameters apart near base and less than one diameter near apex. Apical depression of sternum II and sterna III-VII (except III laterally) with a few, sparse punctures, practically glabrous. Length $7.0-8.8 \mathrm{~mm}$. Volsella and penis valve: Figs. 191e, f.

Geographic distribution (Fig. 183).- Mauritania, Senegal, Niger. The single male recorded from Libya (de Beaumont, 1947a, a paralectotype of incanus) is probably argentatus, as suggested by that author's description of the clypeus.

RECORDS.- MAURITANIA: Mederdra ($1 \quad$, MNHN, lectotype of incanus). NIGER: Dungass at
 MSNT).

Tachysphex incertus (Radoszkowski)

Figures 190, 192.
[N.B. There are more than 140 literature citations of Tachysphex incertus and its synonyms subsequent to the original descriptions, mostly locality records from Europe. Most have been omitted, and only the essential nomenclatural data are provided. Previous revisionary studies are by de Beaumont (1936a:193, 1947a:163, as pygidialis) and Pulawski (1971:318).]

Tachytes panzeri varietas geniculata A. Costa, 1867a:87, sex not indicated, junior secondary homonym of Tachysphex geniculatus (Spinola, 1839), not examined. Holotype or syntypes: Italy: may be Napoli area, or Sicilia, or Sardegna (NAPOLI). Synonymized with Tachysphex pygidialis by de Beaumont, 1936c:7.
Tachytes panzeri varietas geniculata A. Costa, 1867b:31. Objective synonym of Tachytes panzeri varietas geniculata A. Costa, 1867a.
Tachytes incertus Radoszkowski, 1877:28, ㄱ, 우 (as incerta, incorrect original termination). Lectotype: ㅇ, Uzbekistan: Kyzil-Kum Desert: no specific locality (ZMMU), designated by Pulawski, 1971:321, examined before 1971.- As Tachysphex incertus: Kohl, 1885:395 (tentative new combination); F. Morawitz, 1893:410 (new combination).
Tachysphex pygidialis Kohl, 1883a:176, ㄴ, \boldsymbol{o}°. Lectotype: ㅇ, France: Marseille (NHMW), designated by Pulawski, 1971:321, examined before 1971. Synonymized with Tachysphex incertus by F. Morawitz, 1893:410 and Gussakovskij, 1952:240, synonymy confirmed by Pulawski, 1971:321.
Tachysphex nattereri Kohl, 1888a:144, 두, \boldsymbol{o}^{\top} (as Nattereri, incorrect original capitalization; $\boldsymbol{\sigma}^{\top}=$ Tachysphex palopterus). Lectotype: \uparrow, Sudan according to original description but labeled Egypt: no specific locality, here designated, examined. New synonym.- As Tachysphex pygidialis nattereri: de Beaumont, 1947c:663 (new status).—As Tachysphex incertus nattereri: Pulawski, 1964:84 (Egypt), 1971:323 (in revision of Palearctic Tachysphex).
Tachysphex rufiventralis Ferton, 1905:68, ㅇ. . Holotype: 우, France: Corse: Bonifacio (MNHN), not examined. New synonym.- As Tachysphex pygidialis var. rufiventralis: Guiglia, 1938:9 (new status, Italy: Sardegna).- As Tachysphex pygidialis rufiventralis: de Beaumont, 1947c:663 (new status, redescrip-tion).-As Tachysphex incertus rufiventralis: Pulawski, 1971:322 (in revision of Palearctic Tachysphex).
Tachysphex incertus kallipygus Pulawski, 1971:323, ㅇ, ơ․ Holotype: 우, Algeria: Arba (LAUSANNE), examined before 1971. New synonym.
As Tachysphex pygidialis ssp. algira: de Beaumont, 1947c:664, corrected to Tachysphex incertus kallipygus by Pulawski, 1971:323.
Recognition.- Tachysphex incertus is one of the species in which the labrum is convex and conspicuously protruding beyond the clypeal free margin and the galea is longer than wide in profile (length equal to $0.75-1.2$ of scape). Also, the scutal punctures are less than one diameter apart, the propodeal dorsum is all setose (setae oriented posterad at least apicomesally), the genal setae are straight and no longer than midocellar diameter, and terga I-III or I-IV are silvery fasciate. The species occurs in Africa south to Mali and southern Egypt and also in southern Europe and central and southwestern Asia.

In addition to the above, the female of incertus is characterized by an impunctate, glabrous apical depression of tergum V (Fig. 192c) except depression setose mesally in some specimens, a welldefined lateral incision on each side of the clypeal lip (Fig. 102a), although the incision may be worn off in old specimens, and is ill defined in some Iranian specimens, and the pygidial plate not downcurved apically. Females of dissimulatus and excavatus are nearly identical morphologically, but only excavatus may overlap with incertus in the southern Sahara (dissimulatus is a southern African species). Also, the pygidial plate of many incertus is broader than in the other two species (Fig. 192c). Females of incertus from Egypt and Niger have an all red gaster, and some females from northwest Africa (as well as some from Europe and Asia) have the propodeal side ridged along the dorsal and posterior margin. The propodeal side is not ridged in dissimulatus and excavatus, and the gastral apex is black in most excavatus and many dissimulatus.

Figure 192. Tachysphex incertus (Radoszkowski): a - female clypeus and mandible; b - male clypeus and mandible; c - female terga V and VI; d - male foretarsus (the longer spine near basitarsus midlength originates at the ventral surface); $e-$ volsella with outline showing variation; f - penis valve.

The male differs from most Tachysphex in having a pointed dorsal volsellar process (Fig. 192e); it also has a reduced foretarsal rake: the apical spine of foretarsomere II is mostly shorter than the tarsomere's width (equal to width in some specimens), markedly shorter than tarsomere III (Fig. 192d), and the forebasitarsus in many specimens has no preapical spines (but up to four in some). The other African species treated here whose males have a reduced foretarsal rake are: aemulus (in which most setae of the propodeal dorsum are oriented anterad), brinckerae (in which the propodeal dorsum is asetose at least apicomesally), gracilicornis (in which the silvery tergal fasciae are ill defined or absent), and sahelensis (in which the dorsal length of flagellomere II is $1.1-1.3 \times$ apical width rather than $1.6-2.6 \times$). They also differ in having the dorsal volsellar process rounded apically. The only other Tachysphex with a sharply pointed volsellar process are pseudopanzeri de Beaumont (northwest Africa, Iberian Peninsula, southern France), in which the foretarsal rake is well developed, and sericans (see next paragraph). The male foretarsus is also
reduced in persa Gussakovskij (southwest Asia, North Africa), in which the dorsal volsellar process is rounded, not pointed.

Similar to incertus are also sericans Gussakovskij (Algeria to Lower Egypt, Cyprus and Syria to Tajikistan) and the female of persa Gussakovskij (Balkan Peninsula, Turkey, Lower Egypt to Kazakhstan and Tajikistan). In sericans, however, the middle clypeal lobe is shorter than in incertus, resulting in a shallower free margin of the clypeus lateral section (see Figs. 280 and 281 in Pulawski, 1971). There are no reliable characters to distinguish the females of incertus and persa (the male of the latter has an apically rounded dorsal volsellar process), and association with topotypical males may be the ultimate criterion. The following may help in recognition: in the female of incertus, the clypeal lip has a well-defined lateral incision, at least in fresh specimens (incision evanescent in some persa), the propodeal side is ridged above in many specimens (not ridged in persa), the densely micropunctate and setose tergum V sharply contrasts with the impunctate and asetose apical depression (tergum V sparsely punctate anterad of apical depression in some persa), pygidial plate is mostly wider than in that species (Fig. 192c), the gaster is mostly red basally and black apically but all red in specimens from Corsica, Sardinia, Egypt, and Niger (also red and black in most persa, but all black in specimens from Israel and Syria).

Justification of new synonymy.- Pulawski (1971) recognized four subspecies of incertus (incertus incertus, incertus kallipygus from northern Algeria, incertus nattereri from Egypt, and incertus rufiventralis from Sardinia and Corsica). I am convinced now that these geographic forms are linked by intermediates that cannot be clearly assigned to one or another subspecies. For example, only incertus rufiventralis was supposed to occur in Sardinia, but Negrisolo and Pagliano (1993) found the nominotypical subspecies on that island. Tachysphex incertus kallipygus was recognized for Algerian females with a prominent lateral carina of the pygidial plate. This characters, however, appears to be correlated with the specimens' large size and thus individually variable. I expect incertus nattereri to be linked by intermediates to the nominotypical form. Also, a number of additional geographic forms could be raised to subspecies level to fully cover geographic variation, an action that would result in an unnecessary proliferation of names. I therefore synonymize the previously recognized subspecific names under incertus.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea closely punctate posteriorly, longer than wide in profile, as long as $0.75-1.0$ of scape in female, 1.0-1.2 in male. Scutal punctures less than one diameter apart. Mesopleuron dull, almost uniformly microsculptured, with shallow, ill-defined punctures. Episternal sulcus incomplete in most specimens, but complete in some. Propodeal dorsum evenly microareolate; side not ridged or with ridges along dorsal and posterior margin. Hindcoxal dorsum with inner margin carinate basally.

Setae appressed on postocellar area and scutum; appressed to erect and about as long as one midocellar diameter on each side of oral fossa next to occipital carina; oriented posterad on propodeal dorsum at least apicomesally.

Head and thorax black in most specimens, but clypeal bevel yellowish red in many males from Egypt, and clypeus, thorax, gaster, and legs red in specimens from Haft Tapeh, Iran (male terga largely darkened); thorax largely red in some males from Morocco; mandible red or reddish mesally (largely red in specimens from Haft Tapeh). Frontal setae silvery in female and smallest males, golden in most males. Wing membrane slightly infumate; costal vein of forewing light brown or reddish, subcostal vein dark brown. Femora and tibiae varying from all black to all red (at least inner foretibial surface red or reddish basally in most females and in males); gaster red basally and black apically in many specimens, but all red in females from certain areas and all black in many males (see Variation below for details). Terga I-III or I-V silvery fasciate apically.

ㅇ.- Clypeus (Fig. 192a): bevel as long as basomedian area or longer; lip free margin arcuate,
emarginate mesally, with well-defined lateral incision on each side (incision ill defined in some females from Iran). Width of postocellar area $0.7-0.9 \times$ length. Dorsal length of flagellomere I 2.3-3.0 \times apical width. Dorsal foretibial surface with two or three spines; outer surface with one to four spines. Forebasitarsus with 7-9 rake spines. Apical depression of tergum V impunctate and glabrous (punctate and setose mesally in some specimens, including Egyptian females), contrasting with remaining tergum. Pygidial plate, in most specimens, broader than in other species with convex labrum (Fig. 192c), with punctures several to many diameters apart, although many punctures may be about one diameter apart adjacent to lateral margin; interspaces unsculptured. Length $7.9-13.2 \mathrm{~mm}$.
δ^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 192b): bevel as long as basomedian area or longer; lip free margin straight to minimally arcuate in most specimens but concave in smallest specimens, with obtuse but well-defined corner; distance between corners 1.0-1.3 \times distance between corner and orbit. Width of postocellar area $0.5-0.8 \times$ length. Dorsal length of flagellomere I 1.6-2.6× apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines in most specimens, with one or two spines in some, and with four such spines in a male collected 3 km W Luxor, Egypt. Outer apical spine of foretarsomere II less than this tarsomere's width in most specimens (but equal to width in some), markedly shorter than tarsomere III (Fig. 192d). Length 6.4-10.0 mm. Volsella and penis valve: Figs. 192e, f.

Variation.- Propodeal side. The propodeal side is ridged at least along the dorsal margin in many specimens from Europe, Morocco, Algeria, northwestern Egypt (Marsa Matruh area), and Asia, but ridges are lacking in some individuals from these areas (those from Haft Tapeh, Iran, among others), particularly in males. The propodeal side is not ridged in populations from Sardinia, Corsica, and Egypt.

Male clypeus. Distance between clypeal lobe corners is $1.2-1.3 \times$ distance between a corner and the adjacent orbit in most specimens, but 1.0-1.1 in Egyptian males.

Setae of propodeal dorsum. Setae are oriented posterad at least apicomesally (basomedian setae oriented posteromesad to anteromesad), but all setae oriented posterad along midline in some Egyptian and Tunisian males.

Number of tergal fasciae. A silvery fascia is present on terga I-III in most specimens, but also on tergum IV in females from Egypt (except for Marsa Matruh area).

Color of femora. The femora are black in most populations, but the hindfemur is partly red in females from Sardinia, Corsica, some from Cyprus, all red in females from Egypt (except for Marsa Matruh area), and also in some Egyptian and Moroccan males (female fore- and midfemora are mostly red in some Egyptian females, darkened only dorsally). All femora are red in specimens from Haft Tapeh, Iran.

Color of gaster. In most specimens the gaster is red basally and black apically (red are segments I-III in female, I and II or I-III in male). The entire gaster is red in most females from Sardinia and Corsica, those from Egypt except for Marsa Matruh area, and from Haft Tapeh, Iran. The gaster is all black in some Italian males and some from Ghiza and Kom Osheim, Egypt.

Nesting behavior. - Ferton (1905), almost certainly in error, recorded a hemipteron Hysteropterum grylloides Fabricius as prey of incertus. According to Deleurance (1946), the nesting behavior of incertus is the same as of panzeri that he described earlier in the same paper, i.e., the female preys upon nymphal acridids and subsequently carries them to the nest in a series of hopping flights; and she paralyzes her prey with one sting in the coxopleural articulation. Kazenas (2001) found a unicellular nest, 5 cm long, that contained 2 acridid prey.

Geographic distribution (Fig. 190).- Europe north to southern France, northern Italy, Hungary, Slovakia, central Ukraine (Gorobchishin, 1994), and southern Russia; Africa south to
southern Egypt and Mali; Asia including Arabian Peninsula north to Turkey and northern Kazakhstan, east to Pakistan. Schneid's (1941) record from Bavaria, Germany, was a misidentification of obscuripennis (Schenck) (Schmidt and Schmid-Egger, 1997; Weber, 1998).

Records (only the African, Arabian, and previously unknown Pakistani localities are recorded here; see Pulawski, 1971, and subsequent faunal papers for records from Europe and Palearctic Asia; literature data predating de Beaumont, 1947a, are not included as reliable recognition features were not known. The localities below are from Pulawski, 1971, if not indicated other-wise).- ALGERIA: Hammam Lif, Idjef Melène ($1 \mathrm{~d}^{\circ}$) and Tamanrasset in Hoggar Mts. (de Beaumont, 1952), L'Arba, Sidi Ferruch. EGYPT: Al-Bahr-al-Ahmar: Al Quseir (or $^{\boldsymbol{7}}$, CSE). Al Buhayrah: Wadi
 Ismailia. Al Jizah (= Ghiza): Abu Rawash ($12 \sigma^{\circ}$; $1 \delta^{\circ}$, AMNH), Dahshur ($1 \circ$), Ghiza ($8 \circ+13$ o $^{\circ}$), Saqqara
 1 ค , SCHL). Al-Wadi al-Jadid: Dakhla oasis: Mut ($1 \mathrm{o}^{\star}$, ZMAN) and $5-10 \mathrm{~km}$ E Tineida, Kharga oasis: El
 Matruh: 20-25 km W Marsa Matruh (1 \&), 64 km W Marsa Matruh ($1+$, MSNT). Sina (= Sinai): 15 km NW Tor ($\mathbf{1}^{\circ}$), Wadi Malhaq 50 km N Sharm el Sheikh (3 o°). MALI: Tilemsi valley N Gao ($1 \mathrm{o}^{\circ}$, KMG). MOROCCO (from de Beaumont, 1955, or as indicated): Agadir (10^{\top}, ZMAN), Asni in High Atlas (10^{7}), Assaka, Beni Mellal (1 \&), Casablanca (1 \& , SCHL), Douet-Aoua (Pulawski, 1971), El Moudzine (Pulawski,
 in Draa Valley ($2 \delta^{\circ}$), Midelt, Oued Adoudou, Rabat (Pulawski, 1971), 10 km S Oued Ain Leuh which is $33^{\circ} 21^{\prime} \mathrm{N} 5^{\circ} 32^{\prime} \mathrm{W}\left(10^{\prime}, \mathrm{CSE}\right)$, Smir Bestinga (Pulawski, 1971), Tafraout, Tanger (10°, SCHL), Tiznit at Oued Massa 30 km S Zagora in Draa Valley (40°, CSE). NIGER: Tillabéri Region: 2 km SE Kollo at $13^{\circ} 19.6^{\prime} \mathrm{N}$ $2^{\circ} 19.9^{\prime} \mathrm{E}(1$ \& $), 8 \mathrm{~km}$ SE Kollo at $13^{\circ} 16.4^{\prime} \mathrm{N} 2^{\circ} 22.0^{\prime} \mathrm{E}(1 \quad$ 甲) . OMAN: Northern Oman: Al Wafi (Guichard, 1980). PAKISTAN: Baluchistan: Hazarganji Chiltan National Park 20 km SW Quetta (2 o $^{\circ}$). SAUDI ARABIA: Hofuf ($1 \delta^{\circ}, \mathrm{KMG}$). TUNISIA: Ain Soltan 40 km W Jendouba ($1 \delta^{\circ}$), 15 km W Nefta at $33^{\circ} 50^{\prime} \mathrm{N} 7^{\circ} 43^{\prime} \mathrm{E}$ (4 ${ }^{\text {o }} \mathrm{CSE}$).

Tachysphex inextricabilis Pulawski

Figures 193, 194.
As Tachysphex luxuriosus (o only), corrected to Tachysphex inextricabilis by Pulawski, 1971:353: de Beaumont, 1940:167 (in revision of Egyptian Tachysphex), 1947a:353 (in revision of Egyptian Tachysphex); Pulawski, 1964:93 (Egypt).
As Tachysphex seth (ㅇ only): Pulawski, 1964:92, corrected to Tachysphex inextricabilis by Pulawski, 1971:353.
Tachysphex inextricabilis Pulawski, 1971:353, 우, 0°. Holotype: $\boldsymbol{0}^{\circ}$, Egypt: Kom Osheim on Cairo-Fayum road (CAS).— de Beaumont, Bytinski-Salz, and Pulawski, 1973:11 (Israel); Bohart and Menke, 1976:274 (listed).

Recognition.- Tachysphex inextricabilis is similar to luxuriosus. See that species for differences (p. 393).

Nomenclatural history.- Morice described luxuriosus from the female only. De Beaumont $(1940,1947)$ associated the male and described another species, horus, from both sexes. Pulawski (1964) followed de Beaumont's interpretation of luxuriosus, noticed that the female of horus was not the same species as the male, and described the latter as seth. He subsequently (1971) recognized that the male of seth (including the holotype) was conspecific with the female of luxuriosus and synonymized these two names. He also recognized that his female of seth was the same species as de Beaumont's male of luxuriosus and that the species had no name. He called it inextricabilis.

Description.- Labrum convex, conspicuously protruding beyond clypeal free margin. Galea: punctures about one diameter apart (several diameters apart apically in single male from

Figure 193. Tachysphex inextricabilis Pulawski: a - male sternum VIII; b - volsella; c - penis valve.
Saudi Arabia); as long as scape in female, 1.2-1.3 of scape in male. Supraantennal swelling nearly all setose. Scutal hindcorner roundly prominent, scutal flange broadening posterad (as in Fig. 219a); scutal punctures well defined, about one diameter apart in female and single male from Saudi Arabia, up to about two diameters apart in other males. Mesopleuron coriaceous, dull. Propodeal dorsum microsculptured, dull, longitudinally ridged to reticulate; side with fine, ill-defined ridges. Hindcoxal dorsum with inner margin not carinate.

Setae appressed on postocellar area, scutum, and mesopleuron, fully concealing integument of frons, scutum, and mesopleuron in fresh females; subappressed to erect (and then equal to 0.4 of basal mandibular width) on each side of oral fossa next to occipital carina; variously oriented on propodeal dorsum; propodeal side setose throughout. Sternum I at least partly glabrous except all setose in Saudi specimen.

Head and thorax black except the following yellowish red: clypeal bevel and lip, labrum, mandible (except apically), and female scapal venter (all or largely so). Frontal setae silvery in both sexes. Wing membrane hyaline; costal and subcostal veins of forewing reddish. Femora black (except apically) or mid- and hindfemora largely red (black basally). Gaster red or segments III-V all or partly black (segments III-VII all black in a male from Kom Osheim, Egypt). Terga I-IV in female, I-V in male, silvery fasciate apically (also following tergum with some silvery setae).

ㅇ.- Mandible: cleft unusually broad, widely open (as in Fig. 161c). Clypeus (as in Fig. 161c): bevel about as long as basomedian area; lip free margin practically straight, roundly emarginate laterally; bevel delimited anterolaterally by inconspicuous carina that emerges from lip corner. Width of postocellar area 2.1-2.2 \times length. Dorsal length of flagellomere I $2.6-2.8 \times$ apical width. Forefemoral base, on anteroventral surface, with a few large punctures that are many diameters apart. Dorsal foretibial surface with three or four spines; outer surface with two spines. Forebasitarsus with eight or nine rake spines. Midtrochanteral venter unsculptured except for a few, sparse punctures. Venters of tarsomeres V each with thin, preapical spine. Apical depression of tergum V partly impunctate and glabrous. Gastral segment VI flattened, pygidial plate relatively broad, with minute punctures that average many diameters apart, interspaces unsculptured. Length $10.7-11.6 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina obtusely angulate, but without tooth or cleft. Clypeus (as in Fig. 161d): bevel about as long as basomedian area; lip free margin evenly, inconspicuously arcuate; corner obtuse, ill defined; distance between corners about $1.2 \times$ distance between corner and orbit. Width of postocellar area 2.0-2.2 \times length. Dorsal length of flagellomere I 1.9-2.5 \times apical width. Forefemur not emarginate. Outer margin of forebasitarsus with 2-5 rake spines (numbers of spines may differ on right and left leg); outer apical spine of foretarsomere II slightly shorter to slightly
longer than tarsomere III. Venters of tarsomeres V each with thin, preapical spine. Sternum VIII: bottom of apical emargination with minute incision mesally (Fig. 193a). Length 7.9-10.0 mm. Volsella and penis valve: Figs. 193b, c.

Collecting Period.- 12 February (Saudi Arabia), 2 April through 22 July.

Geographic distribution (Fig. 194).Egypt, Israel, Syria, and Saudi Arabia.

Records.- EGYPT: Al Fayyum: Kom Osheim (3 + , $14 \sigma^{\text {o }}$). Sina (= Sinai): Wadi Malhaq 50 km N Sharm el Sheikh (2 ơ, CAS, MSNT). ISRAEL: Jericho, Revivim, Wadi Audja 10 km N Jericho (Pulawski, 1971), Wadi N'Aqev 5 km SSE Sede Boqer ($1 \sigma^{\circ}$, CSE). SAUDI ARABIA: Wadi Majarish below Taif ($1 \begin{aligned} & \text { or , KMG). SYRIA: }\end{aligned}$ Damascus-Kissue Road (1 δ^{*}).

Tachysphex insulsus Arnold

Figures 195-197.

Figure 194. Collecting localities of Tachysphex inextricabilis and kalaharicus.

Tachysphex insulsus Arnold, 1945:104, \uparrow, đ̛. Lectotype: \uparrow, Madagascar: Bekily (MNHN), here designated, examined.- Bohart and Menke, 1976:274 (listed); Pulawski, 2003:798 (in checklist of Malagasy Sphecidae).
Tachysphex crassicornis Arnold, 1945:105, 우, $\overbrace{}^{\circ}$. Lectotype: 우, Madagascar: Bekily (MNHN), here designated, examined. New synonym.- Bohart and Menke, 1976:273 (listed); Leclercq, 1990:117 (Madagascar); Pulawski, 2003:797 (in checklist of Malagasy Sphecidae).

Recognition.- Tachysphex insulsus, an endemic of Madagascar, differs from that island's congeners in having the following combination: gaster red; labrum flat, not or barely projecting from beneath the clypeus; setae of postocellar area appressed; propodeal dorsum evenly microareolate, with setae (or at least most setae) oriented obliquely anterad; female forefemur minutely punctate, evenly setose, pygidial plate in most specimens with punctures averaging several diameters apart (exceptionally punctatorugose, as in bara); and male sternal setae inconspicuous, appressed.

Justification of new synonymy.- Extreme specimens of insulsus are so different that at least two species appear to be involved at first (e.g., individuals from Isalo, or the type series of crassicornis and of insulsus). Additional material, however, demonstrates considerable variation and full intergradation of all characters (see Variation below for details). Consequently, I regard crassicornis and insulsus as conspecific.

Description.- Scutal punctures about one diameter apart. Mesopleural punctures minute, shallow, mostly ill defined, but well defined in specimens from Sakaraha area, two females from Ifaty, and one from Berenty; interspaces microsculptured. Propodeal dorsum evenly microareolate; side with dense, evanescent ridges, or minutely punctate, or evenly microsculptured. Hindcoxal dorsum with inner margin carinate basally.

Setae appressed, or nearly so, on postocellar area and scutum; erect on each side of oral fossa next to occipital carina; oriented anterad on propodeal dorsum (except posterolateral and apical setae, in many specimens, oriented posteromesad).

Head and thorax black, mandible red mesally. Frontal setae silvery in both sexes except gold-

Figure 195. Tachysphex insulsus Arnold: a - female clypeus ($\times 45$); b - male clypeus with lip obtusely pointed ($\times 57$); c - female labrum $(\times 108)$; d - male clypeus and mandible with clypeal lip prominently pointed ($\times 54$); e - female hindtarsomere V in ventral view, spines absent $(\times 120)$; f - female hindtarsomere V in ventral view, spines present $(\times 150)$; $g-$ male hindtarsomere V in ventral view $(\times 240)$.
en in both specimens from Ankarafantsika National Park (weakly so in female). Wing membrane slightly infumate, nearly hyaline; forewing costal and subcostal veins brown (mostly subcostal vein light brown and subcostal vein dark brown, but both veins light brown or dark brown in some specimens). Color of legs: see Variation below. Gaster all red in most females and some males, but gastral tip becoming gradually black in some females (one from Isalo, another from Beza Mahafaly) and segments IV-VII or V-VII black in most males. Terga I-III or I-IV silvery fasciate apically, but fasciae golden and inconspicuous in some females.

ㅇ.- Labrum entire or emarginate (Fig. 195c). Clypeus (Fig. 195a): bevel as long mesally as basomedian area or longer; lip free margin arcuate, mostly with two lateral incisions on each side, but with only one indentation in one of the smallest specimens studied. Width of postocellar area $0.8-1.3 \times$ length. Dorsal length of flagellomere I 1.5-2.5 \times apical width. Forefemur minutely punctate, ventral punctures several to many diameters apart. Dorsal foretibial surface with one to four spines; outer surface with several (mostly thin) spines. Forebasitarsus with $10-14$ rake spines. Tarsomeres IV as wide as long; dorsoapical emargination rounded basally; apicoventral margin minimally emarginate. Tarsomeres V elongate, not angulate basoventrally; venter with erect microsetae (see Variation below for spines and apicoventral margin). Punctures of tergum V varying from about 1-2 to several diameters apart, apical depression impunctate, glabrous. Pygidial plate in most specimens punctate, with punctures averaging several diameters apart, some punctures nearly contiguous, and interspaces practically unsculptured; punctatorugose in single female from Ankarafantsika National Park. Length $7.0-11.1 \mathrm{~mm}$.
σ^{7}.- Mandible: trimmal carina simple or with small tooth and cleft. Clypeus (Figs. 195b, d): bevel about as long mesally as basomedian area; lip varying from arcuate to pointed, with obtuse but well-defined corner; distance between corners equal to $1.0-1.4$ distance between corner and orbit. Width of postocellar area $0.9-1.3 \times$ length. Dorsal length of flagellomere I 1.3-1.8 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Sternum VIII: hindmargin sinuate mesally. Length 5.9-7.9 mm. Volsella and penis valve: Fig. 196.

Variation.- Variation in insulsus affects characters that in other species are constant and may be diagnostic (such as the shape of the labrum, the shape of female apical tarsomeres, and their spines). None of the observed differences is geographic, but some appear to result

Figure 196. Tachysphex insulsus Arnold: volsella and penis valve. from allometric growth. Some of the variation is included in the Description above, and the most conspicuous aspects are discussed below.

Female labrum. The labrum is deeply, narrowly emarginate (Fig. 195c) in some females (e.g., the lectotype of insulsus and a female from Isalo), but shallowly, broadly emarginate in others; shallowly concave mesally in the females from Sakaraha and the one from Zombitsy Forest; and not emarginate in those collected near Toliara, in one from Beza Mahafaly, two of the three from Tsimbazaza, and two of the four from Isalo.

Female postocellar area. The narrowest postocellar area (width to length ratio of 0.8) was found in the largest specimen examined (11.1 mm long), the lectotype of insulsus. The widest postocellar
area (ratio 1.3) was found in a small specimen, 8.5 mm long.
Female flagellomere I: dorsal length 1.5-2.2 apical width in most specimens, but $2.5 \times$ in the lectotype of insulsus.

Female tarsomeres V: apicoventral margin. The apicoventral margin is arcuate in many specimens, nearly straight in one from Ifaty, and triangularly projecting in some (including the lectotype of insulsus).

Female tarsomeres V: spines. Typically, the apical tarsomeres have one preapical ventral spine and also one spine on each lateral margin (near the midlength). Some females from Beza Mahafaly, however, have two preapical spines, and none is present in the lectotype of insulsus and a female from Isalo (Figs. 195e, f); the lateral spines are absent in a female from Beza Mahafaly and three from Ifaty, and evanescent on the inner side in the same female from Isalo (on the outer side on the foretarsus). In another female from Beza Mahafaly, there are two lateral spines on the midtarsomere's inner side, and the female from Sakaraha area has two spines on the outer side of hindtarsomere V , but none on the inner side.

Male clypeal lip. The lip free margin is arcuate in most specimens (Fig. 195b), obtusely angulate in some, and conspicuously pointed in two males collected 12 km SW of Toliara (Fig. 195d). Several males from Beza Mahafaly approach the latter condition.

Male mandible: trimmal carina. The carina has a tooth in most specimens, but is edentate in the males with a pointed clypeal lip.

Male postocellar area. As in the female, the narrowest postocellar area (length $0.9 \times$ apical width) was found in the largest specimen examined, the widest postocellar area (ratio 1.3) in one of the smallest ones.

Male apical tarsomeres. Mostly with one small, preapical spine on venter, but with two or three spines (Fig. 195g) or none in some specimens.

Leg color. Femora I and II black (except red apically in most specimens), hindfemur and tibiae varying from all red (most specimens) to all black. Intermediate situations include the following: 1. hindfemur red basally, black in apical third; 2. foretibia largely black; midtibia, hindfemur, and hindtibia red; tarsi dark brown; 3. fore- and midtibiae largely black; hindfemur and hindtibia red; tarsi dark brown; 4. legs all black except hindfemur and hindtibia red; and, 5. legs all black except hindtibial dorsum largely red.

Prey.- One female from Bekily (MNHN) is pinned with a minute gryllid nymph, presumably her prey.

Geographic distribution (Fig. 197).Madagascar.

Records.- MADAGASCAR: Antananarivo: Tsimbazaza Park ($1 \circ ; 2$ ㅇ, KU). Fianarantsoa: Forêt d'Analalava 29.6 km W Ranohira at $22^{\circ} 35^{\prime} 30^{\prime \prime} \mathrm{S} 45^{\circ} 07^{\prime} 42^{\prime \prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$), Isalo National Park at $22^{\circ} 36^{\prime} \mathrm{S} 45^{\circ} 10^{\prime} \mathrm{E}\left(2 \circ\right.$), Ranomafana ($3 \sigma^{\circ}, \mathrm{MNHN}$). Mahajanga: Forêt d'Ambohimanga at $15^{\circ} 57^{\prime} 46^{\prime \prime} \mathrm{S}$ $47^{\circ} 26^{\prime} 17^{\prime \prime} \mathrm{E}\left(2\right.$ o $\left.^{\circ}\right)$, Parc National d'Ankarafantsika: Ampijoroa Station Forestière 40 km NW Andranofasika at $1^{\circ} 19^{\prime} 15^{\prime \prime} \mathrm{S} 46^{\circ} 48^{\prime} 38^{\prime \prime} \mathrm{E}\left(1 \circ+1 \sigma^{\circ}\right)$. Toliara: Antanimora (Arnold, 1945), Bekily ($1+9,2 \sigma^{\circ}$, MNHN, including lectotype ${ }^{\circ}$ and paralectotype σ° of insulsus; 2 \&, $1 \delta^{\circ}$, MNHN, lectotype and paralecto-

KU), Ifaty 22 km N Toliara at $23^{\circ} 11^{\prime} \mathrm{S} 43^{\circ} 37^{\prime} \mathrm{E}\left(2 \uparrow ; 1 \circ, \mathrm{MSNT}\right.$), 50 km NE Morondava ($1 \circ, 1 \circ^{\circ}$, MRAC), Parc National de Zombitsy at $22^{\circ} 50^{\prime} 36^{\prime \prime} \mathrm{S} 44^{\circ} 42^{\prime} 36^{\prime \prime} \mathrm{E}\binom{1}{$\hline}), 38 km W Sakaraha (2 审, $10^{\circ} ; 10^{\circ}$, MSNT),

Tachysphex isis de Beaumont

Figures 198, 199.
Tachysphex isis de Beaumont, 1940:171, ㅇ, $\overbrace{}^{*}$. Holotype: ㅇ, Egypt: Wadi Rishrash (originally A. Alfieri collection, Cairo, now Entomological Society of Egypt), not examined.- de Beaumont 1947a:179 (in revision of Egyptian Tachysphex); Pulawski, 1971:395 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:274 (listed).

ReCognition.- Tachysphex isis has hindwing crossvein cu-a oblique (the anal end is further away from the wing base than the cubital end), although only slightly so in some specimens, and sternum I without longitudinal, median carina; in addition, male sterna III-VI are impunctate and glabrous at least mesally. The same combination is found in albocinctus and bruneiceps, but unlike these species, the frons of isis is markedly convex (Figs. 198c, d), the setae are appressed on the postocellar area, thorax, and tergum I (fully concealing the thoracic integument in the female), the gaster is all or partly red, the foretarsomeres are not expanded apicolaterally, and the female pygidial plate is sparsely, minutely punctate. In albocinctus and bruneiceps, the frons is the usual shape (only slightly convex), the setae are erect on the postocellar area, scutum, and base of tergum I, not concealing the integument; the gaster is all black; foretarsomeres I and II are expanded apicolaterally except in some males (Figs. 15c, d); and the female pygidial plate is granulose (Figs. 15e, f).

Because of similar coloration and pilosity (the setae completely conceal the integument on the frons, postocellar area, and thorax), the female of isis closely resembles osiris. In isis, however, sternum I lacks the longitudinal carina (at least apically), the frons is more prominent (Fig. 198c), the propodeal side is all setose (rather than glabrous anteriorly), the outer hindfemoral surface is concealed by setae (not concealed in osiris), and the pygidial plate is somewhat constricted preapically (Fig. 198e), while evenly narrowing posterad in osiris.

Description.- Frons markedly convex (Figs. 198c, d). Scutal and mesopleural punctures fine, practically contiguous. Propodeal dorsum evenly microsculptured, side finely ridged in females, in male finely ridged or not ridged; posterior surface, in dorsal third or so, with wide median impression. Hindwing: crossvein cu-a with anal end further away from wing base than cubital end. Hindcoxal dorsum not carinate.

Setae erect on each side of oral fossa next to occipital carina (about as long as 0.4 of basal mandibular width); appressed on postocellar area and scutum; on propodeal dorsum oriented anterad near base, oriented toward midline at midlength, and oriented posterad near apex; in female entirely concealing integument of frons, postocellar area, thorax, fore- and midfemoral venters, and hindfemoral outer surface; propodeal side all setose.

Head and thorax black, mandible yellowish red except black apically. Frontal setae silvery in female, golden in male. Wing membrane hyaline in female, intensely yellowish brown in male except almost hyaline near base and along apical margin; costal vein of forewing light brown, subcostal vein brown. Forefemur black (except red apically) in female and some males, red (except basally) in other males; midfemur all red or black basally (all basal half black in female); hindfemur, tibiae and tarsi red. Gaster all red or black apically in female, red or with dark apex in male (terga with translucent apical depressions). Terga I-IV in female, I-V in male, silvery fasciate apically (fasciae golden in some males).
¢ .- Labrum slightly emarginate mesally. Clypeus (Fig. 198a): bevel shorter than basomedian area; lip free margin arcuate, with rudimentary, median notch. Width of postocellar area $1.1 \times$

JK \& CS
Figure 198. Tachysphex isis de Beaumont: a - female clypeus and mandible; b - male clypeus and mandible; c - female head in lateral view; d - male head in lateral view; e - pygidial plate of female; f - volsella; g - penis valve.
length. Dorsal length of flagellomere I 1.8-2.2 \times apical width. Dorsal foretibial surface with one, thin spine; outer surface with three spines. Forebasitarsus with nine rake spines. Venter of apical tarsomeres with thin subbasal spine and preapical seta. Tergum V with minute punctures that are many diameters apart; its apical depression impunctate, glabrous. Pygidial plate constricted preapically (Fig. 198e), with punctures that average many diameters apart; interspaces unsculptured; apex rounded. Length $10.0-11.5 \mathrm{~mm}$.
$0^{\text {o }}$.- Mandible: trimmal carina with tooth, without cleft (Fig. 198b). Clypeus (Fig. 198b): bevel shorter than basomedian area, delimited anterolaterally by obtuse carina that emerges from lip corner; lip free margin arcuate, corner obtuse; distance between corners $1.0-1.2 \times$ distance between corner and orbit. Width of postocellar area $0.6-0.8 \times$ length. Dorsal length of flagellomere I 1.8-2.2 \times apical width. Forefemoral notch shallow, microscopically setose. Outer margin of forebasitarsus with $3-5$ rake spines; outer apical spine of foretarsomere II slightly shorter to slightly longer than tarsomere III. Venters of tarsomeres V each with one thin, preapical spine. Sterna III and IV largely impunctate and glabrous mesally, sterna V and VI entirely so (but apical depressions sparsely setose in some individuals). Length $7.0-10.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 198f, g.

Geographic distribution (Fig. 199).Libya, Egypt, Syria, Saudi Arabia, Oman.

Records.- EGYPT: Al Fayyum: Kom Osheim (as Fayum, 2 ơ, NHMW). Al Jizah (= Ghiza): Ghiza Pyramids ($10^{7} ; 40^{*}$, NHMW). Al Qahirah (= Cairo): Wadi Digla ($1 o^{*} ; 1$ of, $1 \delta^{\circ}$, NHMW; $1 \delta^{\circ}$, SAM), Wadi el Tih ($1+1+1 \mathrm{o}^{*} ; 12 \delta^{\circ}$, NHMW), Wadi Hof ($1 \quad \circ, 1{ }^{\circ}$, NHMW), Wadi Rishrash (de Beaumont, 1940). LIBYA: Cyrenaica: no specific locality (de Beaumont, 1940). OMAN:

Figure 199. Collecting localities of Tachysphex isis and karoo.
$22^{\circ} 15^{\prime} \mathrm{N} 55^{\circ} 45^{\prime} \mathrm{E}\left(1 \circ+\right.$, BMNH). SAUDI ARABIA: Al Ha'ir ($1 \sigma^{\circ}$, KMG). SYRIA: Ramadan near Damascus (Pulawski, 1971).

Tachysphex julliani Kohl

Figures 200, 201.
Tachysphex julliani Kohl, 1883a:177, ơ, ㅇ (as Julliani, incorrect original capitalization). Lectotype: ㅇ, France: Marseille (NHMW), designated by Dollfuss, 1979:13, examined.— Kohl, 1885:384 (in revision of Larrini); Dalla Torre, 1897:680 (in catalog of world Hymenoptera); Ferton, 1897:111 (prey), 1901a:100 (nesting habits), 1901b:680 (France); Antiga and Bofill, 1904:11 (in catalog of Catalonian Hymenoptera); de Gaulle, 1908:121 (in catalog of French Hymenoptera); Mercet, 1910:165 (listed from Spain); Morice, 1911:102 (Algeria); Ferton, 1912a:402 (structural and behavioral characters); Adlerz, 1916:109 (mantid prey reported); Berland, 1923a:174 (prey), 1923b:288 (France); Ferton, 1923:127 (prey); Berland, 1924:90 (France), 1925:120 (in Sphecid Fauna of France); Grandi, 1930:341 (Italy); Berland, 1932:23 (France); Bernard, 1933:62 (France); Giner Marí, 1934:133 (Spain); Bernard, 1935:65 (France); de Beaumont, 1936a:199 (in revision of French Tachysphex), 1940:172 (in revision of Egyptian Tachysphex; specimens may actually be argentatus); Honoré, 1942:55 (in checklist of Egyptian Sphecidae, specimens may actually be argentatus); Giner Marí, 1943:141 (in Sphecid Fauna of Spain); de Beaumont, 1947a:188 (in revision of Egyptian Tachysphex; specimens may actually be Tachysphex argentatus), 1947b:391 (Cyprus); de Andrade, 1949:16 (Portugal); Pittioni, 1950:25 (Cyprus); de Beaumont, 1954a:56 (Italy), 1954b:91 (Italy),

1955a:182 (Moroccan forms); Ceballos, 1956:376 (in catalog of Spanish Hymenoptera); de Beaumont, 1956a:197 (Libya); Nouvel and Ribaut, 1958:13 (France); de Beaumont, 1959:27 (Italy); Diniz, 1959:29 (Portugal); Suárez, 1959:57 (Spain); de Beaumont, 1960a:18 (Greece: Island of Rhodes), 1960b:238 (Libya), 1961a:50 (Greece: Crete Island), 1962b:25 (Spain); Ceballos, 1964:90 (in supplement to catalog of Spanish Sphecidae); Diniz, 1964:5 (Portugal); nec Pulawski, 1964:95 (= Tachysphex argentatus); de Beaumont, 1965:48 (Greece); Pulawski, 1967:398 (Turkey); Königsmann, 1971:106 (Spain); Pulawski, 1971:360 (in revision of Palearctic Tachysphex); Kazenas, 1972:162 (Kazakhstan); Myartseva, 1972a:79 (Turkmenistan); de Beaumont, Bytinski-Salz, and Pulawski, 1973:12 (Israel); Bohart and Menke, 1976:274 (listed); Georghiou, 1977:192 (Cyprus); Kazenas, 1978:117, 128 (in key to Sphecidae of Kazakhstan and Central Asia); Pulawski, 1978:216, 220 (in key to Sphecidae of European USSR); Guichard, 1980:227 (Oman); Pagliano, 1980:128 (Italy); Gayubo, 1984a:85 (Spain), 1984b:365 (Portugal); Gayubo and Tormos, 1984:15 (Spain); Gayubo, 1986a:33 (Spain), 1986b:38 (Spain); Gayubo and Heras, 1986:41 (Spain); Gayubo and Sanza, 1986:46 (Spain); Gayubo and Tormos, 1986:12 (Spain); Islamov, 1986:526 (Uzbekistan); Gayubo, 1987:113 (Spain); Asís and Jiménez, 1988:272 (Spain); Gayubo and Mingo, 1988:80 (Spain); Dollfuss, 1989:13 (lectotype in NHMW); Pagliano, 1990:104 (in catalog of Italian Sphecidae); Torregrosa, Gayubo, Tormos, and Asís, 1993:18 (Spain); Tormos, Asís, and Gayubo, 1994:188, 205 (Spain); Negrisolo in Minelli, Ruffo, and La Posta, 1995b:9 (in catalog of Italian fauna); González, Gayubo, and Torres, 1998:72, 73 (Spain); Nazarova, 1998:41 (Tajikistan); Gayubo, García, Torres, and González, 1999:89 (Spain); González, Gayubo, and Torres, 1999:355 (Spain); Gayubo, González, and Torres, 2000:185 (Spain); Kazenas, 2001:29 (in checklist of Sphecidae of Kazakhstan and Central Asia), 158 (review of known biology); Schmidt and Bitsch in Bitsch et al., 2001:225 (in Sphecid Fauna of Western Europe); Kazenas 2002:69 (Kazakhstan).
Tachysphex semenovi Gussakovskij, 1933:281, \uparrow. Lectotype: ${ }^{\circ}$, Iran: Kerman: Khunikaka (ZIN), designated by Pulawski, 1971:364, examined before 1971. Synonymized with Tachysphex julliani by Pulawski, 1971:360.
As Tachysphex julliani Kohl No. 1: de Beaumont, 1955a:182 (Morocco) and 1956a:197 (Libya), synonymized with Tachysphex julliani africanus by Pulawski, 1971:365.
Tachysphex julliani africanus Pulawski, 1971:365, ㅇ, ơ $^{\boldsymbol{7}}$. Holotype: $\boldsymbol{o}^{\boldsymbol{*}}$, Morocco: Ijoukak (LAUSANNE), examined before 1971.- Bohart and Menke, 1976:274 (listed). New synonym.

Recognition.- Tachysphex julliani is one of the species that have the galea membranous, maxillary stipes with short, inconspicuous setae, frons not bulging near midlength, hindwing vein cu-a vertical, and length of marginal cell more than $3.0 \times$ width.

In the female, in addition, the pygidial plate is broadly rounded apically, not constricted preapically, in most specimens with a transverse sulcus or at least a difference in the surface level, the integument being sparsely punctate anteriorly to the sulcus and impunctate posteriorly to it (Fig. 200c). Also, the clypeal bevel is present and the lip free margin is not incised laterally but concave in some specimens (Fig. 200a), and the setae bordering the apical depressions of segments IV and V are thickened. Unlike mauretanus, the female of julliani has the mandibular outer ridge somewhat swollen and expanded over the notch, and unlike argentatus the mesopleural vestiture is easily visible, not concealed by vestiture.

The male of julliani is characterized by the mesally glabrous sterna IV-VI (at most with a few, sparse punctures and associated setae), the clypeal free margin with a conspicuous median projection (Fig. 200b), and the mesopleural setae not concealing the integument. Unlike argenticeps, the mesopleuron of julliani is dull, with ill-defined punctures (rather than shiny, with well-defined punctures), and the apical margin of sternum VIII is evenly emarginate (tridentate in several populations of argenticeps). Unlike desertorum, the forefemoral notch of julliani has a well-defined platform and no erect setae. Tachysphex argentatus is also similar, but has a short, inconspicuous median clypeal prominence (Fig. 27b), and the mesopleural setae fully conceal the integument in fresh specimens.

Justification of new synonymy.- De Beaumont (1955a) found two phenotypes in Morocco that closely resembled julliani, but did not name them. Pulawski (1971) treated one as a full species (mauretanus), the other as a subspecies of julliani (julliani africanus). He defined the latter as having no transverse sulcus on the female pygidial plate (he studied one specimen) and a prominent, apically truncate clypeal process in the male. However, some other North African females of julliani that subsequently came to light have a pygidial sulcus, and some North African males have an intermediate clypeus. For these reasons I synonymize julliani africanus with julliani.

Description.- Mandibular outer ridge somewhat swollen and expanded over notch (except in smallest males). Galea membranous. Scutal punctures well defined. Mesopleuron dull, with illdefined, superficial punctures, compressed against each other. Propodeal dorsum evenly microsculptured to longitudinally ridged; side ridged in most specimens, unridged in some; posterior surface, in dorsal third or so, with wide median impression. Hindcoxal dorsum with inner margin carinate basally.

Setae appressed on postocellar area and scutum; about $0.3 \times$ length of basal mandibular width on each side of oral fossa next to occipital carina; those of propodeal dorsum oriented anterad on triangular zone (with triangle apex reaching dorsum hindmargin); oriented posterad outside triangle.

Head and thorax black, mandible reddish except in apical third or so. Frontal setae silvery in both sexes. Wing membrane nearly hyaline; costal vein of forewing light brown, subcostal vein dark brown. Femora and gaster varying from all red to all black (see Variation below); tibiae partly red in most specimens (all red in those from Cyprus), all black in some, tarsal apex red. Terga I-III silvery fasciate apically, also tergum IV in some males from Central Asia.

ㅇ.- Clypeus (Fig. 200a): bevel slightly convex, shorter than basomedian area; lip free margin roundly protruding mesally and concave laterally in most specimens, but almost evenly arcuate in some. Width of postocellar area $0.5-0.7 \times$ length. Dorsal length of flagellomere I 2.2-2.9 \times apical width. Mesothoracic venter, in many specimens from Balkan Peninsula and Turkey, with punctures that are more than one diameter apart. Dorsal foretibial surface with three spines; outer surface with two or three spines. Forebasitarsus with eight or nine rake spines. Midtrochanteral venter at most with narrow, impunctate zone. Preapical bristles of gastral segments IV and V conspicuously thickened. Apical depression of tergum V impunctate, glabrous. Pygidial plate broadly rounded apically, with transverse ridge on internal surface (ridge in most specimens indicated externally either as sulcus or as difference in surface level), with at least a few, sparse punctures anterad of sulcus, impunctate posterad of sulcus, in many specimens with evanescent microsculpture or characteristically microridged next to apex (Fig. 200c). Length 7.8-12.3 mm.
$\delta^{\boldsymbol{*}}$.- Mandible: trimmal carina somewhat expanded or with obtuse tooth, without cleft. Clypeus (Fig. 200b): bevel shorter than basomedian area to rudimentary; lip free margin with median projection of varying length, either with well-defined corner or corner absent (then free margin forming single curved line with rest of clypeal margin); distance between corners about $0.8 \times$ distance between corner and orbit. Width of postocellar area $0.6-0.9 \times$ length. Dorsal length of flagellomere I 1.3-1.9 \times apical width. Forefemoral notch with well-defined, microscopically setose platform that slightly raises apically over femoral surface (best seen in posterior view). Outer margin of forebasitarsus with three or four rake spines. Outer apical spine of foretarsomere II at most as long as tarsomere III. Venter of tarsomeres V with one small spine near center. Tergum VII, near base, with punctures that are one or more diameters apart. Sterna III-VI with impunctate and glabrous apical depressions, sterna IV-VI impunctate and glabrous mesally anterad of depression (at most with a few, sparse punctures), densely punctate laterally (densely punctate areas decreasing in size toward gastral apex). Length $5.0-9.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 200d, e.

Figure 200. Tachysphex julliani Kohl: a - female clypeus and mandible; b - male clypeus and mandible with outlines showing clypeal free margin of Tajik and Moroccan specimens; c - pygidial plate of female; d - volsella; e - penis valve.

Variation.- Scutal punctures. About one diameter apart in most specimens, but many punctures 2-3 diameters apart in single female from Tabarka area, Tunisia, those from Turkmenistan, Tajikistan, and Pakistan, and 3-4 diameters apart or so in those from Yemen.

Male clypeus (Fig. 200b). Middle projection of the free margin rounded in most populations, but truncate (and slightly longer) in many Moroccan specimens. It is also longer than average but rounded apically in Egyptian specimens. Lip corners present in most specimens (prominent in many from Spain), but absent in those from Turkmenistan, Tajikistan, and Pakistan.

Color of gaster. Gaster red basally and black apically in most populations; predominantly black in specimens from Kazakhstan, Uzbekistan, and Tajikistan (only tergum I red posteriorly in most females); all black in specimens from Yemen, the males from Katamia and Mitla Pass, Egypt, those from Israel, and some from Spain; all red in females from Cyprus (apex brown in males) and some from Iran (holotype of semenovi).

Color of femora. Femora black in most populations, but part of midfemur and hindfemur red in specimens from Israel, and all femora red in those from Cyprus and some from Iran.

Prey.- Ferton (1897, 1901a) noted six mantid prey per cell in a nest. They were $4-20 \mathrm{~mm}$ long and at various degree of paralysis. Berland (1923a) observed a female walking with a young, paralyzed nymph of Ameles decolor (Charpentier).

Geographic distribution (Fig. 201).- Morocco to northern Egypt, Iberian Peninsula, southern France (excluding Corsica), central Italy, Greece and southern Bulgaria, Crimea, Turkey,

FIGURE 201. Collecting localities of Tachysphex julliani.
Middle East south to Oman and Yemen, east to Kazakhstan and Pakistan. De Beaumont's (1940, 1947a) records from Egypt, not confirmed by Pulawski (1971), probably refer to argentatus.

Records (from Pulawski, 1971, if not indicated otherwise).- ALGERIA: Biskra (Morice, 1911), El Kala (Ferton, 1912a), Misserghin near Oran, Nemours. BULGARIA: Sandanski (1 ${ }^{*}$). CYPRUS:

 Matruh: 20-25 km W Marsa Matruh (3 $\sigma^{\circ} ; 2 \sigma^{\circ}$, MSNT), 25-30 km W Marsa Matruh ($1 \delta^{\circ} ; 1 \sigma^{\circ}$, MSNT). Sina (= Sinai): Mitla Pass ($1 \mathrm{~d}^{7}$). FRANCE (Berland 1923b or as indicated): Alpes-de-la-Haute-Provence: Lurs (Bitsch et al., 2001). Alpes-Maritimes: Cagnes. Ardèche: Saint-Sauver-de-Cruzières. Aude: Leucate (1 \&) . Bouches-du-Rhône: Marseille (syntypes of julliani), Miramas (Ferton, 1897), Pas-des-Lanciers (Berland, 1925), Vitrolles. Drôme: Dieulefit (Bernard, 1933). Hérault: no specific locality (Bitsch et al., 2001). Pyrénées-Orientales: Argelès (Pulawski, 1971), Banyuls-sur-Mer (2 9,3 or $^{\text {r }}$). Var: Callian, Carqueiranne (Berland, 1925), Cavalaire, Fréjus (Bernard, 1935), Saint-Aygulf (Bernard, 1935), Toulon (Ferton, 1897). Vaucluse: Carpentras ($\mathbf{1}^{\circ}$). GREECE: Aegean Islands: Island of Rhodes (de Beaumont, 1960a:18): Empona, Ixia, also Kolimbia ($1 \mathrm{of}^{\mathrm{f}}, \mathrm{CSE}$). Ionian Islands: Corfou: no specific locality (1 \&, $1 \mathrm{o}^{\circ}$). Kriti
 Beaumont, 1965). Sterea Ellás (= Central Greece, de Beaumont, 1965): Kifissia, Kifissos River. IRAN: Elburz: Ab Ali (1 ® $^{\text {® }}$). Kerman: Khunikaka (Gussakovskij, 1933). ISRAEL (de Beaumont, Bytinski-Salz, and Pulawski, 1973): Jerusalem, 15 km W Wadi Avrat $=48 \mathrm{~km}$ S Beersheba. Also: En Aqev near Sede Boker at $30^{\circ} 50.01^{\prime} \mathrm{N} 34^{\circ} 48.64^{\prime} \mathrm{E}\left(10^{\circ} ; 20^{\star}\right.$, CSE). ITALY: Lazio: Campo Ascolano (Pagliano, 1980), Circeo in Latina Province (de Beaumont, 1954b, 1959a), Tor Vajanica (Pagliano, 1980). Toscana: Maremma Toscana (Grandi, 1930); San Vincenzo in Livorno Province (de Beaumont, 1954a). KAZAKHSTAN (K = Kazenas, 1972, P = Pulawski, 1971): Aktöbe: Babatay near Uil (K, P), 30 km SW Yrghyz (K). Almaty: Arkharly Range at about $44.3^{\circ} \mathrm{N} 77.5^{\circ} \mathrm{E}(\mathrm{K}), 18 \mathrm{~km}$ NE Ayak-Kalkan at about $44^{\circ} \mathrm{N} 78.5^{\circ} \mathrm{E}(\mathrm{K}), 30 \mathrm{~km}$ E Chilik near Borandysu (K), Chulak Mts. at about $44^{\circ} \mathrm{N} 78^{\circ} \mathrm{E}(\mathrm{K}), 30 \mathrm{~km}$ E Chundzha (K), 45 km SW Chundzha at Temerlik River (K), Kainazar near Talgar (K), Kapchagai (K), 25 km E Kapchagai (K), 5 km SW village Kazakhstan on Kurty River at about $44.5^{\circ} \mathrm{N} 76.5^{\circ} \mathrm{E}$ (K), Kurtagoy area on Sharyn River 130 km SW Panfilov (P), Malyie and Bolshyie Boguty Ranges (K, P), Sogety Mts. 30 km SEE Chilik (K). Aqmola: 6 km SE Priozernoye (K). Eastern Kazakhstan: 40 km W Chernyaevka NW Zaysan (K), Karabulak at about $47.5^{\circ} \mathrm{N} 85^{\circ} \mathrm{E}$ (K), $10-12$ km S Karasu at about $47.5^{\circ} \mathrm{N} 83^{\circ} \mathrm{E}(\mathrm{K}), 5 \mathrm{~km}$ SW Tansyk (K), 3 km E Ul'ken-Karatal at about $47.7^{\circ} \mathrm{N} 85^{\circ} \mathrm{E}$ (K), 10-13 km WNW and 15 km NE Zaisan (K). Qaraghandy: $50-110 \mathrm{~km}$ NE Balqash (K), $5-15 \mathrm{~km} \mathrm{SW}$ Balqash (K), Koksenghir S Zhana Arka = Atasuskiy (P). Qostanay: 15 km NE Amantogai (K), 20-25 km SW

Arkalyk at about $50^{\circ} \mathrm{N} 67^{\circ} \mathrm{E}(\mathrm{K}), 9 \mathrm{~km}$ NW Zhalanash (K). Qyzylorda: 5 km E Akespe $=80 \mathrm{~km}$ W Aral'sk at about $47^{\circ} \mathrm{N} 60.5^{\circ} \mathrm{E}(\mathrm{K}), 10 \mathrm{~km}$ NW Aral'sk (K), 3 km NW and 10 km NNW Kamyshlybash (K), 15 km S Kazalinsk (K), village Priaral'skoye 10 km NNW Kamyshlybash (1 \&), 3 km S Yany-Kurgan (K), Zhulek (K). South Kazakhstan: Novostroyevka (K), 15 km S Pervomayskoye (K), Koksu (K), Shymkent (P), 35-45 km NW Suzak (K). Zhambyl: Chiganak on Lake Balkhash at about $45^{\circ} \mathrm{N} 74^{\circ} \mathrm{E}(\mathrm{K}), 70 \mathrm{~km}$ NW Furmanovka (K),
 Beaumont, 1960b). Tripolitania: Giado (de Beaumont, 1956a). MOROCCO: Aitt Saoun at $30^{\circ} 45^{\prime} \mathrm{N} 6^{\circ} 38^{\prime} \mathrm{W}$ $\left(19,1 \sigma^{\circ}\right)$, Aoulouz, Asni, Azrou in Moyen Atlas (3 0°), Beni Mellal, Ijoukak in Grand Atlas (10°), Midelt (2 o $^{\circ}$), Tafraout. OMAN (Guichard, 1980): Northern Oman: Behla, Sur. Dhofar: Ayun pools. PAKISTAN: Baluchistan: Hazarganji Chiltan National Park 20 km SW Quetta ($2+4$ o $^{\circ}$), Jalogir 23 km N Quetta ($1 \mathrm{o}^{\circ}$, AMNH). PORTUGAL: Beja: Aljustrel (Diniz, 1964). Coimbra: Troia (Diniz, 1964). Évora: Évora (de Andrade, 1949). Faro (Gayubo, 1984b): Açoteias, Aldeia da Tor, Bensafrim, Carrapateira, Lagoa de Albufeira and Monchique (Diniz, 1964), Olhão, Paderne, Porta de Lagoa, Salir, San Bartolomeu de Messines, Santo Estevão. Lisboa: Seixal (Diniz, 1964). Setúbal: Sines and Trafaria (Diniz, 1964), Vale de Gaio (1 ${ }^{\text {º }}$). Vila Real: Porto de Rei (de Andrade, 1949), Rezende (Diniz, 1964). SAUDI ARABIA: S Jeddah (1 ${ }^{\circ}$ º, OHL). SPAIN: Albacete (Tormos, Asís, and Gayubo, 1994): Agramón, Donal, El Jardin, Puente de Torres, Yeste. Alicante (Torregrosa, Gayubo, Tormos, and Asís, 1993): Alicante (1 ه ${ }^{\circ}$), La Murada, Monnegre, Novelda, Rebolledo, San Vicente del Raspeig, Tibi. Almería: Alpujarras (10°), Paterna (Suárez, 1959). Ávila: Navalperal (Gayubo and Mingo, 1988). Burgos (Gayubo and Sanza, 1986): Doña Santos, Fuentelcésped, Fuentespina, Mamolar, Vadocondes. Cadiz: Jerez de la Frontera (2 o $^{\circ}$). Castellón de la Plana (Gayubo and Tormos, 1986; Asís and Jiménez, 1988): Artana, Chodos, La Llosa, Onda, Segorbe, Sueras, Tales. Ciudad Real (Gayubo, 1987): Daimiel, Mestanza, Pozuelos, Valenzuela de Calatrava. Cuenca: Tarancon (2 ${ }^{\text {o }}$) . Gerona: Palamós (Königsmann, 1971). Granada: Colinas Bermejas (Gayubo, 1986b), La Zubia (1 \&), San Lujar, Válor. Jaen: Las Correderas, Martos. Madrid (Gayubo and Mingo, 1988): El Escorial, El Pardo, Madrid, Ribas de Jarama, Villaviciosa de Odón. Malaga: Marbella (de Beaumont, 1962b), Ronda. Salamanca (Gayubo, 1984a): Alba de Tormes, Cabeza de Caballo, Calvarrasa de Arriba, Casillas de Flores, Encina, Fuenteguinaldo, Las Arribes del Duero (Gayubo, González, and Torres, 2000), Pereña, Saldeana, Villar de Ciervo. Segovia: Coca at $41^{\circ} 13^{\prime} \mathrm{N} 4^{\circ} 31^{\prime} \mathrm{W}\left(10^{\circ}\right.$, SCHL), Lastras de Cuéllar (Gayubo and Heras, 1986) Maderuelo (Gayubo and Sanza, 1986). Soria (Gayubo, García, Torres, and González, 1999): Cigudosa, Deza. Toledo: Alberche (Gayubo and Mingo, 1988), Toledo (1 ㅇ, 3 o ${ }^{\text {r }}$). Valencia: Cañada and El Plá (Giner Marí, 1934), Godelleta and Picasent (Gayubo and Mingo, 1988), Serra (Gayubo and Tormos, 1984). Valladolid: Viana de Cega (González, Gayubo, and Torres, 1998, 1999). Zamora (Gayubo, 1986a): Brime de Urz, Fresno de la Ribera, Mayalde, Olmillos de Castro, Venialbo. Zaragoza: Tiermas (Gayubo and Mingo, 1988). TAJIKISTAN: Hissar, Khodja-Obigarm ca 50 km N Duchanbe, Kondara Canyon 35 km N Dushanbe (2 甲 $9,2 \mathrm{o}^{\circ}$), Tigrovaya Balka Nature Reserve (Nazarova, 1998). TUNISIA: Monastir ($1 \circ$, CSE), 15 km W Nefta at
 TURKEY: Ankara: Kalecik (Pulawski, 1967). Hatay: Antakya (2 o $^{\circ}$). Mersin: Mut, Tarsus ($4 \delta^{\circ}$). TURKMENISTAN: Ak Tepe (Myartseva, 1972a), Farab, Firuza 40 km W Askhabad, Geok-Tepe (Myartseva, 1972a), Germab (Myartseva, 1972a), Kara-Kala, Kerki, Mary, Tedjen (1 ${ }^{\text {d }}$). UKRAINE: Crimea: Karadag, Otuzy (1 \&) . UZBEKISTAN: Kara-Kalpak Autonomous Republic: Khiva. Samarkand Oblast': Aman-Kutan 35 km SW Samarkand. Tashkent Oblast': village Khumsan in Karzhantau Range in Tashkent Oblast' (Islamov, 1986), Kuropatkino near Tashkent. YEMEN: Sanaa (3 $9 ; 5$ 号, ZMAN).

Tachysphex kalaharicus Arnold, new status

Figures 194, 202-204.
Tachysphex sericeus race kalaharicus Arnold, 1924:72, ㅇ. Holotype: ㅇ, Botswana: Palapye road (SAM), examined.-Arnold, 1930:3 (in checklist of Afrotropical Sphecidae). - As Tachysphex sericeus kalaharicus: Bohart and Menke, 1976:276 (new status, listed).
Tachysphex scabrosus Arnold, 1929:386, 0°. Holotype: 0^{\top}, Zimbabwe: Shiloh (SAM), examined. New syn-onym.-Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:276 (listed).

RECOGNITION.-Tachysphex kalaharicus shares the following with subfimbriatus: labrum flat,
not protruding or slightly protruding beyond clypeal margin; setae sinuous on lower gena, anteriorly on scutum, and on propodeal dorsum; width of postocellar area less than length; mesopleuron punctate; propodeal side ridged; hindwing crossvein cu-a vertical or nearly so. Unlike scopa, the female of kalaharicus has the setae of the midfemoral venter about as long as the midocellar diameter (rather than markedly longer), mid- and hindtarsomeres III almost twice as long as apically wide (rather then 1.2-1.3 \times apical width), the dorsoapical emargination of tarsomeres IV acutely angulate (rather than roundly emarginate), the apicoventral margins of the apical tarsomeres nearly straight (rather than roundly produced), and the claws not elongate (arolium about half length of a claw rather than one third).

The female of kalaharicus differs from subfimbriatus in having the clypeal free margin shallowly notched mesally (Fig. 202c); hindtarsomeres V of most specimens with a spine on each lateral margin (Fig. 202e); and the basal platform of sternum II wedge-shaped (acutely angulate) (Fig. 202 g). In subfimbriatus, the free margin of the clypeal lobe is evenly arcuate mesally; hindtarsomeres V have no spines on lateral margins; and basal platform of sternum II is broadly rounded (with a sharp median point in some specimens).

The male of kalaharicus is unique in the genus in having erect, apicomesal setal fasciae on sterna III-V that emerge from a single, transverse line (Figs. 203c-e), although fasciae are rudimentary and difficult to see in some specimens. In addition, foretarsomere I has 0-3 preapical rake spines on the outer margin, the outer apical spine of foretarsomere II is shorter than foretarsomere III (Fig. 203b), and the forefemoral notch is setose (Fig. 203a). In subfimbriatus, the erect apicomedian setae of sterna III-V emerge from a small, circular area (Figs. 373c, d), foretarsomere I has three or four preapical rake spines, the outer apical spine of foretarsomere II is as long as foretarsomere III, and the forefemoral notch is glabrous.

Justification of new synonymy.- I regard scabrosus as an individual or perhaps a geographic form of kalaharicus and therefore a synonym of the latter. See Variation below for details.

Description.- Scutal punctures averaging about one diameter apart, but many discal punctures 2-3 diameters apart in some specimens. Mesopleural punctures averaging less than one diameter apart in female, about one diameter in male. Mesothoracic venter in female and certain males with some punctures up to 2-3 diameters apart. Propodeal dorsum rugose and with irregular, longitudinal ridges; side ridged; posterior surface, in dorsal third or so, with wide median impression. Hindcoxal dorsum with inner margin carinate (except apically). Sternum I, in many specimens, with obtuse carina that bisects apical depression.

Setae (figures in parentheses refer to setal length expressed as a fraction of basal mandibular width): sinuous, erect or suberect on each side of oral fossa next to occipital carina (up to 0.8); appressed on postocellar area in female, erect in male (about one midocellar diameter long); sinuous, suberect on scutum anteriorly (only some anterolateral setae in female); largely obscuring integument of female mesopleuron; sinuous, suberect, oriented posterad on propodeal dorsum except basal setae oriented anterad in female ($0.8-1.0$).

Head and thorax black, mandible yellowish and reddish (except apically). Frontal setae silvery in female, golden in male. Wing membrane nearly hyaline; costal vein of forewing reddish, subcostal vein dark brown. Female fore- and midfemora varying from mostly black (red apically) to all black, hindfemur all red; male femora black, red apically. Tibiae and tarsi red. Female gaster largely red, but some terga (varying from III to III-V) largely to all black. Male gaster red basally (segments I or I and II), remainder black; all gaster black in specimens from Shiloh, Zimbabwe. Terga I-IV in female, I-VI in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 202c): bevel about as long as basomedian area; lip free margin arcuate, shallowly emarginate mesally, not incised laterally. Width of postocellar area $0.6-0.7 \times$ length (Fig.

Figure 202. Tachysphex kalaharicus Arnold: a - female head in frontal view; b - male head in frontal view; c - female
 female; g - gastral base of female in ventral view.

Fourth Series, Volume 58, Supplement I

Figure 203. Tachysphex kalaharicus Arnold: a - basal portion of male forefemur with notch $(\times 180)$; b - male foretarsomeres I-III ($\times 90$); c gastral segments III-VII of male in lateral view ($\times 38$); d - gastral sterna III-VII of male in ventral view $(\times 42)$; e - setae of male sternum IV $(\times 240)$.

202a). Dorsal length of flagellomere I $2.0 \times$ apical width. Dorsal foretibial surface with two spines; outer surface with two spines. Forebasitarsus with seven or eight rake spines. Mid- and hindtarsomeres V, in most specimens, with central cluster of small spines on venter and one spine on each lateral margin (Fig. 202e), but without spines in single female from Chunzi, Malawi; hindtarsomere V in some specimens with a pair of subbasal spines; apicoventral margin of tarsomeres V convex
(Fig. 202e). Apical depression of tergum V impunctate, glabrous. Pygidial plate rounded apically (Fig. 202f). Length 8.2-10.6 mm.
ơ'. - Mandible: trimmal carina with tooth and at most rudimentary cleft. Clypeus (Fig. 202d): $_{\text {dit }}$ bevel shorter than basomedian area; lip free margin arcuate, with well-defined corner; distance between corners 1.2-1.3 \times distance between corner and orbit. Width of postocellar area $0.2-0.4 \times$ length (Fig. 202b). Dorsal length of flagellomere I 1.7-1.8 \times apical width. Forefemoral notch densely, microscopically setose (Fig. 203a). Outer margin of forebasitarsus with varying number of rake spines: no preapical spines in most specimens, one preapical spine on left leg in male from Ellisras, two such spines on left leg in male from Victoria West, and three (on both legs) in one male from Shiloh; outer apical spine of foretarsomere II shorter than tarsomere III. Venters of tarsomere V each with one preapical spine. Sternum III glabrous basomedially, sterna IV-VI largely glabrous (only apicolaterally so in specimens from Shiloh); sterna III-VI (also sternum II in many specimens) each with apicomedian setal fascia (Figs. 203c-e); length of fascial setae about 0.3-0.4 \times basal mandibular width (most or all setae lost in worn specimens). Length 7.0-8.7 mm. Volsella and penis valve: Fig. 204.

Variation.- The three males from Shiloh, Zimbabwe (the type series of scabrosus),

Figure 204. Tachysphex kalaharicus Arnold: a - volsella; b-penis valve. differ from the other specimens in having coarser thoracic sculpture, abundant erect, sinuous setae on all femoral venters, a well-developed setal fascia on sternum II (in addition to sterna III-VI), and an all black gaster.

Geographic distribution (Fig. 194).- Angola, Namibia, Botswana, Zimbabwe, Malawi, South Africa.

Records.- ANGOLA: Folgares SE 1415Cc [= $14^{\circ} 45^{\prime}-15^{\circ} 00^{\prime}$ S $\left.15^{\circ} 00^{\prime}-15^{\circ} 15^{\prime} \mathrm{E}\right]$ ($1 \mathrm{o}^{\circ}$, NMN). BOTSWANA: Palapye road ($1+$, SAM, holotype of kalaharicus). MALAWI: Chunzi near Domira Bay (1 ㅇ, BMNH). NAMIBIA: Bethanien District: 25 mi W Helmeringhausen ($1 \mathrm{~d}^{7}$, BMNH). Karasburg District: Great Karas Mountains ($1 \mathrm{o}^{\text {º }}, \mathrm{SAM}$). Karibib District: Khan River 23 km N Karibib (2 \circ, 2 or $^{\circ}$;
 Stampriet (1 ơ, FSCA). Okahandja District: Okahandja (1 ค, BMNH; 1 ㅇ, OHL). Outjo District: 31 km
 25 km S Windhoek ($1 \stackrel{\circ}{\circ}$; $1 \mathrm{o}^{\top}, \mathrm{MS}$), Regenstein 32 [Farm] ($1 \circ$, NMN), 25 km N Windhoek (1 ㅇ, MS), 28 km S Windhoek (1 f). SOUTH AFRICA: Eastern Cape Province: near Aberdeen ($1 \circ+1 \mathrm{o}^{\circ}$, RMNH), 12 km W Willowmore at $33^{\circ} 16^{\prime} \mathrm{S} 23^{\circ} 22^{\prime} \mathrm{E}\left(2 \circ{ }^{\circ}, 1 \delta^{\circ}\right)$. Free State: Tussen Die Riviere Game Reserve ($1 \mathrm{o}^{\circ}$). Northern Cape Province: 20 km N Pofadder (3 \& , FSCA), Sutherland District (1 \&, 10°, SAM), Tanqua-
 West ($1 \sigma^{\circ}, \mathrm{AMG}$). Northern Province: Ellisras ($2 \sigma^{\boldsymbol{\pi}}, \mathrm{AMG}$). Western Cape Province: Beaufort West: Oukloof ($1 \stackrel{\circ}{ }$, SAM), Kobee 10 km NE Vanrhynsdorp ($1 \mathrm{o}^{\circ}$, OÖLM), Koup at $33^{\circ} 07^{\prime} \mathrm{S} 21^{\circ} 17^{\prime} \mathrm{E}\left(4 \mathrm{~d}^{\circ}\right)$, 13 km ENE Laingsburg at $33^{\circ} 11^{\prime} \mathrm{S} 20^{\circ} 59^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right)$, Matjiesfontein (1 ㅇ, $4 \mathrm{o}^{\circ}$), Tierberg Farm 23 km NE Prince
 (1 ㅇ, SAM), Nyamandhlovu at Umguza River (5 o $^{\star+}$, SAM), Sanyati Valley (1 ㅇ, SAM), Shiloh (3 ơ, SAM, holotype and paratypes of scabrosus).

Tachysphex karoo Pulawski, sp. nov.

Figures 199, 205.
Derivation of name.- Karoo, supposedly of San (= Bushman) origin, but of uncertain etymology; now used for an arid tableland region of southern Africa; a noun in apposition to the generic name, with reference to the area where the species was collected.

Recognition.- Tachysphex karoo has the fore- and midfemoral venters and posteroventral surfaces impunctate except for a few, sparse punctures. In addition, the gaster is black, the propodeal dorsum evenly microareolate, the propodeal side unridged (except along the hindmargin), and the setae are appressed on the postocellar area and scutum.

The female differs from all species with the above characteristics, except gessianus, in having the femora and tibiae black. Also, flagellomere III has no sensory area, and sensory areas on flagellomeres IV-VIII are ill defined. In gessianus, by contrast, a well-defined sensory area is present on flagellomeres III-VIII each. The two species may also differ in the shape of the clypeal lip (which in gessianus has two lateral incisions on each side), but the lateral portion of the lip is worn off in the single female examined of karoo.

The male differs from similar species in having the following combination: free margin of clypeal lip shallowly concave on each side of midpoint, with obtuse, ill-defined corner (corners closer to each other than to adjacent orbit), sternal setae appressed, and apical depressions of sterna III-VI impunctate. In addition, the apical spine of foretarsomere II is shorter than tarsomere III, the femora are black, and the tibiae red.

Description.- Galea shiny, with several ill-defined punctures, in profile longer than wide, as long as 0.8 of scape. Scutal punctures well defined, averaging slightly more than one diameter apart on disk. Mesopleural punctures well defined, many diameters apart between scrobe and midcoxa. Episternal sulcus complete in female, evanescent anteroventrally in male. Propodeal dorsum evenly microsculptured; side punctate, evenly microsculptured along metapleural sulcus, narrowly ridged along posterior margin. Hindcoxal dorsum with inner margin carinate basally. Sternum I with longitudinal carina.

Setae straight on each side of oral fossa next to occipital carina, about as long as midocellar diameter; appressed on postocellar area and scutum; oriented posterad on propodeal dorsum.

Head and thorax black, mandible reddish mesally. Frontal setae lost in single female examined, golden in male. Wing membrane infumate; costal vein of forewing brown, subcostal vein black. Femora and gaster black, tibiae and tarsi black in female, red in male. Terga not fasciate or terga I-III with rudimentary apical fasciae.

ㅇ.- Clypeus (Fig. 205a): bevel longer than basomedian area; lip free margin arcuate, largely worn off in single specimen examined. Width of postocellar area $1.1 \times$ length. Dorsal length of flagellomere I $1.7 \times$ apical width; flagellomeres IV-VIII with ill-defined sensory areas; length of flagellomere VIII $1.5 \times$ width. Fore- and midfemoral venters and posteroventral surfaces almost unsculptured except for a few large punctures. Dorsal foretibial surface with two spines; outer surface asetose, with three spines. Forebasitarsus with nine or ten rake spines. Midtrochanteral venter with large punctures that are several diameters apart. Length of midtarsomere II $2.0 \times$ apical width. Apical depression of tergum V impunctate, glabrous. Punctures of pygidial plate of two sizes, large and small, averaging several diameters apart; interspaces microsculptured. Length 9.8 mm .
$\delta^{7} .-$ Mandible: trimmal carina with tooth, cleft present or absent. Clypeus (Fig. 205b): bevel shorter than basomedian area; lip free margin obtusely triangular (slightly concave between midpoint and corner), corner ill defined; distance between corners $0.7-0.8 \times$ distance between corner and orbit. Width of postocellar area $0.9 \times$ length. Dorsal length of flagellomere I $1.8 \times$ apical width.

Figure 205. Tachysphex karoo Pulawski, sp. nov.: a - female clypeus and mandible (broken line indicates reconstructed body parts); b - male clypeus and mandible; c - volsella; d - penis valve.

Forefemoral notch small, setose. Outer margin of forebasitarsus without preapical spines or with two such spines (near midlength and next to apical spine); outer apical spine of foretarsomere II shorter than tarsomere III. Apical depressions of sterna III-VI impunctate. Sternum VIII obtusely tridentate apically. Length $8.1-9.1 \mathrm{~mm}$. Volsella and penis valve: Figs. 205c, d.

Geographic distribution (Fig. 199).- Known from a single locality in the Little Karoo, South Africa.

Records.- Holotype: ${ }^{\circ}$, SOUTH AFRICA: Western Cape Province: 5 km W Robertson, 6 Jan 1997, WJP (CAS). Paratypes: same data as holotype ($1 \oplus+4 \delta^{\circ}$).

Tachysphex khoikhoi Pulawski, sp. nov.
Figures 206, 207.
Derivation of name.- Khoikhoi, or men of men, the early pastoralist inhabitants of northwestern South Africa, where the type locality is located; a noun in apposition to the generic name.

RECOGNITION.- Tachysphex khoikhoi has unsculptured fore- and midfemoral venters and posteroventral surfaces, a punctate mesopleuron, ridged propodeal side, erect setae of the postocellar area (setal length about one midocellar diameter), black gaster and femora, and nonfasciate terga.

In addition, the female has an unusually broad clypeal lobe (distance between lip corners about $1.8 \times$ clypeal midline). The following details of the single specimen examined are also unusual: gena unsculptured adjacent to orbit (as in limatus), and terga II-IV mesally with evanescent punctures that are several diameters apart. These features, however, may be individual rather than
species-specific as they are not present in the male. Unlike limatus, the apical flagellomeres of the female of khoikhoi are not shortened (e.g., length of flagellomere VIII is about $2.5 \times$ width, versus $1.2 \times$ in limatus).

The male of khoikhoi differs from the other species with similar femora in having an unusually narrow clypeal lip (distance between corners $0.5-0.7 \times$ distance between a corner and the adjacent orbit) with an evenly arcuate free margin (Fig. 206d). In addition, the labrum is flat (barely or not protruding beyond the clypeal free margin) and the foretarsal rake is short (outer apical spine of foretarsomere II shorter than tarsomere III).

Description.- Galea with a few, sparse punctures, slightly longer than wide in profile, about as long as 0.7 of scape. Scutal and mesopleural punctures well defined (minute in female), averaging several diameters apart on scutal disk and at center of mesopleuron; interspaces unsculptured, varying in size. Punctures of mesothoracic venter, in female, averaging many diameters apart. Propodeal dorsum varying from almost evenly areolate to rugose or longitudinally ridged (unsculptured laterally in single female examined); side ridged. Hindcoxal dorsum with inner margin carinate basally. Sternum I with longitudinal carina in female and some males.

Setae suberect on each side of oral fossa next to occipital carina, erect on postocellar area (Figs. 206a, b) and nearly so on scutum, about as long as midocellar diameter; inclined posterad on propodeal dorsum. Female sternum I glabrous in apical half.

Head and thorax black, mandible reddish except basally and apically. Frontal setae silvery in female, golden in male. Wing membrane slightly infumate; costal vein of forewing light brown, subcostal vein dark brown (respectively dark brown and almost black in male from Knersvlakte). Femora black or hindfemur red apically; tibiae and tarsi red in most males (foretibia partly black in one), but all black in female and in male from Knersvlakte. Gaster black. Terga without silvery, apical fasciae.

ㅇ.- Clypeus (Fig. 206c): lobe unusually broad (distance between lip corners about $1.8 \times$ clypeal middlength); bevel longer than basomedian area; lip free margin arcuate, with two shallow, lateral incisions on each side. Width of postocellar area $0.9 \times$ length (Fig. 206a). Gena unsculptured adjacent to orbit. Scapal venter unsculptured. Dorsal length of flagellomere I $2.3 \times$ apical width. Trochanteral venters impunctate. Fore- and midfemoral venters and posteroventral surfaces unsculptured except for a few, sparse punctures. Dorsal foretibial surface with two thin spines; outer surface with one thin spine, practically unsculptured, glabrous. Forebasitarsus with five rake spines. Terga II-IV mesally with evanescent punctures that are several diameters apart (except those that delimit apical depressions are well defined); tergum V unsculptured and glabrous except for punctures that delimit apical depression. Pygidial plate with punctures that average many diameters apart; interspaces unsculptured. Length 6.2 mm .
0^{7}.- Mandible: trimmal carina with well-defined tooth, without cleft. Clypeus (Fig. 206d): bevel ill defined, about as long as basomedian area, delimited anterolaterally by oblique carina that emerges from lip corner; lip free margin arcuate, with somewhat ill-defined corner; distance between corners about $0.5-0.7 \times$ that between corner and orbit. Width of postocellar area 1.0-1.2 \times length (Fig. 206b). Dorsal length of flagellomere I 1.8-2.0 \times apical width. Forefemoral posteroventral surface and midfemoral posterior surface and venter shiny, unsculptured, except for a few, sparse punctures. Forefemoral notch with microscopically setose bottom. Foretibial outer surface asetose, with fine spines. Outer margin of forebasitarsus with 2-4 rake spines; outer apical spine of foretarsomere II no longer than tarsomere III. Venter of tarsomeres V, in most specimens, with one preapical spine. Length $5.2-8.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 206e, f.

Geographic distribution (Fig. 207).- Namaqualand region of South Africa.
Records. - Holotype: ${ }^{\circ}$, SOUTH AFRICA: Northern Cape Province: Goegap Nature Reserve

Figure 206. Tachysphex khoikhoi Pulawski, sp. nov.: a - female head in frontal view; b - male head in frontal view; c - female clypeus and mandible; d - male clypeus and mandible; e - volsella; f - penis valve.
near Kraaiwater at $29^{\circ} 37^{\prime}$ S $18^{\circ} 00^{\prime} \mathrm{E}, 3-4$ Oct 1994, FSG (AMG). Paratypes: SOUTH AFRICA: Northern Cape Province: 90 km ENE Springbok at $29^{\circ} 20.1^{\prime} \mathrm{S} 18^{\circ} 44.3^{\prime} \mathrm{E}, 10$ Sept 2001, WJP (6 o ${ }^{\circ}$). Western Cape Province: Knersvlakte 48 km N Vanrhynsdorp at $31^{\circ} 14^{\prime} \mathrm{S} 18^{\circ} 32^{\prime} \mathrm{E}, 20$ Sept 1996, F.W., S.K., and R. Gess (1 o^{\star}, AMG).

Tachysphex lacertosus Arnold

Figures 207, 208.
Tachysphex lacertosus Arnold, 1944:25, ㅇ. Holotype: ㅇ, Zimbabwe: Kami (SAM), exam-ined.- Bohart and Menke, 1976:274 (listed).
Tachysphex arenarius Arnold, 1947:149, 0^{7}. Holotype: ơ, Zimbabwe: Bembesi (SAM), examined. New synonym.- Bohart and Menke, 1976:272 (listed).

Recognition.- Tachysphex lacertosus has a convex labrum (protruding beyond the clypeal free margin), galea as long as the scape or nearly so, propodeal dorsum with a glabrous apicomedian area of varying size (Fig. 208c), nearly reduced in some specimens, and gaster all black or the female pygidial plate reddish. Tachysphex claripes, diabolicus, and psilonotus share the same combination of characters, but in lacertosus the setae of the episcrobal area are nearly appressed and shorter than midocellar diameter (whereas erect or nearly so and at least as long as midocellar diameter in the other three species). Subsidiary recognition features (varying in the other three species) are the following: galea minutely, closely punctate except anteriorly, both costal and subcostal veins of the forewing reddish brown, nearly identical in color, terga I-III fasciate apically (nonfasciate in diabolicus), female forefemur with pubescence that largely conceals the posteroventral surface, and apical male sterna with appressed setae.

Justification of new synonymy.- The holotypes of Tachysphex arenarius and lacertosus are the opposite sexes of one species. These names are therefore synonyms.

Description.- Labrum convex (but less so than in panzeri or pentheri), protruding from beneath clypeus. Galea densely punctate except anteriorly (punctures about one diameter apart), as long as $0.9-1.0$ of scape. Scutal punctures minute, about one diameter apart. Mesopleuron dull, uniformly micropunctate. Propodeal dorsum evenly microareolate, side mostly ridged, but uniformly microsculptured in many males. Hindcoxal dorsum with inner margin carinate basally (carina evanescent in smallest males).

Setae appressed on gena, postocellar area, scutum, and propodeal dorsum; in some specimens a few setae erect on each side of oral fossa next to occipital carina (setal length about one midocellar diameter); propodeal dorsum with apicomedian glabrous area (Fig. 208c) of varying size (in some specimens, no more than twice midocellar diameter); remaining dorsal surface with setae that are oriented posterad except laterally, oriented posteromesad near base.

Head, thorax, and gaster black, mandible reddish mesally, female pygidial plate black to reddish. Frontal setae silvery in female, golden in male. Wing membrane yellowish; forewing costal and subcostal veins light brown, practically identical in color. Femora black. Female tibiae black except inner surface of foretibia red, also outer surface of midtibia in some specimens; male foretibia all red, mid- and hindtibiae varying from all red to all black. Tarsi varying from black basally and red distally to all red. Terga I-III silvery fasciate apically.

Figure 208. Tachysphex lacertosus Arnold: a - female clypeus and mandible; b - male clypeus and mandible; c - propodeal dorsum showing setal pattern; d - volsella with outlines showing variation; e - penis valve.

ㅇ.- Clypeus (Fig. 208a): bevel about as long as basomedian area; lip free margin arcuate, emarginate mesally, sinuous laterally. Width of postocellar area 1.0-1.1× length. Dorsal length of flagellomere I 2.5-2.7 \times apical width. Dorsal foretibial surface with two spines; outer surface with one to three spines. Forebasitarsus with 7-9 rake spines. Apical spines of hindtarsomere IV reaching claw bases or nearly so. Apical depression of tergum V densely punctate and setose. Pygidial plate: punctures averaging several diameters apart (many punctures less than one diameters apart in some specimens), interspaces microsculptured to unsculptured. Length $11.8-12.2 \mathrm{~mm}$.
δ^{*}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 208b): bevel shorter than basomedian area; lip free margin arcuate, obtusely pointed mesally in largest specimens; corner well defined to ill defined; distance between corners $0.9-1.1 \times$ distance between corner and orbit. Width of postocellar area $0.8-1.1 \times$ length. Dorsal length of flagellomere I 1.8-2.0 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with five or six rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Apical margin of sternum VIII varying from mesally dentate (tooth pointed to rounded) to evenly arcuate between lateral prongs. Length $6.7-10.2 \mathrm{~mm}$. Volsella and penis valve: Figs. 208d, e.

Geographic distribution (Fig. 207).- Namibia to Zimbabwe, northern South Africa.
Records.- BOTSWANA: 1.5 km E Cheleka in Gemsbok National Park ($1+1$, ${ }^{\circ}$). NAMIBIA: Otjiwarongo District: 15-20 km NW Otjiwarongo ($1 \sigma^{\circledR}$). Rehoboth District: 23 km N Rehoboth ($1 \mathrm{o}^{\circ}, \mathrm{MS}$).

SOUTH AFRICA: Mpumalanga: Nevington: Komati Poort ($1 \stackrel{\circ}{ }$, AMG). Northern Cape Province: Nossob in Kalahari Gemsbok National Park ($2 \delta^{*} ; 1 \circ$, 2 o *, MS). Northern Province: Guernsey Farm 15 km E Klaserie ($6 \stackrel{\circ}{\circ}, 1 \delta^{\circ}$, PMA). ZIMBABWE: Bembesi River ($1 \delta^{\boldsymbol{*}}$, SAM, holotype of arenarius according to the original description, but not designated as such), Kami Ruins ($2 \sigma^{*} ; 1$ \& , SAM, holotype of lacertosus), Lupane (1 ㅇ, OÖLM; 4 ơ $^{\circ}$, SAM, including 1 designated as holotype and 1 paratype of arenarius), Victoria Falls (3 ㅇ, 18 ơ). $^{\text {r }}$

Tachysphex limatus Arnold

Figures 209-211.
Tachysphex limatus Arnold, 1924:53, ㅇ. Holotype: \uparrow, South Africa: Eastern Cape Province: Willowmore (TMP), examined.-Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:274 (listed).

RECOGNITION.- Tachysphex limatus is unusual in having the gena adjacent to the orbit shiny and largely unsculptured. The only other Tachysphex with unsculptured gena is the female of khoikhoi (only one specimen examined), in which the clypeal lobe is unusually wide (distance between lip corners about $1.8 \times$ clypeal midline, while about 1.3 in the female of limatus). Subsidiary recognition features of limatus are: mid- and hindtibiae with a narrow, unsculptured zone dorsally; apical female flagellomeres unusually short (e.g., length of flagellomere VIII equals $1.2 \times$ width); female fore-and midfemoral venters unsculptured except for a few, sparse punctures, as is male forefemoral posteroventral surface and midfemoral venter and posterior surface. The nonfasciate terga also help in identification. The clypeus of most females is unique in that the middle section is all shiny, with only a few, sparse punctures (Fig. 209e).

Description.- Gena broad in dorsal view (Figs. 209a, b), broadly impunctate next to orbit or at most with a few, sparse punctures. Scutal punctures several to many diameters apart in female, averaging 1-2 to several diameters apart on disk in male. Mesopleural punctures well defined, averaging two to several diameters apart beneath scrobe, and also on mesothoracic venter (at least adjacent to midline); interspaces unsculptured, shiny. Episternal sulcus complete in some specimens. Propodeal dorsum rugose or irregularly, longitudinally ridged; side varying from ridged, with punctate interspaces, to punctate, with unsculptured interspaces; posterior surface ridged or ridges evanescent (then integument punctate). Hindcoxal dorsum with inner margin carinate basally. Midand hindtibial dorsum unsculptured and glabrous between spines. Sternum I with longitudinal carina apically.

Setae erect on each side of oral fossa next to occipital carina, on postocellar area, and on mesopleuron, inclined posterad on scutum and propodeal dorsum; setal length slightly more than midocellar diameter.

Head and thorax black, mandible yellowish red (except apically); flagellum of many specimens partly yellowish brown. Frontal setae inconspicuous in female, golden in male. Wing membrane slightly infumate; forewing costal vein light brown or reddish, subcostal vein dark brown (all or largely so). Femora black or midfemur largely and hindfemur all red. Tibiae and tarsi red. Gaster all black or segments I and II or I-III all or partly red. Terga without silvery setal fasciae.

ㅇ.- Clypeus (Fig. 209e): middle section in most specimens all shiny, with a few, sparse punctures, but densely, minutely punctate basally in a female from Papendorp; lip free margin arcuate, prominent mesally, with one or two lateral incisions on each side. Frons and postocellar area unsculptured between punctures. Width of postocellar area 1.0-1.4× length (Fig. 209c). Dorsal length of flagellomere I $1.6 \times$ apical width; flagellomeres IV-IX with sensory areas; apical flagellomeres unusually short (e.g., length of flagellomere VIII $1.2 \times$ width). Fore- and midfemoral venters with only a few, sparse punctures. Dorsal foretibial surface without spines or bristles or with

Figure 209. Tachysphex limatus Arnold: a - female head in dorsal view; b-male head in dorsal view; c - female head in frontal view; d - male head in frontal view; e - female clypeus and mandible; f - male clypeus and mandible.
up to four long bristles; outer surface impunctate, glabrous, with one bristle near midlength. Forebasitarsus with six or seven rake spines, but with 17 spines in females from Papendorp. Apical depression of tergum V unsculptured, asetose. Length $8.1-9.2 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with widely obtuse tooth, without cleft. Clypeus (Fig. 209f): bevel either not differentiated, or ill defined (punctures two to several diameters apart anteromesally), or markedly longer than basomedian area; lip free margin mesally angulate or with tooth-like projection, corner prominent; distance between corners $1.0 \times$ distance between corner and orbit.

Width of postocellar area $0.9-1.0 \times$ length (Fig. 209 d). Dorsal length of flagellomere I $1.5 \times$ apical width. Forefemoral notch glabrous, slightly larger than average for the genus. Posteroventral forefemoral surface and midfemoral venter and posterior surface unsculptured except for a few, sparse punctures. Outer margin of forebasitarsus mostly with three or four spines, but with nine spines in specimen from Klaarstroom-Prince Albert area; outer apical spine of foretarsomere II longer than tarsomere III. Sternal punctures well defined, several diameters apart mesally. Length 6.1-8.3 mm . Volsella and penis valve: Fig. 210.

Geographic distribution (Fig. 211).Western South Africa, southern Namibia.

Records.- NAMIBIA: Lüderitz District:

 Heioab at $27^{\circ} 24.4^{\prime} \mathrm{S} \quad 16^{\circ} 00.2^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$, AMG). SOUTH AFRICA: Eastern Cape Province: Willowmore (1 o , TMP, holotype of limatus). Northern Cape Province: Arkoep Farm 6 km N Kamieskroon at $30^{\circ} 19^{\prime} \mathrm{S} \quad 17^{\circ} 56^{\prime} \mathrm{E}\left(1 \delta^{\circ}\right.$, PPRI), Goegap Nature Reserve ($3 \mathrm{o}^{\circ}$, AMG), Groenriviersmond ($1 \stackrel{\circ}{ }$, $1 \mathrm{o}^{\circ}$, OÖLM), E Kamieskroon ($1 \stackrel{+}{ }$, OÖLM), near Richtersveld National Park between Annis and Dabie Rivers at $28^{\circ} 20^{\prime} \mathrm{S} 16^{\circ} 55^{\prime} \mathrm{E}$ (10°; 1 ㅇ, $1 \delta^{\circ}$, AMG), Tanqua-Karoo National Park: Waterval ($1 \quad \circ, 1 \delta^{7}$, SAM). Western Cape Province: Ashton (${ }^{\circ}$ ơ, OÖLM), Bains Kloof in Wit River Valley ($1 \delta^{\circ}$, SAM), Bulshoek between Klawer and Clanwilliam ($1 \stackrel{\circ}{ }$, SAM), Cape Peninsula ($1 \sigma^{\circ}$, BMNH), 60 km N Cape Town ($1 \mathrm{o}^{\boldsymbol{*}}$, OÖLM), Cederberg $15-30 \mathrm{~km}$ SE Clanwilliam ($1 \mathrm{o}^{\circ}$, USU), 36 mi NE Ceres ($1 \mathrm{o}^{+}, \mathrm{UCD}$), 20 km N Citrusdal (4 ㄴ, 7 ơ, OÖLM), 11 km W Clanwilliam (1 ơ $^{\pi} ; 3$ ơ, AMG), Doringbos at $31^{\circ} 58^{\prime} 19^{\prime \prime} \mathrm{S} 19^{\circ} 13^{\prime} 33^{\prime \prime E}\left(1 \circ+\right.$ CSE), Het Kruis (10°, SAM), Kalgat Farm 55 km NE Vanrhynsdorp at $31^{\circ} 07^{\prime} 30^{\prime \prime} \mathrm{S} 18^{\circ} 55^{\prime} 30^{\prime \prime} \mathrm{E}$ (20°, CAS, OHL), Klaarstrom-Prince Albert ($2 \mathrm{o}^{\circ}$, SAM), Knersvlakte ($1 \sigma^{\circ} ; 2 \sigma^{\circ}$, SAM), Kommetjie ($2 \sigma^{\circ}$, AMNH), S Lambert's Bay ($1 \sigma^{\text {o }}$, OÖLM), 40 km S Lambert's Bay ($1 \sigma^{\circ}$, OÖLM), Matjiesfontein ($2 \sigma^{\circ}, \mathrm{BMNH}$), Montagu ($5 \sigma^{\circ}$, BMNH), 5 km E Montagu ($1 \mathrm{o}^{\circ}$, UCD), ($1 \stackrel{\circ}{\circ}, \mathrm{SAM}$), Sevenweeks Poort-Rooinek Pass ($1 \mathrm{o}^{\mathrm{o}}$), Wellington: Rooshoek ($1 \circ^{\circ}$, RMNH).

Tachysphex lindbergi de Beaumont

Figures 212, 213.
Tachysphex lindbergi de Beaumont, 1956b:3, ㅇ. Holotype: ํ, Cape Verde Islands: Santo Antão Island: Chā de Morte (Zool. Mus. Helsinki), not examined.- Pulawski, 1971:166 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:274 (listed); Erlandsson, 1978:205 (Madeira); Simon Thomas and Wiering, 1993:404 (description of ${ }^{7}$); Smit, 2000:175 (Madeira).
Tachysphex sp.: Groh, 1982:260 (Cape Verde Islands), corrected to Tachysphex lindbergi by Simon Thomas and Wiering, 1993:405.

Recognition.- Tachysphex lindbergi, known only from Cape Verde Islands and Madeira, is one of the species that have an all black body, well-defined scutal and mesopleural punctures (mesopleural punctures minute in some specimens), labrum flat and galea shorter than wide, hindwing crossvein cu-a vertical, setae erect on the postocellar area and diverging anterad from the midline on the propodeal dorsum, and unspecialized female tarsi (length of midtarsomere II more than twice width and that of hindtarsomere IV more than width, apical tarsomeres without spines on venter or lateral margins).

The female is further characterized by the presence of a well-defined, evenly convex clypeal bevel that is shorter than the basomedian area (Fig. 212a), clypeal lip not emarginate laterally, and presence of only three apical tergal fasciae. Females of other species are similar, but lindbergi can be recognized, with some difficulty, by its relatively sparse mesopleural punctures (more than one diameter apart at mesopleuron center). In most other species, these punctures are no more than one diameter apart, mostly less. The mesopleural punctures are also sparse in the southern African aterrimus which, however, has the frons either coriaceous or a sparsely punctate and a flat middle clypeal section, with an ill-defined bevel. In lindbergi, the frons is punctate, with punctures about one diameter apart and interspaces varying from unsculptured to conspicuously microsculptured.

The male can be recognized by the sculpture and proportions of the clypeal middle section (Fig. 212b) which has a short bevel, an evenly arcuate, not widened mesally lip, a well-defined but nonprominent lip corner (corners equidistant from each other and the adjacent orbit or closer to orbit), and the clypeal midline less than the distance between the lip corners, at least minimally so. Subsidiary recognition features are: forebasitarsus at most with one preapical rake spine, postocellar area narrow (width about 1.3-1.4 \times length), and distal volsellar portion without setae (Fig. 212c).

Description.- Scutal punctures well defined, averaging about one to about two diameters apart on disk. Mesopleural punctures varying from large to minute (many females), more than one diameter apart (several diameters apart in many specimens, but about one diameter apart in some males); interspaces at least slightly microsculptured. Propodeal dorsum varying from irregularly ridged longitudinally to finely rugose; side ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae (numbers in parentheses represent setal length expressed as fractions of basal mandibular width): erect on each side of oral fossa next to occipital carina (0.4), erect on postocellar area ($0.3-0.4$) and on scutum anteriorly ($0.2-0.3$); inclined anterad on propodeal dorsum.

Head and thorax black, mandible reddish preapically. Frontal setae silvery in both sexes. Wing membrane slightly infumate; costal and subcostal veins of forewing dark brown. Legs and gaster black. Terga I-III in female, I-IV in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 212a): bevel shorter than basomedian area (only slightly so in some specimens); lip free margin arcuate, not incised laterally. Width of postocellar area $1.0-1.2 \times$ length. Dorsal length of flagellomere I $2.0-2.3 \times$ apical width. Dorsal foretibial surface with one or two spines; outer surface with one spine that is located near midlength. Forebasitarsus with six or seven rake spines. Apical depression of tergum V asetose. Pygidial plate finely microsculptured and with sparse punctures. Length $8.5-9.5 \mathrm{~mm}$.
0^{7}. - Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 212b): bevel shorter than basomedian area; lip free margin arcuate, with well-defined, somewhat prominent corner; corners equidistant from each other and from respective orbit or closer to orbit. Width of postocellar area 1.3-1.4 \times length. Dorsal length of flagellomere I 1.4-1.5 \times apical width, equal to about 0.7 of flagellomere II. Forefemoral notch with microscopically setose bottom. Outer margin of forebasitarsus without preapical spines or with one or two such spines (which are located near tarsomere's

Figure 212. Tachysphex lindbergi de Beaumont; a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d-penis valve.
base); outer apical spine of foretarsomere II shorter than tarsomere III. Length $6.6-7.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 212c, d.

Geographic distribution (Fig. 213).- Madeira and Cape Verde Islands.
Records.- CAPE VERDE ISLANDS (from Simon Thomas and Wiering, 1993, or as indicated): Boavista: Fundo de Figueiras (de Beaumont, 1956). Fogo (de Beaumont, 1956): Chā de Caldeiras, São Felipe.

Figure 213. Collecting localities of Tachysphex lindbergi and longipalpis.

Maio: Porto Inglez (de Beaumont, 1956). Sal: Praia do Monte Grande (de Beaumont, 1956), Salinas de Pedra

 ZMAN), Cidade Velha ($2 \circ+$ ZMAN), Moia-Moia ($1 \mathrm{o}^{*}, \mathrm{ZMAN}$), Praia ($1 \circ$), San Martinho Grande (2 of,
 (1 ㅇ, ZMAN), Porto Grande (Pulawski, 1976). MADEIRA: Fontes (Smit, 2000), Pico di Arieiro (Pulawski, 1971; Erlandsson, 1978), Ponta de Pargo (Smit, 2000).

Tachysphex longipalpis de Beaumont

Figures 213, 214.
Tachysphex longipalpis de Beaumont, 1940b:166, \uparrow, $\overbrace{}^{\top}$. Holotype: \uparrow, Egypt: Ghiza (originally A. Alfieri collection, now USNM), examined.- Honoré, 1942:56 (in checklist of Egyptian Sphecidae); de Beaumont, 1947a:160 (in revision of Egyptian Tachysphex); Pulawski, 1964:83 (Egypt), 1971:299 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:274 (listed); Kazenas, 1978b:112, 125 (in key to Sphecidae of Kazakhstan and Central Asia); Nazarova, 1998:41 (Tajikistan); Kazenas, $2001: 29$ (in checklist of Sphecidae of Kazakhstan and Central Asia).
 examined before 1971.—de Beaumont, Bytinski-Salz, and Pulawski, 1973:10 (Israel); Bohart and Menke, 1976:274 (listed); Kazenas, 2001:30 and 31 (in checklist of Sphecidae of Kazakhstan and Central Asia).

RECOGNITION.- Tachysphex longipalpis has a convex labrum, markedly protruding beyond clypeal free margin, a uniformly microsculptured mesopleuron and propodeal side, and the gaster and legs all or largely red. In addition, the setae are appressed on the postocellar area and scutum. The female differs from other such species in having the forefemoral venter (at least in the basal half) and midfemoral posteroventral surface with large, sparse, ill-defined punctures and only a few setae, the hindfemoral venter asetose (except in some Asian specimens), the wing membrane nearly hyaline. The male can be recognized by its short foretarsal rake (outer apical spine of foretarsomere II at most slightly longer than foretarsomere III), nonfasciate terga (at most with ill-defined, golden fasciae on terga I-IV) in combination with a low, rounded dorsal volsellar process (Figs. 214d, e). Tachysphex aemulus, gracilicornis, and socotrae are externally similar, but they have a narrow, elongate dorsal volsellar process.

In the African specimens, the galea is longer than in any other Tachysphex, exceeding the palpi (Fig. 214a), and in the male the forefemur is asetose between the notch and apex, a subsidiary recognition feature.

Description.- Labrum markedly convex, markedly protruding from beneath clypeus. Galea at least slightly longer than scape (see Subspecies below), with minute but well-defined punctures, most of which are no more than one diameter apart. Scutal punctures shallow, about one diameter apart or less. Mesopleuron uniformly microsculptured. Propodeal dorsum and side evenly microsculptured. Hindwing vein cu-a varying: both ends equidistant from wing base or anal end further away than cubital end. Hindcoxal dorsum with inner margin not carinate.

Setae appressed on postocellar area and scutum; erect, about as long as midocellar diameter on each side of oral fossa next to occipital carina; on propodeal dorsum oriented obliquely anterad near base, toward midline near midlength, and obliquely posterad near apex (lateral setae oriented laterad); in female fully concealing mesopleural sculpture. Hindfemoral venter asetose from base to apex except in some Asian specimens.

Head and thorax black, but the following are yellowish red: mandible (except apically), clypeal bevel and lip, and labrum. Frontal setae silvery in female, golden in male. Wing membrane hyaline in female, in male infumate (markedly so in some males, slightly so along apical margin in others);

Figure 214. Tachysphex longipalpis de Beaumont; a - female head in frontal view and maxillary and labial palpus; b - female clypeus and mandible; c - male clypeus and mandible; d and e - volsella; f - penis valve.
costal and subcostal vein of forewing reddish brown or subcostal vein brown. Femora, tibiae, and tarsi red or fore- and midfemoral dorsum black basally. Gaster red or male terga V and VI black. Terga not fasciate or terga I-IV with ill-defined, inconspicuous fasciae that are silvery in female, golden in male.

ㅇ.- Clypeus (Fig. 214b): bevel shorter to longer than basomedian area; lip free margin arcuate (emarginate mesally in specimens from Israel), not incised nor sinuous laterally. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I 3.2-3.4 \times apical width. Midtrochanteral venter impunctate and glabrous except for a few, sparse punctures (also hindtrochanteral venter in Egyptian specimens). Forefemoral posteroventral surface, in basal half to two thirds, asetose and with a few, sparse, ill-defined punctures. Midfemoral venter and posteroventral surface asetose, with shallow, large punctures that average several diameters apart. Dorsal foretibial surface with two or three spines; outer surface asetose, glabrous, with two spines. Forebasitarsus with $8-10$ rake spines. Apical spines of hindtarsomere IV reaching claw bases or nearly so. Apical depression of tergum V (of terga III-V in many specimens) impunctate, glabrous. Pygidial plate with punctures that average several diameters apart, interspaces microsculptured to unsculptured. Length $12.0-14.0 \mathrm{~mm}$.
σ°.- Mandible: trimmal carina with obtuse tooth and at least rudimentary cleft. Clypeus (Fig. 214c): bevel about as long as basomedian area; lip with well-defined corner; free margin and distance between corners varying (see Subspecies below). Width of postocellar area $0.9-1.1 \times$ length. Dorsal length of flagellomere I 2.4-3.2 \times apical width. Forefemoral notch smaller than average for the genus, with bottom microscopically setose. Outer margin of forebasitarsus with one or two preapical rake spines in African and 1-3 in Asian populations; outer apical spine of foretarsomere II varying in length (see Subspecies). Hindfemoral venter with inner (= posterior) margin well defined in distal half. Tergum VII with punctures several diameters apart in African, 1-2 to several diameters apart in Asian specimens. Apical depressions of sterna II-V asetose in African, setose in most Asian specimens. Length $8.1-11.1 \mathrm{~mm}$. Volsella and penis valve: Figs. 214d-f.

SUBSPECIES.- Pulawski (1971) recognized longipalpis longipalpis for African populations and longipalpis simplex for those from Asia. Because they do not intergrade in their diagnostic characters, I think now that they may be two vicariant species, but possibly overlapping in the Sinai Peninsula (the closest collecting localities, Wadi Hagul southwest of Suez and Wadi Ghaib in the Sinai Peninsula are no more than 250 km apart as the crow flies). Because of my limited material, I prefer to maintain the current subspecies status of simplex. The two taxa differ as follows:

Character	longipalpis longipalpis	longipalpis simplex
Galea	extending beyond maxillary palpi; as long as $1.5-1.8$ of scape in female, as 2.0 of scape in male	not extending beyond maxillary palpi; as long as 1.2 of scape
Male clypeus	lip free margin almost straight, not emarginate; distance between its corners $1.3-$ $1.4 \times$ distance between corner and orbit; carina arising from corner extends onto bevel	lip free margin obtusely pointed, emarginate mesally; distance between its corners $0.8-1.0 \times$ distance between corner and orbit; carina arising from corner not extends onto bevel
Male forefemur	asetose between notch and apex	setose throughout
Male foretibia	outer surface asetose	setose throughout
Male foretarsomere II	outer apical spine shorter than tarsomere III	outer apical spine as long as or slightly longer than tarsomere III
Volsella	dorsal margin not emarginate	dorsal margin emarginate between projection and proximal margin

Geographic distribution (Fig. 213).-Libya, Egypt, Israel, Arabian Peninsula, Iran, Turkmenistan, Tajikistan.

Records (from Pulawski, 1971, if not indicated otherwise).- EGYPT: Al Jizah (= Ghiza): Abu Rawash, Ghiza (1 \&, $3 \mathrm{o}^{\boldsymbol{\circ}}$). As Suways (= Suez): Fayed, Wadi Hagul 30 km SW Suez (1 \&) . Sina (= Sinai): Wadi Ghaib 50 km SSW Nuweiba ($4 \mathrm{o}^{\circ}$). Location unknown: Choubrah, El Timid. IRAN: Teheran: SokheHissar. ISRAEL: En Gedi ($1 \overbrace{}^{\circ}$), 5 km S Jericho, Masada (10°). LIBYA: Tripolitania: Bir el Hamra. OMAN: Wadi Agran ($1 \delta^{\circ}$, KMG). TAJIKISTAN: Tigrovaya Balka Nature Reserve (Nazarova, 1998). TURKMENISTAN: Krasnovodsk.

Tachysphex longipes Pulawski, sp. nov.

Figures 211, 215, 216.
Derivation of name.- Longipes, Latin for long-legged, with reference to the elongate tarsi of this species.

Recognition.- Tachysphex longipes, an all black species found only in the Namib Desert, has a flat labrum and a galea shorter than wide in profile, hindwing crossvein cu-a vertical, and the apical tarsomeres without spines on the venter or along the lateral margins. It also has a conspicuously wide postocellar area (Figs. 215a, b), a conspicuously punctate scutum and mesopleuron (mesopleural punctures slightly compressed against each other in the female, interspaces dull), the setae erect and sinuous on the postocellar area, lower gena, and thorax, and the male clypeal lobe is sharply pointed. Several species are similar, but longipes has distinctive, elongate mid- and hindtarsi (Figs. $215 \mathrm{~g}, \mathrm{~h}$); e.g., the length of hindtarsomere IV is $1.7 \times$ apical width in the female and $1.6-1.8 \times$ in the male. The flagellum is also unusually long, about as in fugax (e.g., length of flagellomere IV 4.0-4.3 \times times width in female and about 2.0 in male).

Subsidiary recognition features of longipes are as follows. In the female, the postocellar area is concave (Fig. 215a), and the setae are suberect on the hindfemoral venter (Fig. 215e). In the male, the flagellum is uniformly sculptured, sternum VIII evenly emarginate, and setae of the hindfemoral venter are suberect basally, although less distinctly so than in the female (Fig. 215f).

Description.- Mandible: outer ridge somewhat swollen and expanded over notch. Frons dull, punctatorugose. Scutal punctures conspicuous, less than one diameter apart (a few discal punctures one diameter apart or more in some specimens). Mesopleural punctures conspicuous, somewhat compressed against each other in female. Some punctures of mesothoracic venter up to about two diameters apart. Propodeal dorsum irregularly ridged longitudinally, side ridged. Hindcoxal dorsum with inner margin carinate, carina minimally expanded basally. Midtrochanteral venter shiny, all or largely impunctate. Tarsi elongate, basal portion of mid- and hindtarsomeres IV (from base to dorsoapical emargination) longer than emargination itself (Figs. 215g, h).

Setae erect or suberect and sinuous on postocellar area, lower gena, thorax, fore- and midfemoral venters; not concealing integument; hindfemoral venter with suberect setae that become shorter toward apex (all setae appressed in apical half or third in male). Setal length, expressed as a fraction of basal mandibular width, about 0.8 on postocellar area and next to hypostomal carina, about 0.6 on midfemoral venter in female and about 0.3 in male; setae of hindfemoral venter up to 0.6 in female and 0.2-0.3 in male.

Head, thorax, gaster, and legs black (including tarsi), but mandible with reddish preapical zone. Frontal setae silvery in both sexes. Wing membrane nearly hyaline; forewing costal vein light brown, subcostal vein contrastingly dark brown. Terga I-IV silvery fasciate apically.

ㅇ.- Clypeus (Fig. 215c): middle section markedly convex, bevel about as long as basomedian area; lip free margin arcuate or somewhat sinuous (irregularly undulate in some specimens), not incised laterally. Width of postocellar area $2.0-2.4 \times$ length (Fig. 215a). Dorsal length of flagello-

Figure 215. Tachysphex longipes Pulawski, sp. nov.: a - female head in frontal view; b - male head in frontal view; c - female clypeus and mandible; d - male clypeus and mandible; $\mathrm{e}-$ female hindfemur; f - male hindfemur; g - female hindtarsomeres III-V; h - male hindtarsomeres III-V.
mere I 3.0-3.5 \times apical width. Forefemoral venter with small, ill-defined punctures that average several diameters apart. Dorsal foretibial surface with one or two spines; outer surface with one or two spines. Forebasitarsus with five or six rake spines. Length of hindtarsomere III about $3.0 \times$ apical width, that of hindtarsomere IV about $1.7 \times$ apical width (Fig. 215 g). Apical depression of tergum V setose (setae absent in worn specimens). Length $7.0-9.0 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina without tooth or cleft. Clypeus (Fig. 215d): middle section markedly convex, with obtuse, markedly oblique carina (nearly parallel to clypeal free margin) that emerges from clypeal midpoint; bevel longer mesally than basomedian area; lip free margin sharply pointed, without corner (i.e., clypeal free margin forming single curved line from midpoint to orbit). Width of postocellar area 2.8-2.9 \times length (Fig. 215b). Dorsal length of flagellomere I about $1.5 \times$ apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with three or four rake spines; outer apical spine of foretarsomere II as long as tarsomere III or slightly shorter. Apical width of hindtarsomere III about $2.2 \times$ apical width, that of hindtarsomere IV about $1.6-1.8 \times$ apical width (Fig. 215h). Length $5.8-6.4 \mathrm{~mm}$. Volsella and penis valve: Fig. 216.

Floral records.- The specimens from 110 km NW Swakopmund were collected on flowers of Psilocaulon salicornioides (Pax) Schwantes, those from 113 km NW Swakopmund on flowers of Brownanthus kuntzei (Schinz) Ihlenf, as recorded by F.W. and S.K. Gess, the collectors. Both plant species are members of Aizoaceae.

Figure 216. Tachysphex longipes Pulawski, sp. nov.: volsella and penis valve.

Geographic distribution (Fig. 211).— Namibia (Namib Desert only).
Records.- Holotype: \ddagger NAMIBIA: Karibib District: 55 km SW Usakos, 1 Mar 1990, WJP (CAS). Paratypes: NAMIBIA: Karibib District: 65 km SW Usakos, 1 Mar 1990, WJP (2 \circ), MS (5 ㅇ; 10 \& 2 ơ, MS). Khorixas District: Uis [Myn], Feb 1978, C. Kok and S.J. van Tonder (1 \&, PPRI). Swakopmund District: 20 km NE Hentiesbaai, 10 Dec 1996, WJP (2 o, 6 o $^{\circ}$), 33 km NW Hentiesbaai, 8 Dec 1996, WJP (1 ه ${ }^{\circ}$); Homeb 10 km ESE Gobabeb, 23-25 Jan 1972, [British Museum] Southern African Expedition (1 \&, BMNH); Kuiseb, date illegible, H. Dick Brown (1 \&, BMNH); Kuiseb River in Namib/Naukluft National Park near Gobabeb, 20 Mar 1993, Natl. Coll. Kuiseb Survey (1 ㅇ, 2 ơ, PPRI); 15 km E Swakopmund, 8 Feb 1992, J. Gusenleitner (1 ơ, JG); $^{2} 10 \mathrm{~km}$ N Swakopmund, 6 Dec 1996, WJP ($1 \mathrm{c}^{7}$); 110 km NNW Swakopmund, 15 Mar 1999, FSG ($4 \mathrm{o}^{\circ}$, AMG); 113 km NNW Swakopmund, 18 Mar 2000, FSG (12 ơ $^{\circ}$, AMG); Swartrand 20 mi W Gobabeb, 5 Oct 1967, E.S. Ross and A.R. Stephen (1 \circ) . Walvis Bay District: 16 mi SE Rooibank, 1 Jan 1967, E.S. Ross and K. Lorenzen (1 \&); 11 km E Walvis Bay, 7 Dec 1996, WJP (1 or $^{\text {r }}$).

Tachysphex luctuosus Arnold, new status

Figures 217, 218.
Tachysphex schoenlandi var. luctuosus Arnold, 1924:69, ©゚. Holotype: © ${ }^{\text {on }}$, South Africa: Eastern Cape Province: Willowmore (TMP), examined.—Arnold, 1930:4 (in checklist of Afrotropical Sphecidae).— As Tachysphex schoenlandi luctuosus: Bohart and Menke, 1976:276 (new status, listed).

ReCognition.- Tachysphex luctuosus has the labrum slightly convex and slightly protruding beyond the clypeal free margin, galea longer than wide in profile, punctures well defined on the scu-
tum and mesopleuron, propodeal side ridged and posterior surface with a well-defined median sulcus that extends to the upper margin, sternum I with a median carina but no apical depression, hindwing vein cu-a vertical, and setae appressed on the postocellar area. The female has two lateral incisions on each side of the clypeal lip, and apical tarsomeres with one or two spines on each lateral margin (except the foretarsus) and one on venter. In the male sterna II-IV each has a conspicuous, distinctive fringe of suberect, agglutinated setae on the apical margin, the forefemoral notch has no basal tuft of setae, and the forebasitarsus has no preapical rake spines. A similar type of sternal

Figure 217. Tachysphex luctuosus Arnold: a - female head in frontal view; b - male head in frontal view; c - female clypeus and mandible; d - male clypeus and mandible; e - apical hindtarsomere V ventrally; f - volsella; g - penis valve.
pilosity is found in the male of schoenlandi, in which, however, the labrum is flat and not protruding beyond the clypeal free margin, the galea is shorter than wide, setae are erect on the postocellar area, the mesopleuron is conspicuously microsculptured and has only evanescent punctures, the median sulcus of the propodeal posterior surface does not extend to the upper margin, the forefemoral notch has a basal tuft of setae, forebasitarsus has $3-5$ rake spines, and vein cu-a is oblique in most specimens.

Description.- Labrum slightly convex, somewhat protruding beyond clypeal margin. Galea in profile markedly longer than wide, as long as of scape. Scutal punctures well defined, averaging about one diameter apart. Mesopleural punctures well defined, averaging slightly more than one diameter apart near center. Many punctures of mesothoracic venter, in male, up to two or three diameters apart. Propodeal dorsum rugose, in most specimens with tendency to form longitudinal ridges; side ridged. Hindcoxal dorsum with inner margin carinate basally. Sternum I without apical depression, with longitudinal carina.

Setae nearly appressed on postocellar area and scutum, oriented posterad on propodeal dorsum. Longest setae of lower gena about 0.3 of basal mandibular width.

Head and thorax black, mandible reddish except apically. Frontal setae with golden tinge in female, golden in male (clypeal setae silvery). Wing membrane nearly hyaline; costal vein of forewing reddish, subcostal vein brown. Femora black except apex red, tibiae and tarsi red. Gastral segments I, II, and small portion of III red in female and some males, partly to nearly all black in other males, remaining segments black. Terga I-IV silvery fasciate apically.

ㅇ.- Clypeus (Fig. 217c): bevel shorter than basomedian area; lip free margin arcuate, minimally emarginate mesally, with two small lateral incisions on each side. Width of postocellar area $0.7-0.8 \times$ length (Fig. 217a). Dorsal length of flagellomere I $1.7 \times$ apical width. Dorsal foretibial surface with one or two spines; outer surface with one spine near midlength. Forebasitarsus with 14 rake spines (spines soft, long). Apical tarsomeres each with one central spine on venter and one or two spines near midlength on each lateral margin (Fig. 217e); lateral spines lacking on foretarsus. Apical depression of tergum V impunctate, glabrous. Pygidial plate with punctures that are many diameters apart; interspaces shiny. Length $7.5-7.8 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 217d): bevel longer than basomedian area; lip free margin arcuate, with rudimentary emargination mesally and well-defined corner; distance between corners $1.6 \times$ distance between corner and orbit. Width of postocellar area $0.6-0.7 \times$ length (Fig. 218b). Dorsal length of flagellomere I 1.2-1.4 \times apical width. Forefemoral notch microscopically setose, relatively small. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Tarsomeres V with or without preapical spine on venter. Tergum VII, near middle, with punctures that are several diameters apart. Apical depressions of sterna II and III fully concealed by appressed setae; apical margin of sterna II-IV each with suberect fringe of agglutinated setae. Sterna IV-VI with impunctate, shiny swelling anterad of apical depressions. Sternum VIII: hindmargin nearly straight mesally.

Figure 218. Collecting localities of Tachysphex luctuosus and mashona.

Length 6.8-7.3 mm. Volsella and penis valve: Figs. 217f, g.
Geographic distribution (Fig. 218).- Southern South Africa.
Records.- SOUTH AFRICA: Eastern Cape Province: 18 km WNW Grahamstown: Hilton Farm (1 of), Willowmore ($1 \AA^{\circ}$, TMP, holotype of luctuosus). Western Cape Province: Kliprand 60 km WNW Loeriesfontein ($1 \delta^{\circ}$, OÖLM), Matjiesfontein ($1 \sigma^{\star}$), 5 km W Robertson (2 δ°), 10 km E Vanrhynsdorp (1 \circ).

Tachysphex luxuriosus Morice

Figures 211, 219.
Tachysphex luxuriosus Morice, 1897:307, ㅇ. Holotype: ${ }^{\circ}$, Egypt: Koubbah near Cairo (OXUM), examined in 1974.- de Beaumont, 1940:167 (in revision of Egyptian Tachysphex; ${ }^{\text {® }}=$ Tachysphex inextricabilis); Honoré, 1942:56 (in checklist of Egyptian Sphecidae); de Beaumont, 1947a:169 (in revision of Egyptian Tachysphex; $\sigma^{\top}=$ Tachysphex inextricabilis), 1956a:197 (Libya), 1960b:238 (Libya); Pulawski, 1964:94 (Egypt; redescription; $\sigma^{\circledR}=$ Tachysphex inextricabilis); Osborn and Krombein, 1969:16 (NW Sudan); Pulawski, 1971:351 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:11 (Israel); Bohart and Menke, 1976:274 (listed); Roche and Zalat, 1994:115 (Egypt: Sinai Peninsula).
As Tachysphex horus (ơ only), corrected to Tachysphex luxuriosus by Pulawski, 1971:351: de Beaumont, 1940:168 (Egypt, revision), 1947a:171 (in revision of Egyptian Tachysphex), 1956a:197 (Libya).
Tachysphex seth Pulawski, 1964, ㅇ, ơ ($\circ=$ Tachysphex inextricabilis). Holotype: ${ }^{\circ}$: Egypt: Al Fayyum Province: Kom Osheim (CAS), examined. Synonymized with Tachysphex luxuriosus by Pulawski, 1971:351.

Recognition.- Tachysphex luxuriosus shares the following unique combination with geniculatus, horus, inextricabilis, and niloticus: labrum markedly convex and protruding beyond the clypeal lip; postocellar area unusually broad (width at least twice length); female mandible with unusually broad, widely open cleft (see Fig. 161c), female clypeus with lip conspicuously emarginate laterally (see Fig. 161c), and male forefemur not emarginate. In addition, the mesopleuron is coriaceous (integument concealed by vestiture in some species), setae are short on the postocellar area (no longer than one midocellar diameter), and appressed on tergum I.

Like inextricabilis, luxuriosus has the scutal hindcorner (Fig. 219a) roundly prominent (nonprominent in geniculatus, horus, and niloticus) and the propodeal side setose throughout (propodeal side glabrous adjacent to metapleural sulcus in the other three species). Also, luxuriosus and inextricabilis have the setae appressed on the postocellar area, and in fresh females the integument is completely concealed by vestiture on the frons, scutum, and mesopleuron. In the female of luxurio-

FIGURe 219. Tachysphex luxuriosus Morice: a - female scutum; b-male sternum VIII; c - volsella; d - penis valve.
sus, however, the lateral carina of the pygidial plate is evanescent (at least in the apical quarter or so), whereas it is obtuse but well defined in inextricabilis. The males differ in the shape of sternum VIII (compare Figs. 219b and 193a) and of the volsella (Figs. 219c and 193b): the apical margin of the latter is either roundly prominent mesally or evenly concave in luxuriosus, while the median prominence is emarginate in inextricabilis. The following characters help in identification: in most luxuriosus, the mesothoracic venter is sparsely punctate anterad of each midcoxa (punctures several to many diameters apart), and the outer apical spine of male foretarsomere II is about as long as tarsomeres III and IV combined. In inextricabilis, the mesothoracic venter is densely punctate (punctures less than one to slightly more than one diameter apart), and the outer apical spine of male foretarsomere II is about as long as tarsomere III.

Sex association.- My association of sexes in luxuriosus and inextricabilis is based on the specimens from Kom Osheim, Egypt (where both species were collected simultaneously). In these populations, the mesothoracic venter is sparsely punctate in the former species, and densely punctate in the latter, without intergradation.

Similar unassigned specimen.- The single female from Niger (30 km S Agadez at $16^{\circ} 39.0^{\prime} \mathrm{N} 7^{\circ} 56.9^{\prime} \mathrm{E}$) shares the characters of both luxuriosus and inextricabilis: the lateral carina of the pygidial plate is well defined (as in inextricabilis), but the mesothoracic venter is sparsely punctate (as in many luxuriosus).

Description (see also Variation below).- Labrum convex, conspicuously protruding beyond clypeal free margin. Galea with punctures several diameters apart (about one diameter apart anteriorly), as long as 0.9 of scape in female, 1.1 of scape in male. Supraantennal swelling largely covered by vestiture. Scutal hindcorner roundly prominent (Fig. 219a), scutal flange broadening posterad; scutal punctures well defined, about one diameter apart in female, up to about two diameters apart on disk in male. Mesopleuron coriaceous, dull. Mesothoracic venter: see Variation below. Propodeal dorsum conspicuously microsculptured, dull, with ill-defined, longitudinal ridges; side ridged. Hindcoxal dorsum with inner margin not carinate.

Setae appressed on postocellar area and scutum, fully concealing integument of frons, scutum, and mesopleuron in fresh females; erect on each side of oral fossa next to occipital carina, equal to 0.4 of basal mandibular width; variously oriented on propodeal dorsum; suberect in distal half of midfemoral venter in male and many females; propodeal side setose throughout. Sternum I all or largely asetose.

Head and thorax black but the following are yellowish red: mandible (except apically), labrum, clypeal lip and bevel (bevel nearly all black in some males), also scapal venter in female. Frontal setae silvery in both sexes, except upper frons with golden tinge in males from Marsa Matruh area. Wing membrane hyaline; costal vein of forewing light brown, subcostal vein reddish brown. Color of legs: see below. Gaster red in female, in male red basally, with three or four apical segments brown. Terga I-V silvery fasciate apically, also tergum VI laterally with silvery setae in male.

ㅇ.- Mandible: cleft unusually broad, widely open (as in Fig. 161c). Clypeus (as in Fig. 161c): bevel about as long as basomedian area, delimited anterolaterally by inconspicuous carina that emerges from lip corner; lip free margin straight or shallowly concave mesally, roundly emarginate laterally. Width of postocellar area $2.0-2.3 \times$ length. Dorsal length of flagellomere I $2.1-2.5 \times$ apical width. Forefemoral base, on anteroventral surface, with a few large punctures that are many diameters apart. Dorsal foretibial surface with three or four spines; outer surface with two or three spines. Forebasitarsus with 7-9 (mostly eight) rake spines. Midtrochanteral venter unsculptured except for a few, sparse punctures. Venters of tarsomeres V each with thin, preapical spine. Apical depression of tergum V partly asetose. Pygidial plate with minute punctures that average many diameters apart, interspaces unsculptured, lateral carina evanescent (only in apical quarter or so in
a female from Kassala, Sudan). Length 9.0-12.5 mm. Legs red except coxae black in many specimens and femoral base black in some.
0^{7}.- Mandible: trimmal carina obtusely angulate, but without tooth or cleft. Clypeus (as in Fig. 161c): bevel about as long as basomedian area; lip free margin evenly, inconspicuously arcuate, corner obtuse, ill defined; distance between corners about $1.2 \times$ distance between corner and orbit. Width of postocellar area 2.1-2.7 \times length. Dorsal length of flagellomere I 1.7-1.9 \times apical width. Forefemur not emarginate. Foretarsal rake: see Variation below. Venters of tarsomeres V each with thin, preapical spine. Sternum VIII: bottom of apical emargination roundly expanded mesally (Fig. 219b) in most specimens, evenly concave in some. Length $6.5-10.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 219c, d. Femora black except apically, hindfemur red in some specimens; tibiae red or hindtibia darkened; tarsi red.

Variation.- Most specimens are characterized by the following: punctures of the mesothoracic venter, anterad of the midcoxa, are many diameters apart in the female and 2-3 to several diameters apart in the male (about one diameter apart anteriorly and adjacent to the midline); the male forebasitarsus has five or six rake spines, and the outer apical spine of foretarsomere II is as long as tarsomeres III and IV combined or slightly shorter; the penis valve is the same diameter throughout (Fig. 219d).

The males collected 64 km W Marsa Matruh, Egypt, are significantly different, but I treat them as conspecific with luxuriosus because of their identical volsella. In these specimens, the mesothoracic venter varies from densely punctate (punctures less than one diameter apart) to sparsely punctate (punctures 2-3 diameters apart anterad of each midcoxa); foretarsomere I has 1-3 rake spines, and the outer apical spine of foretarsomere II is shorter than tarsomere III; the penis valve has a slightly concave apicoventral portion, similar to that of inextricabilis (Fig. 193c).

Collecting period.- 9 April through 10 August.
Geographic distribution (Fig. 211).- Egypt, Libya, Sudan, and Israel.
Records.- EGYPT: Al-Bahr-al-Ahmar: Wadi Mellaha (Pulawski, 1971). Al Fayyum: Kom Osheim (11 $\stackrel{+}{ }, 7 \sigma^{\circ}$). Al Jizah (= Ghiza): Dahshur ($1 \delta^{\circ}$). Al Qahirah (= Cairo): Helwan (de Beaumont, 1940), Kubbah (Morice, 1897), Maadi (1 \&). Aswan: Aswan, west bank ($1 \circ^{\circ}$). Matruh: NW Bahariya oasis at $29^{\circ} 17^{\prime} 53^{\prime \prime} \mathrm{N} 28^{\circ} 16^{\prime} 53^{\prime \prime} \mathrm{E}\left(1 \circ\right.$, AMNH), 64 km W Marsa Matruh ($14 \delta^{\circ} ; 1 \mathrm{o}^{\circ}$, MSNT). Sina (= Sinai): no specific locality (Roche and Zalat, 1994). ISRAEL: Jericho (de Beaumont, Bytinski-Salz, and Pulawski, 1973). LIBYA (de Beaumont, 1956a, 1960b): Cyrenaica: Baltet er Ramla. Fezzan: Oum el Araneb. Southeastern Libya: Sarra Well at $21^{\circ} 34^{\prime} \mathrm{N} 21^{\circ} 55^{\prime}$ E. Tripolitania: Ben Giauad near Nofilia, Garian. SUDAN: Kassala ($1 \circ+$, GENOVA, determined as rufiventris by P. Magretti), Wadi Ain el Brins in Gebel 'Uweinat at $21^{\circ} 50^{\prime} \mathrm{N}$ $25^{\circ} 05^{\prime} \mathrm{E}\left(1 \mathrm{c}^{\circ}\right)$.

Tachysphex marshalli R. Turner

Figures 220-223.
Tachysphex marshalli R. Turner, 1917d:293, $\stackrel{\odot}{ }, \iota^{*}$. Lectotype: $\circ+$, Zimbabwe: Salisbury, now Harare (BMNH), here designated, examined.- Arnold, 1923:149 (original description copied), 1930:2 (listed); Bohart and Menke, 1976:274 (listed); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).
Schistosphex breijeri Arnold, 1922:137, ㄷ. Holotype: \uparrow, South Africa: Kraaifontein [probably Kraalfontein] in former Transvaal, location of locality unknown (TMP), examined. New synonym.- Arnold, 1930:2 (listed).-As Tachysphex breijeri: Menke in Bohart and Menke, 1976:271 (pygidial plate illustrated), 272 (new combination, listed).
Tachysphex marshalli var. terrificus Arnold, 1935:497, ㅇ. Holotype: ㅇ, Botswana: Kaotwe (TMP), examined. New synonym.- As Tachysphex marshalli terrificus: Bohart and Menke, 1976:274 (new status, listed).

Recognition.- Tachysphex marshalli has a distinctive coloration (Fig. 220): wings all black,
with a conspicuous violet shine; gaster all or predominantly black, with nonfasciate terga; and at least some tibia and tarsus contrastingly red. The female foretarsomere I is unique: concave, unsculptured (shiny), and glabrous along the outer margin, at least in the basal two thirds. Other significant features are: trochanteral as well as fore- and midfemoral venters shiny, with

Figure 220. Tachysphex marshalli R. Turner: female in lateral view. large, sparse punctures (male forefemur sparsely punctate and shiny posteroventrally except in basal half); mesopleural setae brown, nearly erect, longer than midocellar diameter (Fig. 221c); propodeal side ridged (ridges evanescent in some specimens); and dorsal length of male flagellomere I 2.7-2.8 \times apical width. The femoral and propodeal features are shared with punctatus and quadricolor, which also lack tergal fasciae. Their color patterns, however, are different, the mesopleural setae are subappressed under the scrobe (but nearly erect in many Ethiopian quadricolor in which the wings are conspicuously bicolored), and the female foretarsus is finely punctate throughout. See these species for further differences (pp. 518 and 524).

Justification of new synonymy.— The holotype of Schistosphex breijeri is a typical female of marshalli except for its pygidial plate deeply emarginate apically, clearly a teratological feature. The holotype of Tachysphex marshalli var. terrificus is just a female color form with an all black gaster.

Description.- Labrum mostly convex anteriorly (but less so than in panzeri or pentheri), practically flat in some males, protruding or not protruding beyond clypeal free margin. Galea sparsely punctate, longer than wide in profile, about as long as 0.6 of scape in female, 0.8 in male. Scutal punctures averaging 1-2 diameters apart, but many punctures several diameters apart in some specimens. Mesopleuron dull, uniformly microsculptured in some specimens, shallowly punctate in others. Episternal sulcus complete or incomplete. Propodeal dorsum irregularly ridged to uniformly microsculptured; side ridged or ridges evanescent. Hindwing vein cu-a varying: both ends equidistant from wing base or anal end further away than cubital end. Hindcoxal dorsum with inner margin carinate, carina not expanded basally.

Setae erect, about $0.3 \times$ basal mandibular width, on each side of oral fossa next to occipital carina; suberect, shorter than midocellar diameter on postocellar area; practically erect, about as long as midocellar diameter on scutum anteriorly; suberect, slightly longer than midocellar diameter on mesopleuron (Fig. 221c); oriented obliquely posterad on propodeal dorsum (dorsum glabrous apicomesally in most specimens).

Head and thorax black but mandible yellowish red (except apically); clypeus black or bevel and lip reddish; antennae black or scape, pedicel, and flagellomeres I and II red. Frontal vestiture golden in both sexes except dark brown in single female from Namibia. Thoracic setae dark. Wing membrane black, with conspicuous violet shine. Femora varying from red to black, tibiae and tarsi red, but fore- and midlegs black in single + from Gemsbok Pan, Botswana, and hindtibiae black in Tanzanian males. Gaster black or female pygidial plate and male segments VI and VII red; terga I and II, in a σ^{*} from Newington, South Africa, each with reddish spot near center, also tergum III with such spot in a ơ from Algoa Bay, both South Africa. Terga without silvery, apical fasciae.

Figure 221. Tachysphex marshalli R. Turner: a - female clypeus and mandible $(\times 18)$; $\mathrm{b}-\mathrm{male}$ clypeus and mandible $(\times 24)$; c - mesopleuron in front view showing erect setae $(\times 60)$; d - pygidial plate of female $(\times 42)$; e - female hindtarsomere V in lateral view $(\times 54)$.

ㅇ.- Clypeus (Fig. 221a): lobe markedly prominent, bevel longer than basomedian area, irregularly punctate; lip emarginate mesally in many specimens, free margin straight or shallowly concave on each side of emargination, laterally broadly sinuous or incised. Width of postocellar area $0.9-1.1 \times$ length. Dorsal length of flagellomere I 2.8-3.0 \times apical width. Venters of all trochanters and of all femora shiny, with large, sparse punctures (also posterior face of midfemur). Dorsal foretibial surface with two or three spines; outer surface impunctate, glabrous, shiny, with a few spines. Midtibial dorsum impunctate and glabrous between spines. Hindtibia punctate and setose throughout or (most specimens) dorsum impunctate, glabrous. Forebasitarsus concave and asetose along outer margin (only in basal two thirds in single female from Willowmore, South Africa), with eight or nine rake spines. Apical tarsomeres with several thin spines on venter, including a pair of basal spines (Fig. 221e). Tergum V punctate and setose throughout. Pygidial plate unusually narrow, elongate, microsculptured, sparsely punctate (Fig. 221e). Length 14.8-20.0 mm.
$\sigma^{\boldsymbol{\pi}}$.- Mandible: trimmal carina with prominent tooth, without cleft. Clypeus (Fig. 221b): bevel markedly longer mesally than basomedian area; lip free margin arcuate (emarginate mesally in some specimens), with well-defined, somewhat prominent corner; distance between corners $0.6-0.8 \times$ distance between corner and orbit. Width of postocellar area $0.9-1.1 \times$ length. Dorsal length of flagellomere I 2.7-2.8 \times apical width. Forefemoral notch asetose, margined both anteriorly and posteriorly. The following are glabrous, with scattered punctures: trochanteral venters, posterior surface of forefemur (except basal half), posterior surface and venter of midfemur, and hindfemoral venter (punctures large except fine on hindfemur). Outer margin of forebasitarsus with 4-7 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Most sternal setae suberect, about $1.5 \times$ midocellar diameter on apical sterna. Length $9.0-15.0 \mathrm{~mm}$. Volsella and penis valve: Fig. 222.

Geographic distribution (Fig. 223).Angola and Zambia to South Africa.

Records.- ANGOLA: Pediva 30 mi E Porto Alexandre (1 o; 3 ơ' $^{\circ}$, BMNH). BOTSWANA: Damara Pan ($1 \delta^{\circ}$, TMP), Gemsbok Pan (1 ㅇ, paratype of marshalli terrificus, TMP), 18 mi NE Kalkfontein ($2 \mathrm{o}^{\circ}, \mathrm{BMNH}$), Kaotwe (1 o , TMP, holotype of marshalli terrificus Arnold). MOZAMBIQUE: Maputo: Rikatla (1 \&, ZMAN), Nhacoongo (1 ㅇ, UST), Salone at $18^{\circ} 10^{\prime} \mathrm{S} 35^{\circ} 47^{\prime} \mathrm{E}(18$, SAM). NAMIBIA: Karasburg District: Fish River Canyon 18 km E Ai Ais at $27^{\circ} 57^{\prime} 03^{\prime \prime} \mathrm{S} 17^{\circ} 32^{\prime} 35^{\prime \prime} \mathrm{E}$ (1 \& , CSE). Keetmanshoop District: Noachabeb [Farm] 100 km SSE Keetmanshoop ($1 \mathrm{o}^{\circ}$, NMN), Rotegab 90 km SSE Keetmanshoop ($1 \mathrm{o}^{\circ}$, NMN). Maltahöhe District: 5 km E Maltahöhe ($\left.1 \begin{array}{l}\text { \& }\end{array}\right)$.

Figure 222. Tachysphex marshalli R. Turner: volsella and penis valve.

Figure 223. Collecting localities of Tachysphex marshal$l i$ and mauretanus.

Mariental District: Onze Rust 192 [Farm] (10^{π}, AMG). SOUTH AFRICA: Eastern Cape Province:
 District ($1 \delta^{\circ}$, TMP). Mpumalanga: Crocodile Bridge in Kruger National Park (1 ơ $^{*} ; 1$ ㅇ, PPRI). Northern Cape Province: Kuruman ($1 \sigma^{\pi}$, TMP), Newington ($1 \sigma^{\pi}$, AMG). Western Cape Province: Citrusdal District (1 ㅇ, SAM), 26 km ENE Clanwilliam at $32^{\circ} 03^{\prime} 30^{\prime \prime} \mathrm{S} 19^{\circ} 07^{\prime} 15^{\prime \prime} \mathrm{E}\left(1 \delta^{\circ}\right)$, Doringbos at $31^{\circ} 58^{\prime} 19^{\prime \prime} \mathrm{S} 19^{\circ} 13^{\prime} 33^{\prime \prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}, \mathrm{CSE}$), Oudtshoorn: Onverwacht at $33^{\circ} 37^{\prime} \mathrm{S} 22^{\circ} 14^{\prime} \mathrm{E}(1 \stackrel{\circ}{\circ}, \mathrm{AMG})$, Roode Sands Mts. near Tulbagh ($1 \mathrm{o}^{\circ}$, SAM), Wellington: Rooshoek ($1 \mathrm{o}^{\star}$, RMNH). Location unknown: Kraaifontein in the former Transvaal according to Arnold, $1922: 137$ [probably Kraalfontein, either at $24^{\circ} 02^{\prime} \mathrm{S} 29^{\circ} 39^{\prime} \mathrm{E}$ or $23^{\circ} 26^{\prime} \mathrm{S} 29^{\circ} 20^{\prime} \mathrm{E}$] (1 o , TMP, holotype of Schistosphex breijeri); it may be a farm's name according to F.W. Gess, pers. comm.). TAN-
 Morogoro ($5 \boldsymbol{c}^{\circ}$). ZAMBIA: Central Province: 25 km SSW Kapiri Mposhi ($1 \overbrace{0}$). Eastern Province: 32 km E Petauke ($1 \delta^{\circ}$). Northern Province: Mbala ($1 \stackrel{\circ}{ }$, SAM), 65 road km NE Serenje ($1 \mathrm{o}^{\circ}$). ZIMBABWE: Bulawayo (1 ㅇ, 3 o $^{\circ}$, SAM), Bulawayo airport ($6 \delta^{\circ}$), Bulawayo: Forestvale ($1 \sigma^{\circ}$, SAM), Bulawayo: Hillside ($1 \circ, 2 \delta^{\circ}$, SAM), Filabusi: Druid Mine ($1 \sigma^{\pi}$, SAM), Harare ($1+1 \delta^{\circ}$, BMNH, lectotype and paralectotype

 ($1 \mathrm{o}^{\circ}, \mathrm{SAM}$).

Tachysphex mashona Arnold, new status

Figures 218, 224.
Tachysphex oberon var. mashona Arnold, 1929c:387, ․ . Holotype: \uparrow, Zimbabwe: Penkridge (SAM), exam-ined.-Arnold, 1930:3 (in checklist of Afrotropical Sphecidae). - As Tachysphex oberon mashona: Bohart and Menke, 1976:275 (new status, listed).
Tachysphex oberon var. halophilus Arnold, 1940:120, ㅇ. Holotype: ㅇ, South Africa: Gauteng: Saltpan, now Tswaing (TMP), examined. New synonym.- As Tachysphex oberon halophilus: Bohart and Menke, 1976:275 (new status, listed).

Type locality.- The type locality of halophilus is Saltpan (now Tswaing), which Arnold (1940) incorrectly placed in Kalahari rather than near Pretoria. The type label reads "Saltpan, Pto.", the last word being an abbreviation for Pretoria.

Recognition.- Tachysphex mashona can be recognized by the structure of its lower frons (Fig. 224c): the supraantennal swelling is markedly enlarged and fused with the antennal socket rim (but not higher than the latter); and the socket rim is conspicuously higher dorsally than ventrally. Subsidiary recognition features are: setae oriented posterad on propodeal dorsum (except oriented anterad basomedially) and gastral terga I-IV (I-V in male) silvery fasciate apically. In the female, the length of midtarsomere II is $1.4 \times$ apical width, and the pygidial plate is densely punctate and apically emarginate (Fig. 224d). In the male, the dorsal length of flagellomere I is $2.5-2.7 \times$ the apical width, the femora are largely red, tibiae and gastral segments I-III all red, and sterna IV and V glabrous at least basally.

Justification of new synonymy.- The holotypes of mashona and halophilus differ in details of sculpture and coloration, but the unique structure of their lower frons demonstrates that they are conspecific. These two names are therefore synonyms.

Status of the species.- Although similar to oberon, mashona is not likely to be an individual variant of the latter. These two Tachysphex differ in the structure of the antennal socket and supraantennal swelling, punctation of the female pygidial plate, and length of male flagellomere II. I have not observed intergradation.

Description (see also Variation below).- Supraantennal swelling enlarged but not higher than antennal socket, fused with the latter (Fig. 224d), its sides steep but not vertical; socket rim markedly higher dorsally than ventrally. Scutum uniformly punctate, punctures no more than one
diameter apart. Mesopleural punctures well defined (fine in female), averaging about one diameter apart near center. Propodeal dorsum evenly microareolate or minutely ridged; side finely punctate or with fine, inconspicuous ridges. Hindcoxal dorsum with inner margin carinate basally. Sternum I with obtuse median carina (carina evanescent posteriorly in single male from Otavi area, Namibia).

Setae suberect on each side of oral fossa next to occipital carina, equal to about 0.2 of basal mandibular width; erect on postocellar area, about one midocellar diameter long; appressed on scutum; suberect on mesopleuron; inclined posterad on propodeal dorsum (inclined anterad near anterior margin).

Head and thorax black, mandible reddish mesally. Frontal setae silvery in female, golden in

Figure 224. Tachysphex mashona Arnold: a - female clypeus and mandible; b-male clypeus and mandible; c - supraantennal swelling of female; d - pygidial plate of female; e - volsella; f - penis valve.
most males, but silvery in those from Kransberg and Pafuri, South Africa. Wing membrane yellowish, forewing costal and subcostal veins light brown. Color of legs and gaster: see below. Terga I-IV in female, I-V in male, silvery fasciate apically (fasciae golden in single male from Otavi, Namibia).

ㅇ.- Labrum shallowly emarginate. Clypeus (Fig. 224a): bevel shorter to longer than basomedian area, with sparse large punctures intermixed with dense smaller punctures; lip free margin arcuate or prominent mesally, with two lateral incisions on each side (the holotype of mashona has three pairs of incisions and central portion of lip reduced to a tooth). Width of postocellar area $1.1-1.2 \times$ length. Dorsal length of flagellomere I $1.5-1.7 \times$ apical width. Forefemoral venter either minutely, evenly punctate (punctures several to many diameters apart, interspaces shiny) or posteroventral surface with only a few, sparse punctures (holotype of mashona). Dorsal foretibial surface with one or two spines; outer surface with several spines and narrow, asetose zone. Tarsi short: length of fore- and midtarsomeres II about 1.0 and $1.4 \times$ apical width, respectively; that of midtarsomere III about $0.8 \times$ apical width; of fore-, mid-, and hindtarsomeres IV about $0.7,0.8$, and $0.9 \times$ apical width, respectively. Forebasitarsus with 10 or 11 rake spines. Apical depression of tergum V minutely punctate mesally and laterally. Pygidial plate densely punctate (punctures averaging less than one diameter apart), markedly incised apically (Fig. 224d). Length $9.6-12.2 \mathrm{~mm}$. Femora black, tibiae black (with small reddish zones), and tarsi dark brown in specimens from most areas, but femora, tibiae, and tarsi red in those from Penkridge, Zimbabwe. Gaster black, tergum I with a pair of large, red spots in holotype of mashona.
$0^{\circ} .-$ Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 224b): bevel ill defined; lip free margin obtusely pointed, with somewhat ill-defined corner; distance between corners $0.7-0.8 \times$ distance between corner and orbit. Width of postocellar area $1.0-1.2 \times$ length. Dorsal length of flagellomere I $1.5-1.7 \times$ apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Length of midtarsomere II 1.8-1.9×apical width, that of midtarsomere III $1.2 \times$ apical width. Sterna III and IV setose to largely glabrous, sterna V and VI asetose (at least basally). Sternum VIII: apical margin prominent mesally. Length $9.1-11.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 224e, f. Legs red except fore- and midfemora black basally. Gastral segments I-III and VII red, segments IV-VI largely black.

Variation.- In most specimens, the interspaces between punctures are microsculptured on the scutum and mesopleuron, the propodeal side is finely ridged, the punctures on the forefemoral venter are only several diameters apart, the femora are all black, and the tibiae largely so. The two females from Penkridge, Zimbabwe, have the interspaces between punctures unsculptured and shiny on the scutum and mesopleuron, propodeal side unridged, forefemoral venter sparsely punctate (punctures many diameters apart), and the femora, tibiae, and tarsi red. I regard all these specimens as individual variants of one species because they all share the characteristic structure of the lower frons.

Geographic distribution (Fig. 218).- Zambia to Namibia and South Africa.
Records.- BOTSWANA: Ghanzi (1 \&, BMNH). NAMIBIA: Grootfontein District: 60 km SW Otavi ($1 \AA^{\circ}$). SOUTH AFRICA: Gauteng: Tswaing ($1 \stackrel{\&}{\circ}$, TMP, holotype of halophilus). Northern Province: Kransberg 30 km N Thabazimbi at $24^{\circ} 25^{\prime} \mathrm{S} 27^{\circ} 31^{\prime} \mathrm{E}\left(10^{\circ}\right.$, PPRI), Pafuri in Kruger National Park (10°, PPRI). North-West Province: Brits: Castle Goa at $25^{\circ} 38^{\prime} \mathrm{S} 27^{\circ} 47^{\prime} \mathrm{E}(1+\mathrm{q}$, AMG), ZAMBIA: Northern Province:
 Insiza River (2 ㅇ, SAM), Mavuradonha Wilderness area 15 km E Muzarabani ($1 \circ$ OÖLM), Penkridge (2 ค , SAM, holotype and paratype of mashona), Sawmills (2 0°, SAM).

Tachysphex mauretanus Pulawski

Figures 223, 225.
As Tachysphex julliani Kohl No. 2: de Beaumont, 1955a:182 (Morocco), synonymized with Tachysphex mauretanus by Pulawski, 1971:366.
Tachysphex mauretanus Pulawski, 1971:366, ㅇ, $\overbrace{}^{\circ}$. Holotype: \circlearrowleft^{\star}, Morocco: Marrakech (LAUSANNE), reexamined in 2004.- Bohart and Menke, 1976:274 (listed)

Recognition.- Tachysphex mauretanus, known from Morocco and Algeria, is one of the species in which the galea is membranous, the maxillary stipes has short, inconspicuous setae, the frons is not bulging near midlength, hindwing vein cu-a is vertical, and the length of the marginal cell is more than $3.0 \times$ width.

In the female, in addition, the pygidial plate is broadly rounded apically, not constricted preapically, with a transverse sulcus, the integument being sparsely punctate anteriorly to the sulcus and impunctate posteriorly to it. Also, the clypeal bevel is present and the lip free margin is sinuous but not incised laterally, and the setae bordering the apical depressions of segments IV and V are thickened. Unlike julliani, the female of mauretanus has the mandibular outer ridge not expanded over the notch, and unlike argentatus the mesopleural vestiture is easily visible, not concealed by vestiture.

In the male, sterna IV-VI have only a few, sparse punctures mesally, and the mesopleural setae

JK

Figure 225. Tachysphex mauretanus Pulawski: a female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.
do not conceal the integuments. It differs from all similar species in having a unique, markedly sinuate clypeus (Fig. 225b).

Description.- Galea membranous. Scutal punctures well defined, up to about two diameters apart on disk; interspaces unsculptured, shiny. Mesopleuron punctatorugose in female, in male with punctures that average less than one diameter apart. Punctures of mesothoracic venter up to about two diameters apart on each side of midline. Propodeal dorsum microareolate and slightly rugose; side ridged; posterior surface, in dorsal third or so, with wide median impression. Hindcoxal dorsum with inner margin carinate basally. Sternum I obtusely carinate along midline.

Setae erect or nearly so, about as long as midocellar diameter, on each side of oral fossa next to occipital carina; appressed on postocellar area and scutum; oriented largely anterad on propodeal dorsum, but lateral setae oriented obliquely posterad and joining apicomesally.

Head and thorax black, mandible yellowish red (except apically). Frontal setae silvery in female and some males, golden dorsally in other males. Wing membrane slightly infumate; costal vein of forewing reddish brown, subcostal vein brown. Femora black except red apically, mid- and hindfemora in male varying from red to black; tibiae and tarsi red. Gastral segments I and II red (tergum II largely darkened in female), remainder black. Terga I-IV in female, I-III in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 225a): bevel about as long as basomedian area; lip free margin arcuate, with ill-defined, broad protuberance mesally, sinuous laterally. Width of postocellar area $0.7 \times$ length. Dorsal length of flagellomere I $2.1 \times$ apical width. Dorsal foretibial surface with two spines; outer surface with two spines. Forebasitarsus with five rake spines. Apical tarsomeres with one preapical spine on venter. Preapical bristles of gastral segments IV and V thickened. Tergum V with a few, sparse punctures anterad of apical depression; apical depression broad, impunctate, glabrous. Pygidial plate unusually broad, with transverse sulcus, with a few sparse punctures anterad of sulcus, impunctate posterad of sulcus, aciculate preapically (as in julliani, see Fig. 200c). Length 7.5 mm .
σ^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 225b): bevel shorter than basomedian area; lip free margin markedly sinuate, with well-defined corner; distance between corners $0.6-0.7 \times$ distance between corner and orbit. Width of postocellar area $0.8 \times$ length. Dorsal length of flagellomere I 1.75-1.9 \times apical width. Forefemoral notch with well-defined, microscopically setose, microsculptured platform that is margined posteriorly and does not raise apically over femoral surface. Outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Hindfemoral venter with inner (= posterior) margin sharp in distal half. Venter of tarsomeres V with one spine near center. Tergum VII densely punctate or punctures more than one diameter apart basally. Apical depression of sternum II sparsely punctate and setose to practically impunctate, glabrous; that of sterna III and IV impunctate, glabrous (sterna punctate anterolaterally); sterna V and VI with a few, sparse punctures. Length $7.5-8.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 225c d.

Geographic distribution (Fig. 223).- Morocco, Algeria.
RECORDS.- ALGERIA: Oran ($1 \stackrel{\circ}{ }$, LAUSANNE). MOROCCO: Agadir ($1 \mathrm{o}^{\circ}$), Marrakech ($1 \mathrm{o}^{\circ}$, LAUSANNE, holotype of mauretanus).

Tachysphex mediterraneus Kohl

Figures 226, 227.
Tachysphex mediterraneus Kohl, 1883a:173, ㅇ (as mediterranea, incorrect original termination). Lectotype: ㅇ, Italy: Sicilia: Valsavoja, now Lentini Diramazione (NHMW), designated by Dollfuss, 1989:13, exam-ined.- Kohl, 1885:371 (in revision of Larrini), 1893:32 (Austria); Dalla Torre, 1897:681 (in catalog of world Hymenoptera); Ferton, 1901a:99 (Corsica, nest and prey); Antiga and Bofill, 1904:11 (in catalog of Catalonian Hymenoptera); Ferton, 1908:558 (Corsica, nest and prey); Mercet, 1910:165 (listed from Spain); Morice, 1911:101 (Algeria); Ferton, 1912:388 and 398 (Algeria, nest and prey); Adlerz, 1916:110 (review of nesting habits); Ferton, 1923:128, 171, and 315 (nesting habits); Berland, 1925:118 (in Sphecid Fauna of France); Grandi, 1930:316 (nesting habits, description of $\boldsymbol{o}^{\text {r }}$) and 341 (Italy), 1934:61 (nesting), 129 (Italy), 1935:110 (Italy); de Beaumont, 1936a:210 (in revision of French Tachysphex, description of ${ }^{\text {º }}$); Guiglia, 1937:333 (Italy); Giner Marí, 1943:137 (in revision of Spanish Sphecidae); de Beaumont, 1947b:393 (Cyprus); de Andrade, 1949:15 (Portugal); Pittioni, 1950:25 (Cyprus); de Beaumont, 1953a:175 (Mauritania), 1954a:58 (Italy), 1954b:91 (Italy); Grandi, 1954:239 (Italy); de Beaumont, 1955:183 (Morocco); Bytinski-Salz, 1956:226 (Turkey); Ceballos, 1956:376 (listed from Spain); Morel, Nouvel, and Ribaut, 1956:339 (France); Bajári, 1957a:135 (Hungary), 1957b:50 and 54 (in key to Hungarian Sphecidae); Nouvel and Ribaut, 1958:13 (France); Pulawski, 1958a:181 (Bulgaria); Diniz, 1959:29 (Portugal); de Beaumont, 1960a:18 (Greece: Island of Rhodes); Grandi, 1961:199 (life history); de Beaumont, 1962b:26 (Spain); Ceballos, 1964:90 (in supplement to catalog of Spanish Sphecidae); Diniz, 1964:29 (Portugal); Pulawski, 1964:95 (Egypt); de Beaumont, 1965:48 (Greece); Roberti, Frilli, and Pizzaghi, 1965:110 (Italy); Balthasar, Hrubant, and Hrubant, 1967:171 (Bulgaria); Pulawski, 1967a:401 (Turkey); Königsmann, 1971:106 (Spain); Pulawski, 1971:255 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:9 (Israel); Erlandsson, 1974:72 (Italy, Yugoslavia); Bohart and Menke, 1976:274 (listed); Gheorghiou, 1977:192 (Cyprus); Kazenas, 1978:116, 127 (in key to Sphecidae of Kazakhstan and Central Asia); Pulawski, 1978:216, 220 (in key to Sphecidae of European USSR); Dollfuss, 1983b:10 (reference to Kohl, 1893); Gayubo, 1984a:85 (Spain); Józan, 1985b:57 (reference to Bajári, 1957), 83 (ecological and zoogeographic characteristics); Gayubo, 1986a:33 (Spain); Gayubo and Sanza, 1986:46 (Spain); Gayubo and Tormos, 1986:17 (Spain); Gayubo, 1987:113 (Spain); Asís and Jiménez, 1988:272 (Spain); Dollfuss, 1988:12 (reference to Kohl, 1883a); Gayubo and Mingo, 1988:80 (Spain); Dollfuss, 1989:13 (lectotype in NHMW); Pagliano, 1990:104 (in catalog of Italian Sphecidae); Gayubo, Borsato, and Osella, 1991:402 (Italy); Negrisolo, 1991:318 (Italy); Torregrosa, Gayubo, Tormos, and Asís, 1993:18 (Spain); Gayubo and Borsato, 1994:208 (Italy); Krombein and Pulawski, 1994:11 (summary of life history), 41 (in revision of Sri Lankan Tachysphex); Tormos, Asís, and Gayubo, 1994:188, 205 (Spain); Negrisolo, 1995:23 (Italy); Negrisolo in Minelli, Ruffo, and La Posta, 1995b:9 (in catalog of Italian fauna); Minoranskiy and Shkuratov, 1996:81 (Russia: Rostov Oblast'); González, Gayubo, and Torres, 1998:72, 73 (Spain); Gayubo, García, Torres, and González, 1999:90 (Spain); Shkuratov, $2000: 58$ (Russia: Rostov Oblast’), 2001:17 (prey); Kazenas, 2001:29 (in checklist of Sphecidae of Kazakhstan and Central Asia), 158 (review of known biology); Kazenas and Esenbekova, 2001:134 (Kazakhstan); Schmidt and Bitsch in Bitsch et al., 2001:256 (in Sphecid Fauna of Western Europe); Gayubo, González, and Torres, 2002:184 (Spain); Kazenas, 2002a:70 (Kazakhstan); Shkuratov, 2002:141 (Russia: Rostov Oblast'); Generani, Pagliano, Scaramozzino, and Strumia, 2003:65 (Italy); Nieves-Aldrey et al., 2003:42 (Spain); Pagliano, 2003:131 (Italy); Gayubo et al. 2004:131 (Spain); Gayubo, Nieves-Aldrey, González, Tormos, Rey del Castillo, and Asís, 2004:108 (Spain); Cruz-Sánchez et al., 2005:220 (Spain).
Tachysphex collaris Kohl, 1898:100, ㅇ. Syntypes: 우, Waboniland, now Kenya: Coast Province: no specific locality (NHMW), examined before 1971. Synonymized with Tachysphex mediterraneus by Pulawski in Krombein and Pulawski, 1994:41.- Arnold, 1923:175 (listed), 177 (original description translated into English), 1930:4 (in checklist of Afrotropical Sphecidae).- As Tachysphex mediterraneus collaris: Pulawski, 1971:257 (new status); Bohart and Menke, 1976:274 (listed); Dollfuss, 1989:13 (types in NHMW).
Tachysphex lanatus Arnold, 1947:151, ㅇ, ठ'. Lectotype: \oplus_{+}, Northern Rhodesia: Abercorn, now Zambia: Mbala
(SAM), here designated, examined. Synonymized with Tachysphex mediterraneus by Pulawski in Krombein and Pulawski, 1994:41.— Bohart and Menke, 1976:274 (listed).

Lectotype selection.- A female and a male were designated as types of lanatus by Arnold. I have selected the female as the lectotype, and the male as the paralectotype.

Recognition.- Tachysphex mediterraneus has a black body, hindcoxal dorsum expanded into a tooth near its anterior end (as in Fig. 262a), and setae sinuous, suberect or erect on the head (Figs. 226a, b) and thorax (longest setae are about equal to the basal mandibular width). The female has a unique clypeus, with the lip free margin forming a median, obtuse tooth and two or three teeth on each side (Fig. 226c). In the male, the lobe is narrow, with corners markedly closer to each other than to orbits (Fig. 226d), although the corners are fully reduced in some specimens. Males of several other species are similar, but they lack a tooth on the hindcoxal dorsum. The mesopleuron is rugose in many, but not all mediterraneus (both females and males), a subsidiary recognition feature.

Description.- Scutal punctures well defined, nearly contiguous to several diameters apart on disk (integument punctatorugose near margins in some specimens). Mesopleuron varying: all rugose, or partly punctate (only episcrobal area rugose in individuals from Zimbabwe and South Africa), or all punctate (e.g., in some females from Kenya, unique females from Andara, Namibia, Mfuwe area, Zambia, one from Zanzibar, and one from Harare, Zimbabwe). Propodeal dorsum rugose, side ridged. Hindcoxal dorsum with inner margin conspicuously angulate basally.

Setae sinuous and suberect to erect on head (Figs. 226a, b) and thorax (longest setae about equal to basal mandibular width), not concealing integument, erect or somewhat inclined posterad on propodeal dorsum.

Head, thorax, legs, and gaster black except apical tarsomeres brown, in female pygidial plate red apically in most specimens, all red in those from Tanzania (including Zanzibar), and in several females from Ethiopia, Ivory Coast, Kenya, Tunisia, and Zambia, and male tergum VII red in Tanzanian specimens (segments V-VII red in some). Frontal setae silvery in both sexes, but golden in some Tanzanian males. Wing membrane hyaline; forewing costal vein light brown to black, subcostal vein dark brown to black. Terga I-III or I-IV silvery fasciate apically.

ㅇ.- Clypeus (Fig. 226c); bevel varying from nearly reduced to longer than basomedian area; free margin of lip with obtuse, median point and three teeth on each side (only two teeth in female from Andara, Namibia; with two teeth on one side and three on the other in a specimen from Mtito Andei area, Kenya), teeth separated by incisions. Width of postocellar area 1.2-1.9 \times length (Fig. 226a). Dorsal length of flagellomere I 2.1-2.4 \times apical width. Forefemoral venter shiny, with minute punctures that are several to many diameters apart. Dorsal foretibial surface with several minute, suberect bristles; outer surface with one spine or seta near midlength and one near apex. Forebasitarsus with 7-9 rake spines (six in the smallest specimen examined). Length of hindtarsomere IV equal to apical width, emargination rectangular. Tarsomeres V in most specimens without spines on venter or lateral margin but with one small preapical spine on venter and two small spines on each lateral margin in some African individuals. Claws somewhat expanded dorsally near midlength, with straight, thin apical half. Apical depression of tergum V impunctate, glabrous (except punctate and setose mesally in some specimens). Pygidial plate sparsely punctate, unsculptured between punctures, apically rounded to nearly truncate and relatively broad (Fig. 226e). Length $6.5-11.0 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, with or without cleft. Clypeus (Fig. 226d): bevel ill defined; free margin of lip either sinuate, with well-defined corner, or roundly pointed, without corner (then forming single curved line with rest of clypeal margin); distance between corners about $0.6 \times$ distance between corner and adjacent orbit. Width of postocellar area 1.3-1.7 \times length (Fig.

Figure 226. Tachysphex mediterraneus Kohl: a - female head in frontal view; b - male head in frontal view; c - female clypeus and mandible; d - male clypeus and mandible with outline showing variation of clypeal free margin; e - pygidial plate of female; f - volsella; g - penis valve.

226b). Dorsal length of flagellomere I 1.6-2.0 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than this tarsomere's width. Sternal punctures dense, microscopically fine; apical margin of sterna III-V shallowly concave. Length $4.6-8.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 226f, g.

Nesting behavior.- Ferton (1901a, 1908, 1912, 1923) found the nesting habits of mediterraneus to be identical in Corsica and Algeria, and Grandi's observations $(1931,1934,1961)$ concur. The burrow is $7-8 \mathrm{~cm}$ long and has one to four cells. The cells are $5-7 \mathrm{~cm}$ below the surface in sand (Ferton) and 3 cm in clay (Grandi). The nest entrance is closed during the provisioning period except when the female is inside. After completing the nest, the female performs several orientation flights and goes hunting. Prey consists of tree crickets of the genus Oecanthus: O. pellucens Scopoli in Italy, Corsica, Algeria, and Russia, O. turanicus Uvarov in Kazakhstan (Pulawski, 1971; Kazenas and Nasyrova, 1991; Shkuratov, 2001), mainly immature but also male and female adults. The wasp stings her prey three times: near the hindlegs or between the mid- and hindlegs, between fore- and midlegs, and toward the throat. Location of sting corresponds to the location of the cricket's main ganglia. The female opens the nest entrance and enters it without dropping the prey. Three to nine prey are deposited per cell, laying venter up. The egg is deposited on a prey near the cell's bottom or sometimes near the cell's middle. It is placed transversely or obliquely on the cricket's body between the forecoxae or sometimes between the fore- and midcoxae.

Geographic distribution (Fig. 227).Europe north to southern France, Hungary, and Rostov area in Russia, Africa south to northern South Africa, and Asia (Israel, Turkey, Iran, Azerbaijan, Kazakhstan, Turkmenistan, Uzbekistan, Tajikistan, India, Sri Lanka). Kohl's (1893) record from Austria (Bisamberg) has not been confirmed by subsequent authors, and Herr Hermann Dollfuss could not locate the

Figure 227. Collecting localities of Tachysphex mediterraneus. voucher specimen in the Vienna Museum (his letter of 27 June 1992).

Records.- ALGERIA: Skikda (Morice, 1911, as Philippeville). ANGOLA: Capelongo at $14^{\circ} 54^{\prime}$ S $15^{\circ} 08^{\prime}$ E (1 ㅇ, AMNH). AZERBAIJAN: Ganacha near Gäncä (Pulawski, 1971). BOTSWANA: Serowe
 (2 \circ), Slanchev Bryag (1)), Sozopol ($4 \circ^{\circ}$). CHAD: islands on Chad Lake ($1 \circ$, MRAC). CROATIA (Pulawski, 1971): Borik near Zadar, Senj. CYPRUS (de Beaumont, 1947b; Pittioni, 1950): Cherkes, Pera
 Jizah: Ghiza (1 q). ETHIOPIA: Gamo Gofa: 42 road km NNE Arba Minch at $6^{\circ} 17^{\prime} \mathrm{N} 37^{\circ} 47^{\prime} \mathrm{E}$ (1 f f), 49 road km SE Sodo ($1 \circ+1 \mathrm{o}^{\mathrm{r}}$). Sidamo: 4 km E Yabelo ($\mathbf{1}^{\circ}$). FRANCE (from Bitsch et al., 2001, if not indicated otherwise): Aude: Leucate (2 \&). Bouches-du-Rhône: no specific locality. Corse: Ajaccio (Berland, 1925), Bonifacio (Ferton, 1901a, 1908). Gard: no specific locality. Gironde: no specific locality. Hérault: no specific locality. Landes: Vieux-Boucaux (Pulawski, 1971). Pyrénées-Orientales: Banyuls-sur-Mer (Berland, 1925; Nouvel and Ribaut, 1958), Le Barcarès (Morel, Nouvel, and Ribaut, 1956). Var: no specific locality.
 Keneba (1 甲 \uparrow, BMNH), Nkawkaw 80 air km NW Koforidua (2 9). GREECE (de Beaumont, 1965, or as indicated): Aegean Islands: Rhodes: Haraki at Gaidouras River (1 ${ }^{7}$, CSE), Ixia (de Beaumont, 1960), Kolimbia
 Heraklion, Knossos (1 \&). Macedonia: Agras 7 km NW Edessa (Pulawski, 1971). Pelopónnisos: Epano
 HUNGARY (Bajári, 1957a, b): Simontornyá, Szigetszentmiklós. INDIA: Karnataka: Bangalore: Allalsandra (1 ㅇ, ZMUC). IRAN: Mazanderan: coastal plain between Chalus and Shahsavar (1 甲). Tehran: Babol Sar N Tehran (Pulawski, 1971). ISRAEL (de Beaumont, Bytinski-Salz, and Pulawski, 1973): Jerusalem, Ramat HaSharon, also En Gedi (Pulawski, 1971). ITALY: Abruzzi: Vasto Marina (Pagliano, 1990). EmiliaRomagna: Badagnano 20 km SE Piacenza (1 ¢) , Bobbio in Piacenza Province (Roberti, Frilli, and Pizzaghi, 1965), Cervia in Ravenna Province (Grandi, 1934, 1954), Montetortore (Grandi, 1935), Rimini in Forlì Province (Grandi, 1954), Ronzano in Bologna Province (Grandi, 1935; de Beaumont, 1954a). Friuli-Venezia Giulia: Porto Caleri (Negrisolo, 1995), Punta Sabbioni (Negrisolo, 1991). Isole Pelagie: Isola di Pantelleria (1 f), Pantelleria: Lago Specchio di Venere (Pagliano, 2003). Lazio: Pontecorvo in Frosinone Province ($1{ }^{\circ}$). Liguria: Cavi (Gayubo, Borsato, and Osella, 1991). Marche: Pesaro (Pulawski, 1971). Sardinia: Cagliari (Pulawski, 1971), Cala Liberotto (Pulawski, 1971), Domusnovas (Pagliano, 1990). Sicilia: Scicli (Pagliano, 1990), Valsavoja, now Lentini Diramazione (4 ㅇ, NHMW, lectotype and paralectotypes of mediterraneus). Toscana: Alberese Parco Naturale: Uccellina (Gayubo and Borsato, 1994), Campiglia Marittima in Livorno Province (Grandi, 1930; de Beaumont, 1954b), Castiglione della Pescaia (Gayubo and Borsato, 1994), Isola d'Elba (de Beaumont, 1954b), Isola di Capraia (Generani, Pagliano, Scaramozzino, and Strumia, 2003), Livorno (de Beaumont, 1954b), Ronchi in Massa Carrara Province (de Beaumont, 1954a; Grandi, 1954), San Vincenzo in Livorno Province (Grandi, 1934; de Beaumont, 1954a). IVORY COAST: Bouaké (1 of 4 \& \boldsymbol{q},

 Yamassoukro (1 ¢) . JORDAN: Deir Alla (1 ㅇ, RMNH). KAZAKHSTAN (K= Kazenas, 2002, P = Pulawski, 1971): Aktöbe: Uil (K, P). Almaty: 20 km N village Aidarly in Taukum Desert (K), Almatinskiy Nature Reserve (Kazenas and Esenbekova, 2001), Almaty: Medeo ($1 \mathrm{o}^{\circ}$), 20 km W Almaty (K), Bakanas (K), 17 km NW and 65 km W Bakanas (K), 10 km W Chundza on Sharyn River (K), Ili 70 km NNE Almaty (K, P), 3 km W and 8 km SW Kamenka in Aksay Gorge in Zailiyskiy Alatau Range (K), Kapchagai (K), 20 km NE Kapchagai (K), 3 km S Talgar (K). Pavlodar: Sosnovka (K). Qaraghandy: Balqash (K), 5 km SW Balqash (K). Qostanai:. Zhalanash (K). Qyzylorda: Chokusu railroad station 30 km NW Saksaul'skiy (K). South Kazakhstan: 5-8 km SW Chardara (K), 30 km S Lengher (K), Mussa Kuduk in Golodnaya Step (P), 10 km S Syutkent on Syr-Darya River = 140 km WSW Chimkent at about $42^{\circ} \mathrm{N} 68^{\circ} \mathrm{E}$ (K). Zhambyl: $50-70 \mathrm{~km}$ NW Furmanovka (K), 10-12 km Kamenka in foothills of Kirghizskiy Range (K), 5 km W Lake Biylikul' (K), Muyunkum sands (K). KENYA: Coast Province: 30 km S Mombasa (1 甲), ca 10 km N Taita Discovery Centre (1 \circ), Tiwi Beaches ca 17 km S Mombasa ($1 \mathrm{o}^{\circ}$), Voi at $3^{\circ} 24.0^{\prime} \mathrm{S} 38^{\circ} 33.2^{\prime} \mathrm{E}(1 \mathrm{f})$, 16 km SW Voi ($1 \delta^{\circ}$), Voi area ($6 \delta^{\circ}$, OÖLM), Waboniland: no specific locality ($2 \circ$, NHMW, lectotype and paralectotype of collaris), Wundanyi (1 ㅇ, OÖLM). Eastern Province: 32 km NW Mtito Andei (1 ; ; 1 ㅇ, NMK). Rift Valley Province: Archer's Post on Ewaso Ng'iro River (1 \&), Kajiado ($1 \sigma^{\prime}$, MRAC), Magadi road 25 air km SW Nairobi ($1 \delta^{\circ}$) and 46 air km SW Nairobi at $1^{\circ} 34.0^{\prime} \mathrm{S} 36^{\circ} 27.4^{\prime} \mathrm{E}\left(1 \circ, 1 \delta^{\circ}\right)$, Marich Pass Field Studies Centre (2 ㅇ), ca 5 km N Namanga ($1 \mathrm{o}^{\text {º }}$). KYRGHYZSTAN: 5 km SSE Przheval'sk (Kazenas, 2002). MALAWI: Chiromo ($1 \stackrel{\circ}{ }$, BMNH), Florence Bay to Karonga ($1 \stackrel{\circ}{ }$, BMNH). MAURITANIA: Fdérik (de Beaumont, 1953a), Kaedi (1 ơ $^{\star}, ~ F B$), Lake Aleg 30 km W Aleg (o $^{\circ}$). MOROCCO: Kenitra (de Beaumont, 1955, as Port Lyautey), 20 km NW Midelt ($1 \mathrm{o}^{\circ}$). NAMIBIA: Rundu District: Andara in Caprivi Strip ($1 \quad$ \& , NMN). NIGER: Niamey Region: 8 km NW Niamey at $13^{\circ} 35.8^{\prime} \mathrm{N} 1^{\circ} 59.9^{\prime} \mathrm{E}$ (3 9). Tillabéri Region: Say ($1 \begin{aligned} & \text { q }\end{aligned}$, KMG). NIGERIA: Ibadan ($2 \delta^{\circ}$, BMNH), Lagos (1 ค, BMNH). PORTUGAL (Diniz, 1964, if not indicated otherwise): Carcavelos, Carrapateira 20 km N Sagres at $37^{\circ} 12^{\prime} \mathrm{N} 8^{\circ} 55^{\prime} \mathrm{W}(1+$ ค, CSE), Évora, Portimão, Troia, Vale de Gaio near Setubal ($1 \AA^{\circ}$). ROMANIA: Fratesti Vlasca (Pulawski, 1971). RUSSIA: Rostov Oblast': Nedvigovka (Minoranskiy and Shkuratov, 1996), Rostovskiy Nature Reserve at $46^{\circ} 27^{\prime} \mathrm{N} 42^{\circ} 41^{\prime} \mathrm{E}$ (Shkuratov, 2002), Vëshenskaya village area at $49^{\circ} 37^{\prime} \mathrm{N} 41^{\circ} 45^{\prime} \mathrm{E}$ (Shkuratov, 2000). SENEGAL: Bandia Forest (2 ㅇ,

 Pretoria (1 ㅇ, MS). Mpumalanga: Mogageni near Loskop Dam at $25^{\circ} 24^{\prime} \mathrm{S} 29^{\circ} 22^{\prime} \mathrm{E}$ (J°, PPRI). SPAIN: Albacete: Donal (Tormos, Asís, and Gayubo, 1994). Alicante (Torregrosa, Gayubo, Tormos, and Asís, 1993):

Beniarrés, Elche, La Barraca, Monnegre, Muro del Comtat, Novelda, Rebolledo, San Miguel de Salinas, San Vicente del Raspeig, Sax. Burgos: Fuentespina (Gayubo and Sanza, 1986). Cadiz: Jerez de la Frontera (Pulawski, 1971). Castellón de la Plana (Asís and Jiménez, 1988, or as indicated): Matet, Sueraz, Vall d'Alba, Villafranca del Cid (Gayubo and Tormos, 1986). Ciudad Real: Pozuelos (Gayubo, 1987). Gerona: Palamós (Königsmann, 1971). Granada: Granada (de Beaumont, 1962). Madrid (Gayubo and Mingo, 1988, or as indicated): El Escorial (Pulawski, 1971), Estación Biogeólogica de El Ventorrillo in Sierra de Guadarrama (Nieves-Aldrey et al., 2003; Gayubo et al., 2004), Madrid, Montarco, Monte de el Pardo (Gayubo, NievesAldrey, González, Tormos, Rey del Castillo, and Asís, 2004), Ribas de Jarama, Villaviciosa de Odón. Salamanca: Las Arribes del Duero (Gayubo, González, and Torres, 2000), San Martín del Castañar (CruzSánchez et al., 2005). Segovia: Maderuelo (Gayubo and Sanza, 1986). Soria (Gayubo, García, Torres, and González, 1999): Alcubilla del Marqués, Aliud, Almazán, Ciadueña, Cubo de la Solana, Fuentepinilla, Izana, Lubia, Martialay, Pinilla del Campo, Rabanera del Campo, Rebollo de Duero, San Esteban de Gormaz, Tardajos de Duero, Tejado, Valdenarros, Villabuena, Villalvín, Villaverde del Monte. Toledo: Toledo (Pulawski, 1971). Valladolid: Viana de Cega (González, Gayubo, and Torres, 1998). Zamora: Zamora (Gayubo, 1986a). SRI LANKA: Mannar District: 0.5 mi NE Kokmotte Bungalow in Wilpattu National Park (3 \circ, USNM), Marichchukkaddi (2 ㅇ, NMC, USNM), Silavathurai and Kondachchi (1 ㅇ, NMC). Monaragala District: Angunakolapelessa (2 ㅇ, USNM), Mau Ara 10 mi E Uda Walawe ($1 \quad+$, USNM). Puttalam District: Kali Villu in Wilpattu National Park (1 of, 5 or $^{\text {B }}$, USNM). Ratnapura District: Uggalkaltota, Irrigation Bungalow ($1 \quad+$, USNM). Trincomalee District: China Bay ($1+9$, $1 \circ^{\circ}$, USNM). SUDAN: 150 km SE Khartum (1 \& , CSE). TAJIKISTAN (Pulawski, 1971, or as indicated): Dushanbe (1 of), Kabadian, Khorog, Kondara 35 km N Dushanbe ($1 \stackrel{\circ}{\circ}, 1 \mathrm{o}^{\circ}$), Varzob ($1 \mathrm{o}^{\circ}$). TANZANIA: Arusha Region: Moshi ($1 \delta^{\circ}$, RMNH), Tarangiri National Park ($1 \circ$) . Iringa Region: 18 km W Iringa ($1 \sigma^{\circ}$). Mbeya Region:

 E Iringa ($1{ }^{\circ}$). Shinyanga Region: Old Shinyanga ($1 \stackrel{\circ}{ }$, BMNH). Tanga Region: 33 km SW Korogwe (1 ค,
 Unguja (= Zanzibar Island): Mzingani Forest ($1 \quad$ \& , KMG). TOGO: Amaoudé 17 km N Sokodé (1 甲 $)$). TUNISIA: Tabarka ($1+$, CSE). TURKEY: Adana: Çalidagi (Pulawski, 1967). Denizli: Camlik (Pulawski, 1971). Istanbul: Sile area ($1 \delta^{\text {® }}$). Manisa: Turgutlu (Bytinski-Salz, 1956, as Kasaba). Mersin: Mut (Pulawski, 1967). TURKMENISTAN (Pulawski, 1971): Anau 10 km E Askhabad, Kara Kala. UZBEKISTAN: AmanKutan 35 km SW Samarkand (Pulawski, 1971). ZAIRE: 34 km W Popokabaka (1 \&). ZAMBIA: Eastern Province: mid Luangwa River valley ($2 \circ$, BMNH), upper Luangwa River valley ($4 \circ$ ค, $1 \delta^{\circ}$, BMNH), 6-18 km SW Mfuwe (1 \&), 32 km E Petauke (1 \& , MSNT). Central Province: 25 km SSW Kapiri Mposhi (1 \& , $2 \sigma^{\circ}$). Northern Province: Mbala ($3+1 \delta^{\circ}, \mathrm{SAM}$, including lectotype $+\frac{1}{}$ and 1 paralectotype + of lanatus). Southern Province: 7 km SW Kalomo ($1 \overbrace{}^{\circ}$). ZIMBABWE: Chishawasha near Harare (1 ㅇ, BMNH), Harare (1 \& , PMA), Victoria Falls (1 \&).

Tachysphex melanius Pulawski, sp. nov.

Figures 228, 229.
Tachysphex argentifrons Arnold, 1924:58, ㅇ only, present correction.
Derivation of name.- Melanius, from the Greek word melania, blackness, here used as a Latin masculine adjective. With reference to the predominantly black body of this species.

Recognition.- Tachysphex melanius has a convex labrum (protruding beyond the clypeal free margin), galea longer than wide in profile (equal to 0.8 of scape), cephalic and thoracic setae all straight (appressed on postocellar area and midfemoral venter), propodeal side all ridged, upper metapleural pit oblong, propodeal dorsum setose throughout, with setae diverging anterolaterad from the midline (a small apicomedian area glabrous in some specimens), male forefemur emarginate basally, and male sterna V and VI each with a basal fringe of agglutinated setae (fringes visible only when the sterna are fully expanded).

The female of melanius has a slightly expanded apicoventral portion of foretarsomeres I-III (insignificantly so in some specimens), with the apical rake spines of these tarsomeres originating on the ventral surface rather than on the outer margin (as in Fig. 9c). This feature is shared with aethiopicus, miniatulus, rotundus, ruber, and usakos, but unlike these species the gaster of melanius is all black; furthermore, the black femora differentiate it from aethiopicus and ruber.

The male can be distinguished from the other species with the above characteristics in having a black gaster, the outer apical spines of foretarsomere II emerging from the ventral surface rather than the outer margin (as in Fig. 9d), and dense clypeal punctation not reaching the lip base (Fig. 228b). In addition, the clypeal lobe is broad in most specimens (corners closer to the respective orbit than to each other). Some aethiopicus also have a black gaster, but the dense clypeal punctation extends to lip base, at least laterally.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea aciculate, with a few scattered, ill-defined punctures, longer than wide in profile, as long as 0.8 of scape. Scutal integument varying: punctures in most specimens somewhat ill defined and interspaces microsculptured, dull, but individuals from Klaserie area, South Africa, and from Botswana have well-defined punctures and unsculptured, shiny interspaces. Mesopleuron dull, with punctures minute, about one diameter apart or less. Propodeal dorsum evenly microareolate, side ridged; upper metapleural pit oblong. Hindcoxal dorsum with inner margin carinate basally.
Setae appressed on postocellar area and scutum; no longer than midocellar diameter on each

Figure 228. Tachysphex melanius Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d-penis valve.
side of oral fossa next to occipital carina; appressed or nearly so on mesopleuron; diverging anterolaterad from midline on propodeal dorsum (small apicomedian area glabrous in some specimens).

Head and thorax black, mandible reddish (except basally and apically), clypeal bevel reddish apically in some males. Frontal setae silvery in both sexes. Wing membrane slightly infumate; forewing costal vein dark brown, subcostal vein dark brown to black. Femora and gaster black (forefemur red except dorsum black in single male from Algoa Bay, South Africa), tibiae and tarsi varying in color (see below for details). Terga I-III to I-V silvery fasciate apically.

ㅇ.- Clypeus (Fig. 228a): bevel varying from shorter to longer than basomedian area, with interspaces that vary from unsculptured and shiny to conspicuously microsculptured and dull; lip biarcuate or emarginate mesally, neither incised nor sinuous laterally. Width of postocellar area $0.7-0.9 \times$ length. Dorsal length of flagellomere I $2.2-2.3 \times$ apical width. Forecoxa with inconspicuous apicomedian process. Dorsal foretibial surface with one or two spines; outer surface with one or two spines. Forebasitarsus with six (occasionally seven) rake spines. Foretarsomeres I-III slightly expanded apicolaterally over bases of rake spines (as in Figs. 9c, e). Tergum V uniformly micropunctate and setose, including apical depression. Pygidial plate with scattered punctures, interspaces varying from unsculptured, shiny to conspicuously microsculptured, dull. Length 6.6-8.6 mm . Tibiae all black or the following yellowish red: foretibia (except ventrally), midtibial dorsum, and hindtibial dorsum (except distally). Tarsi black, reddish apically in most specimens, but brown (red apically) and foretarsus all red in females from Botswana.
ơ.- Mandible: trimmal carina with tooth, without cleft (Fig. 228b). Clypeus (Fig. 228b): bevel shorter than basomedian area, varying from unsculptured and shiny between punctures to conspicuously microsculptured and dull; lip free margin straight or minimally concave, corner sharp to rounded; distance between corners $1.3 \times$ distance between corner and orbit in most specimens, but 1.0 and 0.9 , respectively, in two males from Van Reenen, South Africa. Width of postocellar area 1.1-1.2 \times length. Dorsal length of flagellomere I $1.5-1.6 \times$ apical width. Forefemoral notch wide, microscopically setose to asetose. Outer margin of forebasitarsus with four or five rake spines. Foretarsomere II or I and II slightly expanded apicolaterally over bases of rake spines (as in Figs. 9d, f), minimally so in smallest specimens; outer apical spine of foretarsomere II longer than tarsomere III. Sterna IV-VI each with basal fringe of agglutinated setae (fringes visible only when sterna are fully expanded). Length 5.2-7.3 mm. Volsella and penis valve: (Figs. 228c, d), penis valve in some specimens of equal diameter in distal half. Foretibia red, midtibia all red to largely black, hindtibia all red to all black; tarsi red or midtarsus partly and hindtarsus all black.

Geographic distribution (Fig. 229).Angola, Botswana, Zimbabwe, Namibia, Lesotho, South Africa.

Records.- Holotype: + , SOUTH AFRICA: Eastern Cape Province: Algoa Bay, 19 Dec [18]95, Dr. Brauns (TMP), paralectotype of argentifrons Arnold. Paratypes: ANGOLA: Tundavala 8-10 mi NW Sa da Bandeira, 27-29 Mar 1972, [BMNH Southern Afr[ican] Exp[edition] ($1 \mathrm{ol}^{\text {A }}$, BMNH). BOTSWANA: 25 mi W Gweta at $20^{\circ} 17^{\prime} \mathrm{S}$ $24^{\circ} 54^{\prime} \mathrm{E}, 21-22$ Apr 1972, [British Museum] Southern African Expedition (2 ㅇ, BMNH). LESOTHO: Mamathes, 22 Dec 1959, C. Jacot

Figure 229. Collecting localities of Tachysphex melanius.

Guillarmod ($1 \underset{+}{ }$, AMG). NAMIBIA: Rehoboth District: 7 km N Rehoboth, 7 Feb 1990, MS (1 우, MS); 9 km N Rehoboth, 15 Feb 1990, WJP (1 \&); 23 km N Rehoboth, 15 Feb 1990, MS (1 ㅇ, MS); same locality,
 (2 ㅇ, MS); 30 km E Rundu, 23 Jan 1993, J. Gusenleitner ($1 \stackrel{\circ}{ }$, JG); same locality and date, MS ($1 \circ$, MS); 100 km SW Rundu, 1 Feb 1993, MS (1 , MS); 125 km SW Rundu, 16 Jan 1993, J. Gusenleitner (2 \& JG).
SOUTH AFRICA: Eastern Cape Province: 10 km SE Alexandria, 28-31 Jan 2000, M. Halada ($1 \mathrm{o}^{\text {ºn }}$, OÖLM); Algoa Bay, H. Brauns, 7 Feb 1892 (1 ㅇ, SAM, paratype of argentifrons) and 8 Nov 1896 (3 ํ, 1 o *, TMP); Colchester at $33^{\circ} 42^{\prime} \mathrm{S} 25^{\circ} 50^{\prime}$ E, 5 Jan 1997, WJP (1 ${ }^{\prime}$). Free State: Bothaville, date illegible, H. Brauns (1 + , SAM, paratype of argentifrons); Sandveld Nature Reserve ca 5 air km E Bloemhof at $27^{\circ} 40^{\prime} \mathrm{S} 25^{\circ} 41^{\prime} \mathrm{E}$,

 BMNH) and 1-22 Jan 1927 ($1 \mathrm{o}^{\circ}, \mathrm{BMNH}$). Northern Cape Province: 18 km E Hondeklipbaai at $30^{\circ} 21^{\prime} 34^{\prime \prime} \mathrm{S}$ $17^{\circ} 26^{\prime} 27^{\prime \prime} \mathrm{E}, 17$ Nov 1996, M.E. Irwin ($2 \uparrow$, CSE). Northern Province: Guernsey Farm 15 km E Klaserie, 19-31 Dec 1985, H. and A. Howden (1 ¢, PMA); same locality, 22-31 Dec 1985, M. Sanborne (1 ํ, 2 ơ, PMA); Guernsey Farm 15 km NW Klaserie, S. and J. Peck, 19-31 Dec 1985 (4 \uparrow, 2 o $^{\boldsymbol{}}$, PMA). Western Cape Province: 25 km S Bredasdorp, 23 Oct 1999, M. Halada (2 ở $^{\text {, OÖLM); Cape of Good Hope Nature Reserve }}$ near Olifantbosbaai, 7 Jan 1997, WJP (3 ㅇ); Cape Town, no date, J.C. Bridwell (1 $\circ ; 2$ ㅇ, USNM); Cape Town: Table Mountain at $33^{\circ} 57^{\prime} \mathrm{S} 18^{\circ} 24^{\prime} \mathrm{E}$, 21 Dec 1996, WJP ($1 \mathrm{o}^{\circ}$); 60 km N Cape Town, 9 Nov 1999, M. Halada (2 ơ, OÖLM); Cederberg, 12 Dec 1973, P.M.F. Verhoeff (1 ơ, RMNH); Ceres, R.E. Turner, Nov 1920 (1 ㅇ, BMNH) and Dec 1920 (2 ㅇ, BMNH); 20 km N Citrusdal, 27 Oct 1999, M. Halada (1 ㅇ, OÖLM); 11 km W Clanwilliam on road to Graafwater, 1 Dec 1989, F.W. Gess (1 $\stackrel{+}{ }$, AMG); S of Lambert's Bay, 7 Oct
 Swartberg Pass, ca 1450 m , at $33^{\circ} 20^{\prime} \mathrm{S} 22^{\circ} 02^{\prime} \mathrm{E}$, 30 Dec 1996, WJP (1 ㅇ, 2 o *); Wellington: Rooshoek, Dec 1973, P.M.F. Verhoeff (1 \& , RMNH). ZIMBABWE: Bulawayo, 8 Dec 1938, R.H. Stevenson (1 + , AMG); 11 km NE Nyamandhlovu, 24 Feb 1995, WJP (1 ه̛); Victoria Falls, WJP, 1-8 Feb 1995 (2 ㅇ) and 19-22 Dec 1995 (11 아).

Tachysphex mesembrius Pulawski, sp. nov.

Figures 230, 231.
Derivation of name.- Mesembrius, a Neolatin adjective coined from the Greek noun mesembria, midday, noon, south.

ReCognition.- Tachysphex mesembrius has the forefemoral venter and posteroventral midfemoral surface with large punctures that are many diameters apart (interspaces shiny); the setae are sinuous and erect on the postocellar area (Figs. 230a, b), and sinuous and inclined posterad on the propodeal dorsum. The female has a distinctive clypeus (Fig. 230c) whose lip has two lateral incisions on each side and the corner is markedly more dorsal than the midpoint, and the mandibular cleft is widely open (Fig. 230c). Subsidiary recognition features are: gaster, femora, and tibiae black; terga nonfasciate; and male clypeal lip pointed (Fig. 230b).

Description.- Scutal and mesopleural punctures several diameters apart, varying from fine to conspicuous. Propodeal dorsum dull, with irregular ridges in female, with evanescent ridges in male; side ridged. Hindcoxal dorsum with inner margin not carinate. Forefemoral venter and posteroventral midfemoral surface shiny, with large punctures that are many diameters apart.

Setae (numbers in parentheses refer to setal length expressed as a fraction of basal mandibular width): sinuous and erect or nearly so on postocellar area (up to 0.5, Figs. 230a, b) and scutum anteriorly ($0.5-0.6$); erect on each side of oral fossa next to occipital carina (up to 0.3); sinuous on mesopleuron; sinuous, oriented posterad on propodeal dorsum (apicomedian area glabrous).

Head and thorax black, mandible reddish near apex. Frontal setae silvery in female, silvery or golden in male. Wing membrane almost hyaline; costal vein of forewing light brown, subcostal vein brown. Legs and gaster black except tarsal apex reddish brown. Terga not fasciate.

Figure 230. Tachysphex mesembrius Pulawski, sp. nov.: a - female head in frontal view; b - male head in frontal view; c - female clypeus and mandible; d - male clypeus and mandible; e - volsella; f - penis valve.

ㅇ.- Mandible: cleft unusually broad, widely open (Fig. 230c). Clypeus (Fig. 230c): bevel about as long as basomedian area, unsharply delimited from the latter; lip free margin with two lateral incisions on each side and corner placed markedly more dorsally than midpoint. Width of postocellar area $1.1 \times$ length. Dorsal length of flagellomere I 1.9-2.0 \times apical width. Midtrochanteral venter: punctures several diameters apart, interspaces unsculptured. Dorsal foretibial surface with two spines; outer surface with unsculptured zone, with one or two spines. Forebasitarsus with nine or ten rake spines. Apical depression of tergum V unsculptured, glabrous. Pygidial plate with punctures that average several diameters apart on disk, interspaces unsculptured or nearly so. Length $8.8-9.3 \mathrm{~mm}$.
0^{3}.- Mandible: trimmal carina broadened mesally, but without tooth or cleft (Fig. 230d). Clypeus (Fig. 230d): bevel ill defined, about as long as basomedian area; lip free margin pointed, forming single curved line with rest of clypeal margin. Width of postocellar area $1.1 \times$ length. Dorsal length of flagellomere I $1.5 \times$ apical width. Forefemoral notch narrow, microscopically setose, margined both anteriorly and posteriorly. Outer margin of forebasitarsus without preapical spines or with one preapical rake spine next to apical one; outer apical spine of foretarsomere II shorter than tarsomere III. Punctures of sterna III-VI (except near lateral margins) averaging more than one diameter apart; apical depressions of sterna II-VI unsculptured, glabrous. Length $7.8-8.3 \mathrm{~mm}$. Volsella and penis valve: Figs. 230e, f.

Geographic distribution (Fig. 231).Known from a few adjacent localities in central South Africa.

Records.- Holotype: + , SOUTH AFRI-

CA: Eastern Cape Province: Venterstad Region, Oct 1935, [South African] Mus[eum] Staff (SAM).

Figure 231. Collecting localities of Tachysphex mesembrius and mkomazi. Paratypes: SOUTH AFRICA: Eastern Cape
Province: Albert District between Burgersdorp and Nooitgedacht, 6 Oct 1935, [South African] Mus[eum] Staff (1 ㅇ); Middelburg Division, Oct 1935, [South African] Mus[eum] Staff (1 ơ, SAM); Steynsburg Division, Oct 1935, [South African] Mus[eum] Staff (1 ơ, SAM); Venterstad Region, Oct 1935, [South African] Mus[eum] Staff (1 o^{π}).

Tachysphex micans (Radoszkowski)

Figures 232-234.
Tachytes micans Radoszkowski, 1877:29, \uparrow, 0^{*}. Syntypes: Kazakhstan: Kyzil-Kum Desert: no specific locality (ZMMU), examined before 1971.- Radoszkowski, 1886a:34 (male genitalia).- As Tachysphex micans: Kohl, 1885:396 (tentative new combination, original description copied), 1888:143 (new combination, redescription); Radoszkowski, 1892:590 (reference to Radoszkowski, 1886); Dalla Torre, 1897:681 (in catalog of world Hymenoptera); de Beaumont, 1936b:610 (redescription), 1940:164 (in revision of Egyptian Tachysphex), 1947a:159 (in revision of Egyptian Tachysphex), 1955:176 (Morocco), 1956a:196 (Libya); Grandi, 1957:389 (Libya); Myartseva, 1963:58 (Turkmenistan); Pulawski, 1964:83 (Egypt), 1971:282 (in revision of Palearctic Tachysphex); Myartseva, 1972a:79 (Turkmenistan); Tsuneki, 1972:383 (Mongolia); Bohart and Menke, 1976:274 (listed); Kazenas, 1978:112, 124 (in key to Sphecidae of Kazakhstan and Central Asia); Guichard, 1980:227 (Oman); Kazenas and Nasyrova, 1991:38 (prey); Roche
and Zalat, 1994:115 (Egypt: Sinai Peninsula); Nazarova, 1998:41 (Tajikistan); Kazenas, $2001: 29$ (in checklist of Sphecidae of Kazakhstan and Central Asia), 158 (review of known biology), 2002:71 (Kazakhstan). As Tachysphex vestitus: Maidl, 1924:236 (Sudan), corrected to Tachysphex micans by Pulawski, 1971:283.

ReCognition.- Tachysphex micans has the labrum convex and conspicuously protruding beyond the clypeal free margin, but differs from other such species (except many pulcher) in having the inner hindtibial spur with unusually thick and sparse rays (Fig. 233d), at least near midlength. Unlike most other species with a convex labrum, micans also has abundant, unusually long, sinuous setae on the lower gena (longest setae equal to $0.8-0.9$ of basal mandibular width), setae appressed on the postocellar area and fully concealing integument on the mesopleuron (at least in fresh specimens), and the propodeal side uniformly microsculptured and setose throughout. The latter combination (including a convex labrum) is also found in pulcher and the extralimital fuscispina Pulawski (Turkmenistan, male unknown). In micans, however, the longest setae on the lower gena are about two midocellar diameters long (Fig. 233a), those of tergum I are slightly sinuous, largely concealing the integument, and generally not entirely appressed, thus forming a stratum about as thick as the midocellar diameter (Fig. 233b), and the free margin of the lateral clypeal section, in the female, is straight or minimally concave (Fig. 232a). In the other two species, the longest setae of lower gena are slightly more than one midocellar diameters long, those of tergum I are straight, appressed, not concealing the integument, and in the female the free margin of the clypeal lateral section is the usual shape, i.e., visibly concave (as in Fig. 298a). Also, setae of the

Figure 232. Tachysphex micans (Radoszkowski): a - female clypeus and mandible; b - male clypeus and mandible; c - marginal cell of female forewing; d - volsella; e - penis valve.
propodeal dorsum are sinuous in micans (straight in fuscispina and most pulcher), those of the foretibial outer surface totally (or nearly so) conceal the integument (integument easily visible in fuscispina), apical spines of female tarsomeres IV are twice as long as the tarsomere's apical width and reaching the claw bases (as long as the tarsomeres apical width in fuscispina), and female tergum V is punctate and setose throughout (apical depression impunctate and glabrous except laterally in fuscispina). The shape of the volsella, with its narrow, elongate dorsal process, is also distinctive (Fig. 232d).

Description.- Labrum convex, markedly protruding beyond clypeal free margin. Galea microsculptured and with a few, sparse punctures, as long as $0.9-1.1$ of scape. Scutum and mesopleuron uniformly, microscopically granulose. Propodeal dorsum evenly, microscopically areolate; side uniformly microsculptured. Hindcoxal dorsum with inner margin carinate basally. Inner spur of hindtibia with relatively thick and widely spaced rays (Fig. 233d), at least near midlength.

Setae sinuous on gena (Fig. 233a), thorax, and femora (Fig. 233c); appressed on postocellar area; fully concealing integument on frons (at least in its lower half) including supraantennal swelling, on mesopleuron, and on scutum anteriorly; equal to $0.8-0.9$ of basal mandibular width on each side of oral fossa next to occipital carina (Fig. 233a); on propodeal dorsum oriented essential-

Figure 233. Tachysphex micans (Radoszkowski), female: $\mathrm{a}-$ head in lateral view ($\times 27$); $\mathrm{b}-$ gastral base in lateral view $(\times 77)$; c - hindfemur $(\times 41)$; d - hindtibial spur $(\times 107)$.
ly posterad; concealing integument on hindfemoral outer surface and (with rare exceptions) on hindtibial dorsum; on basal half of tergum I sinuous and suberect, about twice as long as midocellar diameter, largely concealing integument, generally forming a layer about as thick as midocellar diameter (Fig. 233b); on tergum II not concealing integument or concealing on basal half; propodeal side setose throughout. Marginal cell sparsely microsetose (Fig. 232c).

Head and thorax black (thorax red in a female from Iran) except clypeal middle section yellowish in apical half and mandible yellowish red (black in apical third). Frontal setae silvery in both sexes. Wing membrane hyaline; costal and subcostal veins of forewing yellowish brown. Femora varying from all black to all red, tibiae and tarsi red. Gaster red. Terga I-V in female, I-VI in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 232a): bevel shorter than basomedian area; lip free margin arcuate or with median emargination, not incised laterally; free margin of lateral section straight or minimally concave. Width of postocellar area $0.6-0.9 \times$ length. Dorsal length of flagellomere I 2.4-3.1 \times apical width. Dorsal foretibial surface with two spines; outer surface with two spines. Forebasitarsus with 7-10 (mostly seven) rake spines. Apical spines of hindtarsomere IV reaching claw bases. Tergum V uniformly punctate and setose, including apical depression. Pygidial plate with punctures that average many diameters apart; interspaces microsculptured. Length $6.5-13.0 \mathrm{~mm}$.
δ^{8}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 232b): bevel absent; lip free margin arcuate or with rudimentary median emargination, with ill-defined corner and no carina emerging from the latter; distance between corners $1.1 \times$ distance between corner and orbit. Width of postocellar area $0.7-0.9 \times$ length. Dorsal length of flagellomere I $2.0-2.6 \times$ apical width. Forefemoral notch with bottom glabrous or microscopically setose. Outer margin of forebasitarsus with 4-7 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Length $5.5-8.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 232d, e.

Prey.- Nymphal acridid Diexis varentzowi Zubovskiy in Turkmenistan (Myartseva, 1965) and Sphingonotus decorus (Germar) and Leptopternis gracilis (Eversmann) in Kazakhstan (Kazenas and Nasyrova, 1991).

Geographic distribution (Fig. 234).- Morocco to Egypt, south to Mali and Sudan, also Arabian Peninsula, Kazakhstan, Uzbekistan Turkmenistan, and Mongolia.

Records.- EGYPT: Al Jizah (= Ghiza): Abu Rawash (1 \&), Dahshur (6 \& \& 5 ơ), Katta (de

Figure 234. Collecting localities of Tachysphex micans.

Beaumont, 1940). Al Qahirah (= Cairo): Suez road (de Beaumont, 1940), Wadi Digla (Pulawski, 1971). Aswan: near Kom Ombo temple ($9 \sigma^{*}$). Qena: 85 km E Qena on Safaga road (1 \%). Sina (= Sinai): El Arish (Roche and Zalat, 1994), Wadi Feiran (de Beaumont, 1940), Wadi Ghaib 50 km SSE Nuweiba (1 9,3 or *), Wadi Gharandal 30 km NW Abu Zeneima (2 or $^{\text {a }}$), Wadi Khreza (= Wadi Kid) 40 km N Sharm el Sheikh (7 o^{*}; $2 \sigma^{\boldsymbol{*}}, \mathrm{MSNT}$). IRAN: Bampur - Kaskin (Pulawski, 1971). KAZAKHSTAN (K = Kazenas, 2002, P = Pulawski, 1971). Aktöbe: Yrghyz (K), 5 km S Yrghyz (K). Almaty: 20 km N village Aidarly in Sarytaukum Desert
 on Ili River 80 km E Chilik (1 o^{\star}), Ili (P), Kapchagai (K). East Kazakhstan: 20 km NE Belaya Shkola = about 20 km W Zaysan at about $48^{\circ} \mathrm{N} 83.5^{\circ} \mathrm{E}$ (K), Rozhkovo at about $47.5^{\circ} \mathrm{N} 85.5^{\circ} \mathrm{E}$ (K). Mangghystaū: Sozdy 135 km ESE Tauchik ($1+2$ ® *). Qaraghandy: 1 km NW Balqash (1 \&) . Qyzylorda: 7-30 km SW Aral’sk (K), Djulek $=$ Chiili (P), 28 km SW Kazalinsk ($1 \mathrm{o}^{\star}$), Qyzylorda (P), 20 km S Yany-Kurgan (K). Zhambyl:
 Fezzan: Murzuk (de Beaumont, 1956a). Tripolitania: Wadi Endeliba (Grandi, 1957). MALI: Tilemsi valley N Gao (1 ํ, KMG). MONGOLIA: Bayanhongor Aymag: Ehingol oasis ca 90 km N Tsagaan Bulag (Tsuneki, 1972). MOROCCO: Tinerhir (de Beaumont, 1955). OMAN: Northern Oman: Qurum (Guichard, 1980). SAUDI ARABIA: Wadi Majarish below Taif (1 ㄴ, KMG). SUDAN: Bara ca 300 km SW Khartum (Pulawski, 1971). TAJIKISTAN: Tigrovaya Balka Nature Reserve (Nazarova, 1998). TURKMENISTAN (Pulawski, 1971, if not indicated otherwise): Akhcha-Kuyma near Nebit-Dagh, Akibai 40 km N Mary, Anau 10 km E Askhabad, Askhabad, Djebel (1 ㅇ), Farab, Kara-Bogaz 40 km N Kizyl Arvat, lower Murgab River (Myartseva, 1963), Repetek (1 우), Uch-Adji, Uzun-Ada on E shore of Krasnovodsk Golf. UNITED ARAB EMIRATES: Rifaa ($1 \sigma^{\star}$, KMG). UZBEKISTAN: Khiva ($1 \delta^{*}$), Khiva: Ravat ($1+1 \sigma^{*}$), Shassenem 75 km WSW Tashauz (Pulawski, 1971).

Tachysphex miniatulus Arnold

Figures 235, 236.
Tachysphex panzeri var. miniatulus Arnold, 1924:70,.+ Lectotype: $\circ+$, Zimbabwe: Sawmills (SAM), here designated, examined.- Arnold, 1930:4 (in checklist of Afrotropical Sphecidae).- As Tachysphex miniatulus: Arnold, 1947:147 (new status, description of 0^{\star}); Bohart and Menke, 1976:275 (listed).

Lectotype selection.- Arnold (1924) described this species from four females that he called "Types" in the original description. He actually designated one female as type and another as a paratype, and left the other two unlabeled. I designate as lectotype the female that he selected as type, and the other three as paralectotypes.

Recognition.- Tachysphex miniatulus has a convex labrum (protruding beyond the clypeal free margin), galea about as long as the scape, and straight cephalic and thoracic setae (appressed on the postocellar area and midfemoral venter) combined with an all ridged propodeal side, oblong upper metapleural pit, and the propodeal dorsum setose throughout, with setae diverging anterolaterad from the midline. In the male, the forefemur is emarginate basally and sterna IV-VI each has a basal fringe of erect, agglutinated setae (the fringes are visible only when gastral segments are fully expanded).

The female of miniatulus has a slightly expanded apicoventral portion of foretarsomeres I-III, so that the apical rake spines of these tarsomeres originate from the ventral surface (as in Fig. 9c) rather than from the outer margin. This feature is shared with aethiopicus, melanius, rotundus, ruber, and usakos. The female of miniatulus, however, differs in having a combination of: clypeus, labrum, and femora all black (labrum reddish brown in some specimens); gaster red basally and black apically; and pygidial plate microsculptured between punctures. Some rotundus are identical, but in miniatulus the clypeal lip is emarginate mesally (Fig. 235a), the clypeal bevel extends over the entire width of the middle clypeal section (dense clypeal punctation not reaching lip base), and the foretarsal rake spines are pale. In rotundus, the clypeal lip is barely emarginate mesally, the
bevel is narrower that the clypeal middle section (dense clypeal punctation reaching the lip base along lateral quarter or so of the lamella's width), and the foretarsal rake spines are black or dark brown. Unlike aethiopicus and usakos, the pygidial plate of miniatulus is aciculate between punctures.

The male can be distinguished from similar species by the following combination: clypeal lip with corner obtuse (Fig. 235b), clypeus and labrum all black, gaster red basally and black apically, femora black (at most narrowly red apically), and tibiae partly black.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea evenly microsculptured, with a few, sparse punctures, as long as scape. Scutal punctures small but well defined, no more than one diameter apart in female, but many punctures up to several diameters apart in some males. Mesopleural punctures somewhat ill defined, about one diameter apart; interspaces microsculptured, dull. Propodeal dorsum microareolate, side ridged; upper metapleural pit oblong. Hindcoxal dorsum with inner margin carinate basally.

Setae appressed on postocellar area, scutum, and on each side of oral fossa next to occipital carina, on propodeal dorsum diverging anterolaterad from midline.

Head and thorax black, mandible largely black (reddish preapically) to largely yellowish red (black basally and apically), labrum reddish brown in some specimens. Frontal setae silvery in both sexes. Wing membrane almost hyaline; forewing costal and subcostal veins brown. Femora black or narrowly red apically; tibiae varying from black (foretibia reddish on inner surface) to partly reddish (foretibia nearly all reddish); tarsi all red or black basally and red apically, all black in some females. Gastral segments I and II or I-III red, remainder black. Terga I-IV silvery fasciate apically (also tergum V in some males).

ㅇ.- Clypeus (Fig. 235a): bevel longer to shorter than basomedian area, anteriorly as wide as lip; lip free margin arcuate, emarginate mesally, sinuous laterally. Width of postocellar area 1.1-1.2 \times length. Dorsal length of flagellomere I $2.6 \times$ apical width. Dorsal foretibial surface with two spines; outer surface with two or three spines. Forebasitarsus with seven or eight rake spines. Foretarsomeres I and II slightly expanded apicolaterally, with apical spines originating from ventral surface rather than from outer margin (as in Figs. 9c, e). Apical depression of tergum V densely micropunctate and setose. Pygidial plate with punctures that average several to many diameters apart; interspaces aciculate. Length $8.6-10.0 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with obtuse tooth, without cleft. Clypeus (Fig. 235b): bevel about as long as basomedian area; lip free margin biarcuate, with obtuse corner (slightly concave

Figure 235. Tachysphex miniatulus Arnold: a - female clypeus and mandible; b-male clypeus and mandible.
near corner in some specimens); distance between corners $1.4-1.7 \times$ distance between corner and orbit. Width of postocellar area 1.1-1.2 \times length. Dorsal length of flagellomere I $1.5-1.9 \times$ apical width. Forefemoral notch glabrous or with microscopically small setae that are difficult to see. Outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Tergum VII: punctures about two diameters apart basomedially. Sterna IV-VI (except laterally) each with basal fringe of agglutinated setae (that of sternum IV rudimentary); fringes visible only when sterna are fully extended. Length $6.5-8.0 \mathrm{~mm}$. Volsella as in pentheri (see Fig. 277a), penis valve simple.

Collecting period.- 24 March (males) through 4 August (females).

Geographic distribution (Fig. 236).- Zambia, Zimbabwe, Botswana, northern South Africa.

Records.- BOTSWANA: 25 mi W Gweta at $20^{\circ} 17^{\prime} \mathrm{S} 24^{\circ} 54^{\prime} \mathrm{E}$ ($2 \mathrm{o}^{\circ}$, BMNH), Serowe: Farmers Brigade ($1 \AA^{\boldsymbol{\pi}}, \mathrm{PPRI}$). SOUTH AFRICA: Gauteng: Pretoria North (1 ค, AMG). Mpumalanga: Ermelo (2 9 , AMG). Northern Province: Elisras ($1+1$ ơ, AMG). ZAMBIA: Central Province: 25 km SSW Kapiri Mposhi at $14^{\circ} 10^{\prime} \mathrm{S} 28^{\circ} 36^{\prime}$ E (10°). Southern Province: Monze (10°, USU). ZIMBABWE: Bulawayo (2 of, SAM), Bulawayo airport ($1 \stackrel{\circ}{ }, 1 \mathrm{o}^{+}$), Gwaai River ($1 \stackrel{\circ}{ }$, SAM), Mletengluf ($1 \circ+$ SAM), 11 km NE
 (2 ㅇ, SAM), Victoria Falls (3 of $^{\text {® }}$).

Tachysphex mkomazi Pulawski, sp. nov.

Figures 231, 237.
Derivation of name.- Named after the Mkomazi village and Mkomazi Game Reserve, Tanzania, where most specimens have been collected; a noun in apposition to the generic name.

Recognition.- Tachysphex mkomazi has a unique galea (Fig. 237c): the crease is oriented longitudinally and separates the main, sparsely punctate area from the narrow, densely punctate, posterior area. The species also has a flat labrum, uniformly, densely punctate forefemur, vertically oriented hindwing vein cu-a, and sternum I without longitudinal carina. Additionally, the mesopleuron is markedly microsculptured, dull, with inconspicuous punctures, the propodeal side is unridged, the gaster all black, and the legs are largely red. In the female, the clypeal lip has an adlateral incision that separates two teeth (Fig. 237a). In the male, the inner mandibular margin is widely emarginate distad of tooth (Fig. 237b), similar to that of vulneratus.

Description.- Galea slightly longer than wide in profile, equal to about 0.8 of scape, with longitudinally oriented crease, finely, sparsely punctate except for narrow, densely punctate area posterad of crease (Fig. 237c). Scutal punctures about 2-3 diameters apart on disk in female, about one diameter apart in male; interspaces microsculptured. Mesopleuron microsculptured, dull, with minute, evanescent punctures that are several diameters apart. Propodeal dorsum evenly microareolate, side uniformly microsculptured. Hindcoxal dorsum with inner margin carinate, carina somewhat expanded basally.

Figure 237. Tachysphex mkomazi Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - female galea; d - volsella; e - penis valve.

Setae erect on postocellar area but no longer than midocellar diameter; appressed on scutum; straight (except angled at apex), up to $1.5 \times$ midocellar diameter on each side of oral fossa next to occipital carina; all oriented posterad on propodeal dorsum

Head and thorax black, mandible reddish subbasally. Frontal setae golden in both sexes, also clypeal setae golden in male. Wing membrane slightly yellowish; costal vein of forewing yellowish brown, subcostal vein brown. Femora red except forefemur black basally, tibiae and tarsi red. Gaster black. Terga I-IV in female, I-III in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 237a): bevel shorter than basomedian area; lip free margin arcuate mesally, concave adlaterally, with lateral, narrow incision that separates two teeth. Width of postocellar area $0.6 \times$ length. Dorsal length of flagellomere I $2.3 \times$ apical width. Dorsal foretibial surface with three spines; outer surface with two spines. Forebasitarsus with 11 rake spines on one leg, 13 on other. Tarsomeres IV as long as wide. Apical tarsomeres each with two small, preapical spines on venter (only one spine on forebasitarsus), lateral margins each with one or two small spines at about two thirds of length; apicoventral margin markedly arcuate. Outer claw in each pair minimally shorter and thinner than inner claw (opposite on foretarsus). Apical depression of tergum V setose throughout. Pygidial plate with well-defined punctures that average many diameters apart, interspaces unsculptured. Length 9.9 mm .
$\sigma^{\boldsymbol{o}}$.- Mandible: trimmal carina with tooth, widely and shallowly emarginate distad of tooth (Fig. 237b). Clypeus (Fig. 237b): bevel somewhat longer to somewhat shorter than basomedian
area, with most punctures about one diameter apart, but up to several diameters apart near lip; lip free margin evenly arcuate, not emarginate mesally, with well-defined corner and minute carina emerging from each corner (carina not extending into bevel); distance between corners 1.3-1.5× distance between corner and orbit. Width of postocellar area $0.4-0.5 \times$ length. Dorsal length of flagellomere I $1.7-1.8 \times$ apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Venter of tarsomeres V with one preapical spine. Length $9.0-10.3 \mathrm{~mm}$. Volsella and penis valve: Figs. 237d, e.

Geographic distribution (Fig. 231).- Southeastern Kenya, northeastern Tanzania.
Records.- Holotype: \circ, TANZANIA: Tanga Region: 2 km NE Mkomazi at $4^{\circ} 37.8^{\prime} \mathrm{S} 38^{\circ} 05.5^{\prime} \mathrm{E}$, 29-31 Dec 2002, M.A. Prentice (CAS). Paratypes: KENYA: Coast Province: Voi at $3^{\circ} 24.0^{\prime}$ S $38^{\circ} 33.2^{\prime}$ E, 21-22 May 2000, V.F. Lee and WJP ($1 \mathrm{o}^{\text {º }}$). Eastern Province: near Ewaso Ng' iro River opposite Archer's Post, 2-8 Dec 2002, M.A. Prentice (đ $^{\circ}$). TANZANIA: Kilimanjaro Region: Mkomazi Game Reserve: Ibaya Camp at $3^{\circ} 58^{\prime} \mathrm{S} 37^{\circ} 48^{\prime}$ E, 29 Jan- 19 Mar 1996, S. van Noort (2 ơ' $^{\circ} 3$ ơ $^{\circ}$, SAM)

Tachysphex mocsaryi Kohl

Figures 238, 239.
Tachysphex mocsaryi Kohl, 1884:367, ㅇ (as Mocsáryi, incorrect original capitalization and diacritic mark). Lectotype: ${ }^{\circ}$, Hungary: no specific locality (NHMW), designated by Dollfuss, 1989:13, examined before 1971.-Kohl, 1885:351 (in key to Palearctic Tachysphex), 359 (in revision of Palearctic Tachysphex); Kohl and Handlirsch, 1889:278 (Turkmenistan); Dalla Torre, 1897:681 (in catalog of world Hymenoptera); Mocsáry, 1897:77 (Hungary); Gussakovskij, 1935:427 (Tajikistan); de Beaumont, 1947c:664 (description of ơ); Bajári, 1957:52, 55 (in key to Hungarian Sphecidae); de Beaumont, 1961b:275 (Afghanistan), 1962:25 (Spain), 39 (comments); Ceballos, 1964:90 (in supplement to catalog of Spanish Sphecidae); Scobiola-Palade, 1966:392 (Romania; as mocsary); Balthasar, Hrubant, and Hrubant, 1967:171 (Bulgaria); Pulawski, 1967:394 (Turkey); Scobiola-Palade, 1967:161 (Romania), 1968:142 (Romania); Pulawski, 1971:312 (in revision of Palearctic Tachysphex); Balthasar, 1972:269 (in Sphecid Fauna of Czechoslovakia: may be expected in the country); Myartseva, 1972a:79 (Turkmenistan); Scobiola-Palade, 1972:150 (Romania; as mocsary); de Beaumont, Bytinski-Salz, and Pulawski, 1973:11 (Israel); ScobiolaPalade, 1974:145 (Romania); Bohart and Menke, 1976:275 (listed); Kazenas, 1978:113, 126 (in key to Sphecidae of Kazakhstan and Central Asia); Józan, 1983:99 (Hungary), 1985:57 (Hungary), 83 (ecological and zoogeographic characteristics); Scobiola-Palade, 1985:96 (Romania); Islamov, 1986:527 (Uzbekistan); Józan, 1986:370 (Hungary); Gayubo and Mingo, 1988:80 (Spain); Dollfuss, 1989:13 (lectotype in NHMW); Pádr in Šedivy, 1989:168 (in checklist of Czechoslovakian Sphecidae); Józan, 1992:173 (Hungary), 1995:104 (Hungary); Ivanov and Ljubomirov, 2001:211 (Bulgaria); Kazenas, 2001:29 (in checklist of Sphecidae of Kazakhstan and Central Asia); Schmidt and Bitsch in Bitsch et al., 2001:258 (in Sphecid Fauna of Western Europe); Kazenas, 2002a:71 (geographic distribution, collecting localities in Kazakhstan).
Tachysphex algirus Kohl, 1892:215, ㅇ (as algira, incorrect original termination). Holotype or syntypes: + Algeria: Oran (NHMW), examined before 1971. New synonym.- Dalla Torre, 1897:678 (in catalog of world Hymenoptera); Mercet, 1910:165 (listed from Spain); nec de Beaumont, 1947c:664 (as pygidialis ssp. algira $=$ Tachysphex incertus). - As Tachysphex mocsaryi algirus: Pulawski, 1971:315 (new status, in revision of Palearctic Tachysphex); Bohart and Menke, 1976:275 (listed).
Tachysphex mocsaryi maroccanus de Beaumont, 1947c:665, ㅇ, o $^{\text {(}}$ (as maroccana, incorrect original termination). Holotype: sex not indicated, Morocco: Mogador area (BMNH), examined in 1974. Synonymized with Tachysphex mocsaryi algirus by Pulawski, 1971:315.- de Beaumont, 1950a:405 (Algeria), 1955:178 (Morocco).

ReCognition.- Tachysphex mocsaryi has the labrum convex and protruding beyond the clypeal free margin, the galea longer than wide in profile, and in many specimens the propodeal
side with ridges behind spiracle. In addition, the setae are appressed on the vertex and scutum, no longer than one midocellar diameter on each side of the oral fossa, and oriented posterad on the propodeal dorsum.

The female can be recognized, in addition to the above characters, by the combination of a laterally emarginate clypeal lip (emargination reduced in some specimens) and a largely or all punctate and setose apical depression of tergum V .

In the male, the outer apical spine of foretarsomere II is either longer (Asian, European, and several African specimens) or shorter (many African specimens) than foretarsomere III and terga I-III are fasciate. Specimens with long apical spine of foretarsomere II can be recognized by their narrow, elongate dorsal volsellar process (Figs. 238c, d) in combination with the following: setae appressed or nearly so and shorter than midocellar diameter on postocellar area, not longer than midocellar diameter adjacent to oral fossa next to occipital carina, oriented posterad on propodeal dorsum; trimmal carina of mandible sharp between tooth and apex; forefemoral notch with microscopic, erect setae; and wing membrane yellowish. Specimens with a short apical spine of foretarsomere II resemble brevipecten and incertus, but unlike brevipecten the galea is densely punctate (except sparsely along the anterior margin), and unlike incertus the dorsal volsellar process is obtuse, not pointed (Figs. 238c, d).

Justification of new synonymy.- The two currently recognized subspecies of mocsaryi, mocsaryi algirus and mocsaryi mocsaryi, differ in the color of their tibiae and length of the male

EH \& JK
Figure 238. Tachysphex mocsaryi Kohl: a - female clypeus and mandible; b - male clypeus and mandible; c and d volsella; e - penis valve.
foretarsal rake. In mocsaryi algirus (Algeria and Morocco), the tibiae are black in females and most males, and the outer apical spine of male foretarsomere II is shorter than tarsomere III, whereas mocsaryi mocsaryi (Spain to Kazakhstan) has the tibiae red and the outer apical spine of male foretarsomere III longer than foretarsomere III. Specimens from Senegal and most from Niger, however, do not fit either of the two subspecies: their tibiae are red, but the outer apical spine of male foretarsomere II is shorter than foretarsomere III. As other character combinations are also possible, I prefer to synonymize the two subspecies rather than adding to proliferation of names by recognizing the Senegalese specimens as another subspecies.

Status of Tachysphex mocsaryi obscurus.—Pulawski (1971) described mocsaryi obscurus from the Canary Islands, based on the male sex only. He raised obscurus to full species status after having examined the female (Pulawski, 1974).

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea longer than wide in profile, densely punctate in most specimens except punctures sparse near anterior margin, sparsely punctate in those from Algeria and Morocco; its length equal to $0.8-1.0$ of scape. Scutal punctures minute, inconspicuous, about one diameter apart. Mesopleuron evenly microareolate. Propodeal dorsum evenly microareolate; side microsculptured, in most specimens finely ridged adjacent to metapleural sulcus, also along dorsal and posterior margins in many (at least behind spiracle); all side ridged in some specimens. Hindcoxal dorsum carinate basally.

Setae erect, no longer than one midocellar diameter on each side of oral fossa next to occipital carina; appressed on postocellar area and scutum; oriented posterad on propodeal dorsum (oriented anterad on basomedian triangle in specimen from Burkina Faso).

Head and thorax black except the following are reddish: mandible (black in apical third), clypeal bevel in females from Kazakhstan, Senegal, and Burkina Faso and in male from Senegal, scape in female from Senegal, and large portions of flagellomeres II and III in female from Senegal. Frontal setae golden in females from Europe, Kazakhstan, and Niger, with golden tinge in females from other areas, golden in most males but silvery in smallest ones. Wing membrane yellowish; costal vein of forewing yellowish brown, subcostal vein brown. Femora varying from black to red in female, black in male; tibiae and tarsi red in most specimens, but all or largely black in females and many males from Algeria and Morocco. Gastral segments I-III red in most females and remainder black (all gaster red in female from Senegal and those from Niger except one from Gaya area); all gaster black in European and most Asian males, but segments I and II red in some males from Kazakhstan and in those from Algeria and Morocco, and segments I-III red in males from Senegal and Niger. Terga I-IV in female, I-III in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 238a): bevel about as long as basomedian area; lip free margin arcuate, emarginate mesally and laterally (lateral emarginations inconspicuous in some specimens). Width of postocellar area $0.8-1.1 \times$ length. Dorsal length of flagellomere I $2.0-3.1 \times$ apical width. Forecoxa with apicomedian process in larger specimens. Dorsal foretibial surface with two or three spines; outer surface with one to three spines. Forebasitarsus with 7-9 rake spines. Inner apical spine of hindtarsomere V reaching claw base or nearly so. Apical depression of tergum V punctate and setose throughout (sparsely so in some specimens from Kazakhstan), impunctate and asetose near apical margin in some specimens from Algeria and Morocco. Pygidial plate punctate (many punctures adjacent to margin about 1-2 diameters apart in some specimens), interspaces unsculptured in most specimens, but microsculptured in those from Burkina Faso, Senegal, and most from Niger. Length 11.0-14.5 mm.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 238b): bevel markedly shorter than basomedian area, delimited laterally by short, oblique carina that emerges from lip corner; lip free margin arcuate, with well-defined corner; distance between corners $1.2-1.5 \times$ distance
between corner and orbit. Width of postocellar area $0.7-1.0 \times$ length. Dorsal length of flagellomere I 1.7-2.25 \times apical width. Forefemoral notch microscopically setose, in Asian and European specimens bottom narrow, markedly longer than wide, microsetae erect. Outer margin of forebasitarsus varying: with $3-5$ rake spines (mostly four) in Asian and European specimens and some from Niger, with two or three spines in specimens from Algeria and Morocco, without preapical spines in specimens from Senegal and most from Niger (where specimens from the same locality may or may not have preapical spines); outer apical spine of foretarsomere II longer than tarsomere III in Asian and European specimens and some from Niger, but shorter in other African specimens. Length 8.0-8.3 mm . Volsella and penis valve: Figs. 238c-e.

Geographic distribution (Fig. 239).- Spain, southeastern Europe north to Hungary and Slovakia, Turkey, Israel and Palestine, Afghanistan, Central Asia (Kazakhstan, Uzbekistan, Turkmenistan, Tajikistan), and in Africa: Libya to Morocco, Senegal, Burkina Faso, and Niger.

Figure 239. Collecting localities of Tachysphex mocsaryi.
Records (from Pulawski, 1971, if not indicated otherwise).- AFGHANISTAN: Herat (de Beaumont, 1961b). ALGERIA: Hammam Lif, Oran, Saïda SE Oran (de Beaumont, 1950a), Tagremaret ($1 \mathrm{o}^{\circ}$). BULGARIA: Kresna Gorge at $41^{\circ} 48^{\prime} \mathrm{N} 23^{\circ} 10^{\prime} \mathrm{E}$ (Ivanov and Ljubomirov, 2001), Slanchev Bryag near Nessebyr (Balthasar, Hrubant, and Hrubant, 1967). BURKINA FASO: 4 km NW Ouahigouya at $13^{\circ} 37.0^{\circ} \mathrm{N}$ $2^{\circ} 27.6^{\prime}$ W (1 \&) . HUNGARY: Barcs (Józan, 1983, 1985), Boronka-melléki: Galabárdpuszta (Jozan, 1992), Dabas (Mocsáry, 1897), Duna-Drava National Park: Darány (Jozán, 1995), 15 km SW Kecskemet (1 ㅇ, 1 ه), Kiskunság National Park: Ágasegyháza, Bugac, and Csévharaszt (Józan, 1985), Kiskunságon in Alföld = Great Hungarian Plain (Bajári, 1957), Matyásföld (Mocsáry, 1897). ISRAEL: Beersheba, Benjamina 40 km S Haifa, Jericho (de Beaumont, 1947c), Wadi Quilt (de Beaumont, Bytinski-Salz, and Pulawski, 1973). KAZAKHSTAN ($\mathrm{K}=$ Kazenas, 2002): Aktöbe: Bolshyie Barsuki sands near Chelkar, mouth of Chit-Irghiz river circa 100 km NNE Chelkar (3 \& +2 ® $^{\text {o }}$). Almaty: 20 km N village Aidarly in Sarytaukum Desert (K), Bakanas (K), 15 km SE Borandysu (K), 35 km N Chilik (K), 45 km E Chingil'dy (K), 35 km NW, $5-10 \mathrm{~km} \mathrm{~S}$, and 8-10 km SE Kapchagai (K), 3 km S Talgar (K). Astana: Kokshetau on Terisakkan River. Atyraū: Kharkin 180 km N Atyraū. East Kazakhstan: 12 km SW Buran (K), $7-10 \mathrm{~km}$ N and 8 km NW Semey (K). Pavlodar: 6 km SE Shcherbakty ($1+{ }^{\circ}, 1 \delta^{\text {® }}$). Qostanai: Zhalanash (K). Qyzylorda: 6 km W village Amanotkel' at about $46^{\circ} \mathrm{N}$ $61.5^{\circ} \mathrm{E}(\mathrm{K})$. South Kazakhstan: 5-8 km SW Chardara (K), 5 km SW Koksu (K), Lengher (K), 10 km S Syutkent on Syr-Darya River $=140 \mathrm{~km}$ SWW Chimkent at about $42^{\circ} \mathrm{N} 68^{\circ} \mathrm{E}(\mathrm{K})$. West Kazakhstan:
 Furmanovka (K), Muyunkum sands (K). Location unknown: 8 km SE Bol'shaya Vladimirovka (K), 7 km SE

Kanonerki (K), 40 km NE Kokpekty (K), 10 km NE Malaya Vladimirovka, Semenovka (K), 23 km NW Semenovka (K), Tamdy in Dzhambeit district (K), 5 km NE Ul'ken-Karatal (K). LIBYA: Tripolitania:
 (1 우), Ouarzazate (1 우), Tiznit: Assaka (de Beaumont, 1955). NIGER: Agadez Region: 30 km S Agadez at $16^{\circ} 39.0^{\prime} \mathrm{N} 7^{\circ} 56.9^{\prime} \mathrm{E}\left(1 \delta^{\circ}\right)$. Diffa Region: 54 km NE Diffa at $13^{\circ} 42.3^{\prime} \mathrm{N} 12^{\circ} 55.8^{\prime} \mathrm{E}\left(1 \delta^{\circ}\right)$, 71 km NE Diffa at $13^{\circ} 53.0^{\prime} \mathrm{N} 12^{\circ} 56.3^{\prime} \mathrm{E}\left(1 \stackrel{\circ}{+}, 3 \sigma^{\circ}\right), 2 \mathrm{~km}$ S Diffa at $13^{\circ} 17.4^{\prime} \mathrm{N} 12^{\circ} 36.7^{\prime} \mathrm{E}(1 \quad \circ), 20 \mathrm{~km}$ SW Diffa at $13^{\circ} 13.1^{\prime} \mathrm{N}$ $12^{\circ} 25.9^{\prime} \mathrm{E}\left(5 \sigma^{\star}\right), 15 \mathrm{~km}$ W Goudoumaria at $13^{\circ} 42.8^{\prime} \mathrm{N} 11^{\circ} 03.9^{\prime} \mathrm{E}\left(1 \delta^{\circ}\right), 3 \mathrm{~km}$ NNE Nguigmi at $14^{\circ} 16.5^{\prime} \mathrm{N}$ $13^{\circ} 06.9^{\prime} \mathrm{E}\left(\begin{array}{ll} & \sigma^{\circ}\end{array}\right), 13 \mathrm{~km}$ NNE Nguigmi at $14^{\circ} 23.0^{\prime} \mathrm{N} 13^{\circ} 08.0^{\prime} \mathrm{E}\left(\begin{array}{ll}1 & \delta^{\circ}\end{array}\right), 3 \mathrm{~km}$ SW Nguigmi at $14^{\circ} 15.0^{\prime} \mathrm{N}$ $13^{\circ} 04.9^{\prime} \mathrm{E}\binom{1}{$ of }, 13 km SW Nguigmi at $14^{\circ} 10.3^{\prime} \mathrm{N} 13^{\circ} 01.3^{\prime} \mathrm{E}\binom{5}{8^{\circ}}, 34 \mathrm{~km}$ SW Nguigmi at $13^{\circ} 58.8^{\prime} \mathrm{N}$ $12^{\circ} 58.2^{\prime} \mathrm{E}\left(10^{\star}\right), 42 \mathrm{~km}$ SW Nguigmi at $13^{\circ} 54.5^{\prime} \mathrm{N} 12^{\circ} 56.5^{\prime} \mathrm{E}\left(48^{\circ}\right)$. Dosso Region: 5 km E Birnin Gauré at $13^{\circ} 05.6^{\prime} \mathrm{N} 2^{\circ} 57.1^{\prime} \mathrm{E}\left(5 \sigma^{\circ}\right), 13 \mathrm{~km}$ S Dosso at $12^{\circ} 56.6^{\prime} \mathrm{N} 3^{\circ} 11.0^{\prime} \mathrm{E}\left(2 \sigma^{\circ}\right), 6 \mathrm{~km} \mathrm{~N}$ Gaya at $11^{\circ} 55.9^{\prime} \mathrm{N} 3^{\circ} 29.4^{\prime} \mathrm{E}$ (1 ¢ ¢). Maradi Region: 8 km W Guidan-Roumji at $13^{\circ} 38.2^{\prime} \mathrm{N} 6^{\circ} 38.2^{\prime} \mathrm{E}\left(1 \sigma^{\prime}\right)$, 15 km NNW Maradi at $13^{\circ} 37.9^{\prime} \mathrm{N} 7^{\circ} 03.0^{\prime} \mathrm{E}\left(1 \delta^{\circ}\right), 17 \mathrm{~km}$ NNW Maradi at $13^{\circ} 38.7^{\prime} \mathrm{N} 7^{\circ} 02.6^{\prime} \mathrm{E}\left(2 \delta^{\circ}\right), 22 \mathrm{~km}$ NNW Maradi at $13^{\circ} 42.0^{\prime} \mathrm{N} 7^{\circ} 01.6^{\prime} \mathrm{E}\left(1 \delta^{\circ}\right), 23 \mathrm{~km}$ NNW Maradi at $13^{\circ} 42.3^{\prime} \mathrm{N} 7^{\circ} 01.4^{\prime} \mathrm{E}\left(1+\circ, 48^{\circ}\right)$. Niamey Region: 12 km NW Niamey at $13^{\circ} 35.9^{\prime} \mathrm{N} 1^{\circ} 59.2^{\prime} \mathrm{E}\left(2 \sigma^{\circ}\right)$. Tillabéri Region: 5 km NW Kollo at $13^{\circ} 21.6^{\prime} \mathrm{N} 2^{\circ} 16.4^{\prime} \mathrm{E}\left(5 \sigma^{\circ}\right)$, 2 km SE Kollo at $13^{\circ} 19.6^{\prime} \mathrm{N} 2^{\circ} 19.9^{\prime} \mathrm{E}\left(1 \delta^{\circ}\right), 8 \mathrm{~km}$ SE Kollo at $13^{\circ} 16.4^{\prime} \mathrm{N} 2^{\circ} 22.0^{\prime} \mathrm{E}\left(1 \delta^{\circ}\right), 15 \mathrm{~km}$ NW Tillabéri at $14^{\circ} 17.3^{\prime} \mathrm{N} 1^{\circ} 20.5^{\prime} \mathrm{E}\left(2 \sigma^{\circ}\right), 24 \mathrm{~km}$ SSW Torodi at $12^{\circ} 53.4^{\prime} \mathrm{N} 1^{\circ} 42.4^{\prime} \mathrm{E}(1$ of $), 30 \mathrm{~km} \mathrm{SSW}$ Torodi at $12^{\circ} 48.8^{\prime} \mathrm{N}$ $1^{\circ} 42.4^{\prime} \mathrm{E}\left(1 \sigma^{\prime}\right)$. Zinder Region: Bosotchouwa 20 km SW Takiéta at $13^{\circ} 30.1^{\prime} \mathrm{N} 8^{\circ} 31.9^{\prime} \mathrm{E}\left(1+9,6 \delta^{\prime}\right)$, 50 km E Gouré at $13^{\circ} 45.9^{\prime} \mathrm{N} 10^{\circ} 40.7^{\prime} \mathrm{E}\binom{1}{$ o }, 2 km N Gouré at $14^{\circ} 00.2^{\prime} \mathrm{N} 10^{\circ} 15.0^{\prime} \mathrm{E}\left(2 \mathrm{o}^{\prime}\right)$, 15 km N Gouré at $14^{\circ} 07.0^{\prime} \mathrm{N} 10^{\circ} 12.4^{\prime} \mathrm{E}\left(4 \sigma^{\circ}\right), 18 \mathrm{~km} \mathrm{~N}$ Gouré at $14^{\circ} 08.7^{\prime} \mathrm{N} 10^{\circ} 11.6^{\prime} \mathrm{E}\left(2+9,2 \sigma^{\circ}\right), 17 \mathrm{~km}$ W Gouré at $13^{\circ} 52.5^{\prime} \mathrm{N}$ $10^{\circ} 09.3^{\prime} \mathrm{E}\left(1 \quad \circ, 22 \sigma^{\circ}\right), 21 \mathrm{~km}$ W Gouré at $13^{\circ} 51.2^{\prime} \mathrm{N} 10^{\circ} 07.8^{\prime} \mathrm{E}\left(28 \sigma^{\circ}\right), 27 \mathrm{~km}$ W Guidiguir at $13^{\circ} 40.9^{\prime} \mathrm{N}$ $9^{\circ} 39.1^{\prime} \mathrm{E}\left(1 \quad \circ, 4 \delta^{\prime}\right)$, 55 km S Tanout at $14^{\circ} 31.2^{\prime} \mathrm{N} 8^{\circ} 44.3^{\prime} \mathrm{E}\left(7 \delta^{\star}\right)$. ROMANIA: Agigea near Constanța, Canaraua Fetei (Scobiola-Palade, 1967), Caraorman (4 +3 or $^{\text {r }}$), Letea Island (Scobiola-Palade, 1968, 1985), Periprava (Scobiola-Palade, 1966), C.A. Rosetti (Scobiola-Palade, 1966, 1985), Săraturile at $44^{\circ} 57^{\prime} N 29^{\circ} 37^{\prime}$ E (Scobiola-Palade, 1974). RUSSIA: Krasnoarmeysk (de Beaumont, 1947c, as Sarepta). SENEGAL: 25-35 km
 SPAIN: Alicante: Orihuela (Gayubo and Mingo, 1988). Almería: Velez Rubio. Cadiz: Puerto Real (de Beaumont, 1962). Gerona: Estartit (1 or $^{\circ}$). Madrid: Madrid (2 ㅇ). Murcia: Lorca (1 ㅇ). Sevilla: Sevilla (1 $\mathrm{o}^{\boldsymbol{*}}$). TAJIKISTAN: Gushary (Gussakovskij, 1935), Koi-pyaz-tau near Kabadian, Kondara 35 km N
 and Handlirsch, 1889), Firyuza, Gassan-Kuli, Imam-Baba near Mary, Kalay-mor, Kara-Kala area, 40 km N Mary, Pul-i-Khatun (Kohl and Handlirsch, 1889), Repetek, Shahi-burun in Bolshiye Balkhany (1 ㅇ), Siunt Mountain in western Kopet Dagh, Tash-Kepri on Murgab River, Tedzhen (1 9). UKRAINE: Kuriash near Kharkov. UZBEKISTAN: Aksakata in Chatkal Range in Tashkent Oblast' (Islamov, 1986), Saraylaylik (Gussakovskij, 1935).

Tachysphex modestus Arnold

Figures 240-242.
Tachysphex modestus Arnold, 1924:61, ㄷ, $\overbrace{}^{*}$. Lectotype: \odot, Zimbabwe: Bulawayo (SAM), here designated, examined.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:275 (listed); Gess, 1981:17 and 54 (South Africa, nesting behavior); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).
Tachysphex punctiventris Arnold, 1924:65, σ^{*}. Holotype: σ^{7}, Zimbabwe: Filabusi (SAM), examined. New syn-onym.-Arnold, 1930:3 (in checklist of Afrotropical Sphecidae), 1947:150 (description of \&); Bohart and Menke, 1976:276 (listed).
Tachysphex dicksoni Arnold, 1962:849, ㅇ. Holotype: \oplus_{+}, South Africa: Western Cape Province: Cape Town: Lion's Head (SAM), examined. New synonym.- Bohart and Menke, 1976:273 (listed).

Recognition.- Tachysphex modestus has a flat labrum (at most insignificantly convex at the very apex), galea no longer than wide in profile, and both ends of hindwing crossvein cu-a nearly equidistant from the wing base. In addition, the propodeal side is all or largely unridged, the setae
of postocellar area are shorter than the midocellar diameter, appressed in the female and either appressed or suberect in the male, those of the propodeal dorsum oriented posterad at least in apical half, tergum IV is silvery fasciate, and the apical tarsomeres have no ventral or lateral spines.

The female of modestus can be recognized by its unusual, widely open mandibular cleft (Fig. 240a) and an unusually short clypeal lobe (Fig. 240a), with free margin of lateral clypeal section less concave than average for the genus; in addition, the clypeal lip is arcuate (Fig. 240a) or nearly so. A similar mandible is found in the females of mesembrius, plicosus, and waltoni. In waltoni, however, the labrum is slightly convex anteriorly, the galea is longer than wide in profile, and the clypeal free margin is prominently arcuate (Fig. 413a). Tachysphex mesembrius and plicosus are markedly distinct and can be recognized by the characters given under these species.

In the male, sterna III-VI have well-defined, conspicuous punctures (markedly larger than those on sternum II), and at least their apical depressions are covered by semierect setae whose length vary from about one to about two midocellar diameters (Fig. 240c). The clypeal lip has an angulate corner (Fig. 240b), and the foretarsus has no rake.

Similar unassigned specimens.- Four females from South Africa (all BMNH) closely resemble modestus, but the mandibular cleft is the usual shape. They are from Aliwal North (2 \&) , Katberg, and Queenstown.

JUSTIFICATION OF NEW SYNONYMY.- The holotype of punctiventris is just an average male of modestus. The two names were published simultaneously, and acting as first reviser I select the lat-

Figure 240. Tachysphex modestus Arnold: a - female clypeus and mandible ($\times 47$); b - male clypeus and mandible ($\times 51$); $\mathrm{c}-$ gastral segments III -VII of male in lateral view showing erect sternal setae ($\times 30$).
ter as valid. The holotype of dicksoni is a female of modestus with dark tibiae. This color form, which occurs in many parts of the species range, does not warrant a nomenclatural status.

Description.- Labrum flat in most specimens, but narrow apical portion slightly curved toward head's back (thus not parallel to clypeal lip's plane) in one + from Strowan, South Africa. Scutal punctures well defined on disk, mostly no more than one diameter apart but many discal punctures averaging more than one diameter apart in most specimens from Chishawasha, Zimbabwe; interspaces shiny. Mesopleural punctures varying (see Variation below); interspaces dull. Propodeal dorsum evenly microareolate or finely rugose, in most specimens also longitudinally ridged; side microsculptured, at most with vestigial ridges along anterior, ventral, and posterior margins. Hindcoxal dorsum with inner margin not carinate.

Setae appressed on postocellar area and scutum (setae of postocellar area suberect in some males, but shorter than midocellar diameter); about as long as midocellar diameter on each side of oral fossa next to occipital carina; on propodeal dorsum oriented posterad in apical half or so and in most specimens oriented anterad in about basomedian half (all setae oriented posterad in a female from Bunt Kraal and a male from Hilton Farm, both South Africa).

Head and thorax black, mandible reddish mesally. Frontal setae silvery in female, golden in male. Wing membrane slightly infumate; forewing costal vein reddish, subcostal vein brown. Color of femora and gaster: see Variation below. Tibiae and tarsi red or hindtibia and hindtarsus largely black. Terga I-IV or I-V in female, I-V or I-VI in male, silvery fasciate apically.

ㅇ.- Mandible: cleft unusually broad, widely open (Fig. 240a). Clypeus (Fig. 240a): bevel about as long as basomedian area except longer mesally; lip free margin evenly arcuate or concave adjacent to corner. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I about $1.6 \times$ apical width. Scutellum somewhat flattened. Dorsal foretibial surface with two, occasionally three spines; outer surface with one spine near midlength. Forebasitarsus with $8-10$ rake spines. Apical depression of tergum V varying from all glabrous to nearly all setose. Pygidial plate with punctures of various sizes, averaging more than one diameter apart (many diameters apart in some females); interspaces unsculptured or aciculate. Length $7.5-11.2 \mathrm{~mm}$.
σ^{7}.- Mandible: trimmal carina with prominent tooth, without cleft, markedly concave between tooth and apex (Fig. 240b). Clypeus (Fig. 240b): bevel shorter than basomedian area; lip free margin arcuate or sinuate (obtusely pointed mesally in some specimens), with well-defined corner; distance between corners $0.9-1.2 \times$ distance between corner and orbit. Width of postocellar area $0.8-1.1 \times$ length. Dorsal length of flagellomere I about $1.5 \times$ apical width, equal to 0.8 of II. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Punctures of sterna III-VI conspicuous, markedly larger than those on basal half of sternum II; apical depressions with suberect setae whose length varies from about one to about two midocellar diameters (Fig. 240c); all sternal surface with suberect setae in single σ° from Springbok. Length $5.3-8.0 \mathrm{~mm}$. Volsella and penis valve: Fig. 241.

Variation.- The males from 2 km S Voi and Taita Discovery Centre, Kenya, and from Mabokweni area, Tanzania, are unusual in hav-

Figure 241. Tachysphex modestus Arnold: volsella and penis valve.
ing the trimmal carina broadly emarginate just distad of tooth, as in some consocius (see Fig. 98b). Unlike the usual specimens, the tooth is asymmetrical, with its distal margin almost perpendicular to the mandibular margin.

Mesopleural punctures are minute and inconspicuous in most specimens, but well defined and relatively large in those from Chishawasha, Zimbabwe, and the single pair from Lubumbashi area, Zaire.

The femora and gaster are black in individuals from southern Africa (including Zambia and Zimbabwe) and also Tanzania, although the pygidial plate is reddish in some females. The femora, however, are red in the specimens from Chishawasha (except forefemur black basally and midfemur black basodorsally in some males), the pair from Lubumbashi (forefemur largely black basally), and the single female from Togo (forefemur black dorsally). The gaster is all red in the single female from Togo.

Nesting and prey.- Gess (1981) listed modestus among species that facultatively use abandoned nests of other aculeates in the ground for nesting.

The only female from Eranchi, Swaziland, is pinned with her prey, an immature, all black mantid, 12 mm long, presumably her prey. A female from Hilton Farm near Grahamstown, South Africa, is pinned with a young acridid, 8 mm long. I doubt that the prey spectrum actually includes these two orders.

Geographic distribution (Fig. 242).Burkina Faso and Ethiopia to South Africa.

Records.- BURKINA FASO: 28 km NE Dédougou at $12^{\circ} 35.5^{\prime} \mathrm{N} \quad 3^{\circ} 15.6^{\prime} \mathrm{W} \quad\left(\begin{array}{ll}1 & 0^{\circ}\end{array}\right)$. ETHIOPIA: Harerge: Harer ($1 \begin{aligned} & \text { of , MNHN). }\end{aligned}$ Sidamo: 26 km N Moyale (1 \uparrow). KENYA: Coast Province: Taita Discovery Centre ($2 \mathrm{o}^{\circ}$), 2 km S Voi ($1 \delta^{\circledR}$). Eastern Province: Tiwa (= Tiva?) River in Ukamba Highlands ($2 \sigma^{\text {º }}$, BMNH). LESOTHO:

Figure 242. Collecting localities of Tachysphex modestus. Mamathes ($3 \sigma^{*}$, AMG), Teyateyaneng ($1 \circ+1 \circ^{\circ}$, AMG). NAMIBIA: Windhoek District: Aris 25 km S Windhoek ($1 \mathrm{~d}^{\circ}$). SOUTH AFRICA: Eastern Cape
 Alicedale (1 ค, AMG), Belmont Valley 10 km E Grahamstown (2 ㅇ, $2 \mathrm{o}^{\circ}$, AMG), Boesmans River near

 PMA), Grahamstown: Bunt Kraal (2 ㅇ, AMG), 17 mi NW Grahamstown ($1 \circ^{\circ}$, AMNH), 18 km WNW Grahamstown: Hilton Farm ($1 \delta^{\star} ; 12$ ㅇ, $14 \delta^{\star}$, AMG; $1 \delta^{\circ}$, PMA), Hankey ($1 \delta^{\circ}$, PPRI), Howison's Poort 6 km WSW Grahamstown (1 ㅇ, AMG), Katberg (1 , BMNH), Kirkwood (2 ㅇ, OÖLM), Middelburg Division (1 ㅇ, SAM), 2 km N and 6 km N Steytlerville ($2 \mathrm{o}^{\circ}$, USU), 28 km S Steytlerville: Wolwekraal Farm (1 ค , USU), 40 km W Steytlerville at $33^{\circ} 16^{\prime} \mathrm{S} 23^{\circ} 55^{\prime} \mathrm{E}(1 \quad$ \& CSE), Strowan Farm 5 air km W Grahamstown (10 o \circ,
 Grootrivierberg Range (1 o , USU), Vlakwater 27 air km NW Grahamstown (3 \circ, AMG). Free State: Bothaville (1 ㅇ, TMP), Caledon River between Bethulia and Aliwal North (2 ㅇ, SAM), Chicago Farm in
 (1 ㅇ, AMG), Tussen Die Riviere Game Reserve ($1 \sigma^{\circ}$). Gauteng: Edenvale ($2 \sigma^{\circ}$, AMG), Hartbeeshoek Radio Station ca 45 km WSW Pretoria at $25^{\circ} 53^{\prime} \mathrm{S} 27^{\circ} 41^{\prime} \mathrm{E}\left(10 \stackrel{\circ}{\circ} 7 \mathrm{o}^{\circ}\right)$, Pretoria ($1^{\circ}+$, AEI), Pretoria: Faerie Glen at

 National Park ($\mathrm{o}^{\boldsymbol{7}}, \mathrm{PMA}$), Lower Sabie in Kruger National Park ($1 \stackrel{\circ}{\circ}$, PMA). Northern Cape Province: Kamiesberg to Sors Sors at $30^{\circ} 10^{\prime} \mathrm{S} 18^{\circ} 01^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{AMG}\right)$, Springbok ($1 \mathrm{o}^{\circ}$, OÖLM), VanWyksfontein 8 km
 Guernsey Farm 15 km E Klaserie ($1 \stackrel{\circ}{ }$, 1 đ $^{\circ}$, PMA), 10 km SW Naboomspruit (8 ㅇ, 4 o 7, FSCA), Rust de
 (1 ㅇ, TMP), Swartruggens (1 ㅇ, AMG), Vryburg (1 ค, AMG). Western Cape Province: Cape Town (1 ㅇ, SAM, holotype of dicksoni; 1 ㅇ, USNM), Clanwilliam Dam: Caleta Cove at $32^{\circ} 14^{\prime} \mathrm{S} 18^{\circ} 55^{\prime} \mathrm{E}(1 \mathrm{q}, \mathrm{AMG}$), Kobee 10 km NE Vanrhynsdorp ($\mathbf{~ o ̛}^{\circ}$, OÖLM), 3 km S Meringspoort at $33^{\circ} 28^{\prime} \mathrm{S} 22^{\circ} 32^{\prime} \mathrm{E}\left(1 \sigma^{\circ}\right)$, Oudtshoorn (1 ㅇ, PMA), 5 km W Robertson ($2 \sigma^{*}$), Sea Point ($1 \sigma^{\star}$, BMNH). SUDAN: Juba ($2 \sigma^{\circ}$). SWAZILAND: Eranchi ($1 \circ+$, AMG). TANZANIA: Kilimanjaro Region: Mkomazi Game Reserve: Ibaya (13 ㅇ, 11 ơ $^{\boldsymbol{\beta}}$, SAM) and Kikolo Plot ($1 \mathrm{o}^{\circ}$, SAM). Mara Region: Seronera in Serengeti National Park (1 ㅇ, $1 \mathrm{o}^{\circ}$). Morogoro Region: 62 road km SW Morogoro ($1 \delta^{\circ}$). Tanga Region: 10 km WNW Mabokweni (2 ㅇ, 2 ® $^{\circ}$). TOGO: Niamtougou (1 ㅇ). ZAIRE: Kivu: Ruindi [Camp] at $0^{\circ} 47^{\prime}$ S $29^{\circ} 17^{\prime} \mathrm{E}\left(10^{\circ}, \mathrm{MSNT}\right)$. Shaba: Lubumbashi ($1+$, MRAC), Lubumbashi: Kippo ($1 \delta^{\boldsymbol{\beta}}$, FSAG). ZAMBIA: Eastern Province: 6-18 km SW Mfuwe (4 ㅇ, 4 o $^{\text {º }}$). Lusaka Province: Lusaka ($1 \circ^{\circ}$, USNM). Northern Province: Mbala (2 号, SAM, determined as punctiventris by

 including lectotype \circ, paralectotype δ°, and 2 paratype δ° of modestus; $9 \sigma^{\circ}$ TMP), Bulawayo: Forestvale ($1 \sigma^{\circ}$, SAM), Bulawayo: Hillside ($2 \delta^{\circ}$), Bulawayo at Umguza River (90°), Chishawasha near Harare (1 ค, $2 \sigma^{\circ} ; 3$ \& , $15 \sigma^{\circ}$, BMNH), Filabusi: Druid Mine ($3 \sigma^{\circ}$, SAM, including holotype and paratype of punctiventris), Great Zimbabwe near Nyanda ($1 \sigma^{\circ}$, BMNH), Harare ($1 \circ$, BMNH), Helenvale ($5 \sigma^{\circ}$, SAM), Hope Fountain ($1 \circ+\mathrm{SAM}$), Kami Ruins ($2 \mathrm{o}^{\circ}$), Leighwoods 52 km SW Bulawayo ($1 \mathrm{o}^{\circ}$), Matetsi in Hwange District (3 웅,
 (2 ㅇ, AMG), Sly's Farm ($1 \sigma^{\pi}$, SAM), Victoria Falls ($2 \sigma^{\circ}$).

Tachysphex montivagus Arnold, new status

Figures 243, 244.
Tachysphex georgii montivagus Arnold, 1944:26, ㅇ. Holotype: \circ, Lesotho: Mamathes (SAM), examined — Bohart and Menke, 1976:274 (listed).

Recognition.- Tachysphex montivagus, an endemic of the Drakensberg Mountains, has the labrum convex and protruding beyond the clypeal free margin, galea in profile longer than wide, upper metapleural pit oblong, propodeal side markedly ridged, and male sterna V and VI each with subbasal, erect fringe of agglutinated setae (fringes may be invisible when sterna are contracted). In addition, setae are straight on the lower gena and appressed on the postocellar area. Tachysphex montivagus differs from other such species in having most setae on the propodeal dorsum diverging laterad or posterolaterad (rather than anterolatedad).

In addition, the female of montivagus resembles pentheri in having non-expanded lateral margins of foretarsomeres I and II, but has the mid- and hindtibiae black and the pygidial plate microsculptured and dull between punctures. In pentheri the tibiae are all or largely red (only the midtibia is largely red in some females), and the pygidial plate is shiny and unsculptured between punctures. In the male, the lateral margin of the clypeal lip is well defined (Fig. 243b), as in pentheri, but the lateral prong of sternum VIII is not incised and mid- and hindtibiae are black or midtibia is partly reddish (in most pentheri, the lateral prong of sternum VIII is incised on the inner side and the tibiae are all red).

JUSTIFICATION OF SPECIES STATUS.- Tachysphex montivagus was described as a subspecies of
georgii, but several structures (particularly the male sternal fasciae and shape of the volsella) demonstrate that it is a full species related to aethiopicus and pentheri, not to georgii.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea microsculptured and with a few, sparse punctures, as long as scape in female, as 1.2 of scape in male. Scutal punctures fine, no more than one diameter apart. Mesopleuron dull, microsculptured, with minute, ill-defined punctures. Propodeal dorsum evenly microareolate; side ridged; upper metapleural pit oblong. Hindcoxal dorsum with inner margin carinate basally.

Setae suberect on each side of oral fossa next to occipital carina, shorter than midocellar diameter; appressed on postocellar area and scutum; most setae diverging laterad or posterolaterad on propodeal dorsum (Fig. 243c).

Head, thorax, and femora black, mandible reddish except apically. Frontal setae silvery in both sexes. Wing membrane slightly infumate; costal vein of forewing brown, subcostal vein dark brown. Foretibia red except outer surface dark in female and some males, all red in many males; mid- and hindtibiae black, midtibia with reddish zones in some males. Foretarsus red, mid- and hindtarsi reddish apically. Gastral segments I and II red in most females (I-III in some), remainder black; male gaster black. Terga I-III silvery fasciate apically.

ㅇ.- Clypeus (Fig. 243a): bevel longer than basomedian area; lip free margin arcuate, shallowly emarginate mesally, sinuous laterally. Width of postocellar area 1.2-1.3× length. Dorsal length

Figure 243. Tachysphex montivagus Arnold: a - female clypeus and mandible; b - male clypeus and mandible; c - propodeal dorsum showing setal pattern; d - volsella; $\mathrm{e}-$ penis valve.
of flagellomere I 2.2-2.5 \times apical width. Dorsal foretibial surface with two spines; outer surface with one or two spines. Forebasitarsus with six or seven rake spines. Apical depression of tergum V varying from punctate and setose throughout to impunctate and asetose. Pygidial plate with punctures that average several to many diameters apart, interspaces dull, microsculptured (except shiny, unsculptured apically in some specimens). Length $8.3-10.7 \mathrm{~mm}$.
σ^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 243b): bevel about as long as basomedian area; lip free margin slightly arcuate, emarginate mesally in many specimens, with well-defined corner (and obtuse carina emerging from corner); distance between corners equal to distance between corner and orbit. Width of postocellar area 1.6-1.8 \times length. Dorsal length of flagellomere I $1.6-1.8 \times$ apical width. Forefemoral notch with bottom asetose. Outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Hindfemoral venter with inner (= posterior) margin well defined in distal half. Sterna V and VI (except laterally) each with subbasal, erect fringe of agglutinated setae (fringes visible only when sterna are fully extended), slightly concave between fringe and hindmargin. Sternum VIII with apical margin shallowly emarginate, almost straight between lateral prongs. Length $6.5-9.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 243d, e.

Prey.- A female from Mamathes, Lesotho (AMG), is pinned with her prey, an acridid nymph (det. F.W. Gess).

Collecting period.- 1 January through 4 April, 1 October through 25 December.

Geographic distribution (Fig. 244).Drakensberg Mountains of Lesotho and South Africa.

Records.- LESOTHO: Mamathes (6 ㅇ, 3 ơ $^{*} ; 10$ ㅇ, 4 ठ *, AMG; 5 + + SAM, including holotype of georgii montivagus), Teyateyaneng ($1 \circ$,

Tachysphex mycerinus de Beaumont

Figures 244-246.
Tachysphex mycerinus de Beaumont, 1940:166, 오, $\overbrace{}^{\text {B }}$. Holotype: $ㅇ$, , Egypt: Cairo (Ministry of Agriculture of Egypt), not examined.—Honoré, 1942:297 (in checklist of Egyptian Sphecidae); de Beaumont, 1947a:166 (in revision of Egyptian Tachysphex), 1955:176 (Morocco); Pulawski, 1964:88 (Egypt), 1971:297 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:275 (listed).

Recognition.- Tachysphex mycerinus, a Saharan and southwestern Asian species, has a convex labrum that protrudes from beneath the clypeus and a galea that is slightly longer than the scape.

The female has a distinctive pygidial plate: the surface is shiny, unsculptured (except for minute, sparse punctures), slightly convex both transversely and longitudinally, and the lateral carina is somewhat ill defined, lower than average for the genus (Figs. 245c, d). The shape of the clypeal lip helps in recognition: the free margin is arcuate, without lateral incision or sinuosity, at most with a rudimentary median notch (Fig. 245a).

The male has an obtusely pointed clypeal lip (Fig. 245b), without even a trace of a median notch, and a distinctive volsella (Figs. 246a, b, d, e). Subsidiary recognition features are: setae of the propodeal dorsum oriented posterad at least apicomesally, tergum IV not fasciate apically, and the longest setae of the lower gena about $0.2 \times$ basal mandibular width (a few, isolated setae may be about $0.3 \times$). A similar clypeus is found in some calidus and dolosus, both of which have a different volsella, and the longest setae of the lower gena equal to $0.3-0.4 \times$ basal mandibular width. In addition, most or all setae of the propodeal dorsum are inclined anterad or obliquely anterad in dolosus and many calidus, and tergum IV of dolosus has a mesally interrupted, silvery fascia.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea minutely, densely punctate (except anteriorly), as long as 1.1-1.2 of scape in female, 1.2-1.4 in male. Scutal punctures shallow, inconspicuous, about one diameter apart. Mesopleuron evenly microsculptured. Propodeal dorsum and side evenly microareolate. Hindcoxal dorsum with inner margin not carinate.

Setae appressed on postocellar area, scutum, and each side of oral fossa next to occipital carina (a few setae erect there), almost totally concealing mesopleural integument in female, partly so in male; on propodeal dorsum oriented posterad at least apicomesally (poorly preserved anteromesally in most specimens examined), oriented posterolaterad on dorsum's sides.

Head and thorax black, but the following are yellowish red: mandible (apex brown), clypeal bevel and lip, and labrum; pronotal lobe yellowish posteriorly. Frontal setae silvery in female, golden dorsally and silvery ventrally in most males, all golden or all silvery in some. Wing membrane hyaline; both costal and subcostal veins of forewing yellowish. Color of femora and gaster: see

Figure 245. Tachysphex mycerinus de Beaumont: a - female clypeus ($\times 42$); b - male clypeus ($\times 48$); c - gastral segment VI of female in profile ($\times 54$); d - apical portion of female pygidial plate in lateral oblique view ($\times 120$).
below. Tibiae and tarsi red. Terga I-III silvery fasciate apically (I-IV in females from Mali).
ㅇ.- Clypeus (Fig. 245a): bevel shorter to longer than basomedian area; lip free margin arcuate, at most with rudimentary median notch, not incised nor sinuous laterally. Width of postocellar area about $0.9 \times$ length. Dorsal length of flagellomere I 2.4-2.7 \times apical width. Dorsal foretibial surface with two or three spines; outer surface with two spines. Forebasitarsus with 8-10 rake spines. Apical depression of tergum V densely punctate and setose throughout. Pygidial plate slightly convex both transversely and longitudinally; integument shiny, practically unsculptured except for sparse, minute, inconspicuous punctures; lateral carina lower than average for the genus (Figs. 245 c , d). Length $7.0-11.0 \mathrm{~mm}$. Femora and gaster all red or terga with irregular, black spots.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 245b): bevel about as long as basomedian area, in many specimens delimited lateroventrally by obtuse carina that emerges from lip corner (carina not extending beyond lip in many males); lip longer mesally than laterally, free margin obtusely angulate, with obtuse corner; distance between corners about $1.3 \times$ distance between corner and orbit. Width of postocellar area $0.9-1.3 \times$ length. Dorsal length of flagellomere I 1.7-2.2 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with five or six rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Length 5.0-9.0 mm. Volsella and penis valve: Fig. 246. Femora varying from all red (except basally) to all black (except apically). Gastral segments I-III red, remainder black.

Geographic distribution (Fig. 244).- Morocco to Egypt, south to Mali and Niger, also Israel, Jordan, and Arabian Peninsula.

Figure 246. Tachysphex mycerinus de Beaumont: a, b, d, and e - volsella; c - penis valve.

 NNW Tor ($1 \mathrm{o}^{\boldsymbol{*}}$, MSNT). Location unknown: Massara (de Beaumont, 1940). ISRAEL: Nakhal Zin at El

 30 km S Nouakchott (1 ㅇ) , Oued Henné ca 50 air km NE Moudjéria (2 ํ, MSNT). MOROCCO (de Beaumont, 1955): Ksar es Souk, Tinerhir, also 1 km E Essaouira at $31^{\circ} 30^{\prime} \mathrm{N} 9^{\circ} 44^{\prime} \mathrm{W}(1 \quad \circ$, CSE). NIGER: Diffa Region: 2 km ENE Nguigmi at $14^{\circ} 15.2^{\prime} \mathrm{N} 13^{\circ} 08.2^{\prime} \mathrm{E}\left(1 \mathrm{q}\right.$). SAUDI ARABIA: Al Ha'ir ($1 \mathrm{o}^{\circ}$, KMG), Judhaym Island 40 km S Al-Uqayr in Gulf of Salwah ($1 \stackrel{+}{\circ}$, CSE), Najran ($1 \quad \uparrow ; 1$ ㅇ, ZMAN), Wadi Majarish below Taif ($1 \AA^{7}$, KMG). SENEGAL: Langue de Barbarie near Saint Louis (1 甲 \uparrow, KMG). TUNISIA: 10 km SE Tataouine at $32^{\circ} 51^{\prime} \mathrm{N} 10^{\circ} 30^{\prime} \mathrm{E}(1+$ ㅇ, CSE), Tozeur (de Beaumont, 1947a). UNITED ARAB EMIRATES: Al Saad ($\left.1+\frac{+}{\circ}, \mathrm{KMG}\right)$, Bidy Al Ajam ($1+$, KMG).

Tachysphex mzingeli Pulawski, sp. nov.

Figures 244, 247.
Derivation of name.- Mzingeli, hunter in the Ndebele language (spoken in the type locality area); a noun in apposition to the generic name.

Recognition.- Tachysphex mzingeli has a flat labrum (minimally convex at the very apex), straight body setae, and both ends of crossvein cu-a of the hindwing equally distant from the wing base. In addition, the setae of the labrum free margin are short, stout, as in aburi and harpax (see Fig. 178c).

The female resembles auropilosus in having frontal and thoracic setae golden, tarsomeres IV roundly emarginate dorsoapically, tarsomeres V elongate (Fig. 247c), with apicoventral margin produced into a median lobe, and densely, uniformly punctate femora. Unlike that species, mzingeli has a uniformly punctate middle clypeal section (Fig. 247a), wings bicolored (yellow basally, brown with violet shimmer distally), and one or two spines on each lateral margin of the apical tarsomeres (Fig. 247d). In auropilosus, the middle clypeal section has a small, shiny, sparsely punctate area adjacent to the lip, the wings are uniformly yellow, and apical tarsomeres have $2-4$ spines on each lateral margin.

The male is characterized by a golden frontal and thoracic vestiture, setae oriented posterad on the propodeal dorsum (except oriented anterad basomedially), largely red gaster and legs, and bicolored wings (yellow basally, brown with violet shimmer distally). Several species are similar, but in mzingeli the clypeal lobe is narrow (corners closer to each other than to respective orbit) and uniformly, densely punctate from dorsal margin to lip base (Fig. 247b), and the mesopleuron is dull, with ill-defined punctures. Morphologically, the male of mzingeli closely resembles harpax in which, however, the thoracic setae are silvery and the wings have no yellow; also, the clypeal bevel is reduced in mzingeli, but present in many harpax.

Description.- Galea longer than wide in profile, evenly microsculptured and with several large punctures, as long as 0.8 of scape. Lip free margin with short, stout setae (as in Fig. 178c). Scutal punctures minute, less than one diameter apart. Mesopleuron dull, microsculptured, with shallow, ill-defined punctures that are about one diameter apart. Propodeal dorsum evenly microareolate, side not ridged. Hindcoxal dorsum with inner margin carinate basally. Sternum I with apical depression that is bisected by ill-defined carina (carina absent in single specimen from Tanzania).

Setae suberect on each side of oral fossa next to occipital carina (setal length less than midocellar diameter), appressed on postocellar area and scutum; oriented posterad on propodeal dorsum (except oriented anterad basomedially).

Figure 247. Tachysphex mzingeli Pulawski, sp. nov.: a - female clypeus and mandible: b - male clypeus and mandible; c - female hindtarsomeres IV and V in dorsal view; d - same in ventral view; e - volsella; f - penis valve.

Head and thorax black, mandible reddish mesally. Frontal and thoracic setae golden in both sexes. Wing membrane yellow basally, brown with violet shimmer distally; costal vein of forewing light brown, subcostal vein dark brown. Femora red except black basally or hindfemur all red; tibiae and tarsi red. Gaster mostly red basally and black or brown apically (red are segments I and II or I-III in female, I-III or I-IV in male), but all red in specimen from Tanzania, and segments I and II largely black in female from Rundu District, Namibia). Terga I-IV silvery fasciate apically (tergal setae all golden in specimen from Tanzania).

ㅇ.- Clypeus (Fig. 247a): bevel absent, dense punctation reaching lip base; lip free margin evenly arcuate except for rudiment of lateral incision. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I $2.5-2.7 \times$ apical width. Dorsal foretibial surface with two spines; outer surface with 1-3 spines. Forebasitarsus with different number of rake spines on each leg in both specimens studied: eight and nine in one, and nine and ten in other; spines divided into basal and subapical groups. Tarsomeres IV: length $1.1 \times$ apical width, dorsoapical emargination rounded proximally (Fig. 247c). Tarsomeres V elongate, venter with one spine near center and also one or two spines near midlength of each lateral margin; apicoventral margin produced into lobe (Fig. 247d). Claws elongate, length of arolium less than half of claw length (Fig. 247c). Apical depression of tergum V punctate and setose. Pygidial plate with punctures that average several diameters apart (several punctures one diameter apart or so); interspaces shiny. Length $13.0-13.4 \mathrm{~mm}$. Volsella and penis valve: Figs. 247e, f.
δ^{7}.- Mandible: trimmal carina with tooth and rudimentary cleft. Clypeus (Fig. 247b): bevel absent (middle section densely punctate up to lip base); lip free margin arcuate, with well-defined corner; distance between corners $0.7-0.8 \times$ distance between corner and orbit. Width of postocellar area $0.7-1.1 \times$ length. Dorsal length of flagellomere I $1.6-1.9 \times$ apical width, equal to 0.7 of II. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with $0-2$ preapical rake spines that are close to apical spine (number of spines may be different on each leg); outer apical spine of foretarsomere II shorter than tarsomere III. Venters of tarsomeres V each with two or three preapical spines. Sternum VIII: apical margin with short, broad expansion mesally that is ill defined in specimen from Tanzania. Length $9.4-12.3 \mathrm{~mm}$.

Habitat.- The males that I collected at the Bulawayo airport, Zimbabwe, were flying around and into a large hole in the sandy soil, almost certainly dug by an aardvark, Orycteropus afer (Pallas). A mother wasp probably used the hole as a nesting ground some time before, and the males were apparently waiting for her daughters to emerge.

Geographic distribution (Fig. 244).- Tanzania, Botswana, northern Namibia, Zimbabwe, Mozambique, northeastern South Africa.

RECORDS.- Holotype: 0^{\prime}, ZIMBABWE: Bulawayo airport at $20^{\circ} 00^{\prime}$ S $28^{\circ} 38^{\prime} \mathrm{E}, 25$ Jan 1995, WJP (CAS). PARATYPES: BOTSWANA: Lake Ngami, no date or collector's name (10°, BMNH). MOZAMBIQUE: no specific locality, date, or collector's name ($1+\frac{+}{}$, MNHN). NAMIBIA: Rundu District: 100 km SW Rundu, 1 Feb 1993, MS ($1+1{ }^{\circ}$). SOUTH AFRICA: Northern Province: Ellisras, 25 Mar 1978, H. Empey (1 ㅇ, AMG); Langjan Nature Reserve, 10-20 Jan 1980, G.L. Prinsloo, C. Kok, C.D. Eardley, and P. Smith ($1 \sigma^{\circ}$, PPRI). TANZANIA: Tanga Region: 73 km NW Korogwe, $11-12$ July 2001, Omary S. Haji and $\operatorname{WJP}\left(1 \mathrm{o}^{\circ}\right), 2 \mathrm{~km}$ NE Mkomazi, 29-31 Dec 2002, WJP ($2 \delta^{\circ}$). ZIMBABWE: same locality and collector
 (2 $\mathrm{o}^{\boldsymbol{*}}$).

Tachysphex namaqua Pulawski, sp. nov.

Figures 248, 249.
Derivation of name.- Derived from Nama, one of the four main San (= Bushman) tribes, and qua, man in the San language; a noun in apposition.

Recognition.- Tachysphex namaqua has the fore- and midfemoral venters impunctate except for a few, sparse punctures. It can be differentiated from other such species by the following combination: femora and tibiae red, gaster red basally, setae erect but not sinuous on postocellar area (about as long as midocellar diameter), and propodeal side punctate. The female is also characterized by long apical flagellomeres (e.g., length of VIII about $2.0 \times$ width). In the male, the free margin of the clypeal lip is arcuate, with a well-defined corner (Fig. 248b), the outer apical spine of foretarsomere II is no longer than tarsomere III, and at least some setae of sterna IV-VI are erect, up to about one midocellar diameter long.

Description.- Galea in female about as long as wide in profile, in male longer than wide in profile, as long as 0.6 of scape in female, equal to scape in male. Scutal punctures averaging about 2-3 or 3-4 diameters apart on disk; interspaces unsculptured. Mesopleural punctures averaging several diameters apart between scrobe and midcoxa; interspaces microsculptured but shiny. Punctures of mesothoracic venter $2-3$ diameters apart in most specimens (less than that in some), but several diameters apart anterad of signum in single female. Episternal sulcus complete or effaced anteriorly. Propodeal dorsum microareolate and variously, unevenly microridged, with short, fine ridges basally; side shiny, with punctures that are several diameters apart, in some specimens with short ridges along metapleural sulcus. Hindcoxal dorsum carinate basally. Sternum I with longitudinal carina in some males.

Figure 248. Tachysphex namaqua Pulawski, sp. nov.: a - female clypeus and mandible (broken line indicates reconstructed clypeal free margin); b - male clypeus and mandible; c - volsella; d - penis valve.

Setae erect on each side of oral fossa next to occipital carina, nearly as long as midocellar diameter; erect and straight on postocellar area, as long as midocellar diameter or slightly longer; scutal setae nearly appressed, except suberect and sinuous anteriorly in males from Aggeneys, about twice length of midocellar diameter; oriented posterad on propodeal dorsum.

Head and thorax black, mandible yellowish red (except apically). Frontal setae silvery in female, silvery or with golden tinge in most males but golden in those from Aggeneys. Wing membrane almost hyaline; costal vein of forewing light brown, subcostal vein dark brown. Femora all or partly red, tibiae and tarsi red. Gastral segments I-III red in most specimens, remainder black (female sterna II and III black), but gaster all black except terga I and II reddish posteromesally in male from Rietbron. Terga nonfasciate in female, in male terga I-III each with ill-defined apical silvery fascia.

ㅇ.- Clypeus (Fig. 248a): bevel markedly longer than basomedian area, its most elevated point next to frontoclypeal suture; lip free margin arcuate (worn out anteriorly in single female examined, may by incised or not incised laterally). Width of postocellar area $0.9 \times$ length. Dorsal length of flagellomere I $2.6 \times$ apical width. Venters of trochanters I-III unsculptured except for a few, large punctures. Fore-, mid-, and hindfemoral venters and midfemoral posteroventral surface impunctate except for a few, sparse punctures. Dorsal foretibial surface with two or three spines; outer surface with three spines, broadly asetose; mid- and hindtibial dorsa broadly asetose except for a few spines. Forebasitarsus with eight or nine rake spines. Length of midtarsomere III equal to apical width. Tergum V with minute punctures that are several diameters apart, apical depression impunctate, asetose. Pygidial plate with punctures that are many diameters apart at center and mostly 2-3 diameters apart near margin. Length 11.1 mm .
0^{7}. - Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 248b): bevel markedly longer than basomedian area, delimited anterolaterally by obtuse carina that emerges from lip corner; lip free margin arcuate, with well-defined corner; distance between corners $0.6-0.8 \times$ distance between corner and orbit. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I 1.8-2.2 \times apical width; length of flagellomere VIII $2.0 \times$ width. Forefemoral notch with microscopic, erect setae, but asetose in specimen from Rietbron. Outer margin of forebasitarsus without preapical spines (one specimen from Aggeneys), with one such spine next to apical one in two other males from Aggeneys, two spines in male from Rietbron, and three spines in other males; outer apical spine of foretarsomere II shorter than tarsomere III. Sterna IV-VI with well-defined punctures and at least some erect setae (longest setae about equal to midocellar diameter). Sternum VIII deeply emarginate apically. Length 7.7-9.6 mm. Volsella and penis valve: Figs. 248c, d.

Geographic distribution (Fig. 249).South Africa.

Records.- Holotype: \uparrow, SOUTH AFRICA: Western Cape Province: Knersvlakte, October 1939 [South African] Mus. Staff (SAM). Paratypes: SOUTH AFRICA: Eastern Cape Province: Rietbron [spelled Reitbron on the label], 13 Jan 1965, H. Empey (1 o^{*}, AMG). Northern Cape Province: Aggeneys [spelled Aggenys on the label],

Figure 249. Collecting localities of Tachysphex namaqua and niloticus. Oct 1939 [South African] Mus. Staff (1 ơ; 2 ơ, SAM); Richtersveld National Park at $28^{\circ} 18.9^{\prime}$ S $16^{\circ} 58.3^{\prime} \mathrm{E}, 12-14$ Sept 2001, WJP (2 o $^{\circ}$). Western Cape Province: Knersvlakte 48 km N Vanrhynsdorp at $31^{\circ} 14^{\prime} \mathrm{S} 18^{\circ} 32^{\prime}$ E, 20 Sept 1996, F.W., S.K., and R. Gess (2 đ̛, AMG)

Tachysphex niloticus Pulawski

Figures 249, 250.
 ined.- Pulawski, 1971:348 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:275 (listed).

Recognition.- Tachysphex niloticus is similar to geniculatus, horus, inextricabilis, and luxuriosus with which it shares the shape of the labrum, postocellar area, female mandible and clypeus, setae short on the postocellar area and appressed on tergum I, and nonemarginate male forefemora (see p. 307 for details). As in geniculatus and horus, the propodeal side is glabrous along the metapleural sulcus, the scutal hindcorner is not prominent, and the setae of the postocellar area are erect in the male.

The female of niloticus differs from geniculatus in having the setae appressed on the postocellar impression and postocellar area (rather than erect), and completely concealing the integument of most of the scutum and of mesopleuron (at least in fresh specimens). Also, the gaster of niloticus is red at least basally, whereas it is all black in many geniculatus. Unlike horus, the setae of niloticus do not conceal the integument of the forecoxa and hindfemoral outer surface.

The male of niloticus differs from geniculatus and horus in having a long, narrow dorsal volsellar process (Fig. 250), rather than low, rounded (Figs. 161e and 187), and the outer apical spine of
foretarsomere II as long as tarsomeres III and IV combined (spine in geniculatus and horus at least slightly shorter than tarsomeres III and IV combined). The setae totally or largely conceal the vestiture between the midocellus and the antennal socket, at least in the ventral half, whereas in most geniculatus the integument is visible from most angles. Also, the mesothoracic venter of niloticus is sparsely punctate anterad of each coxa. In many (but not all) geniculatus and horus, the mesothoracic venter is densely punctate (punctures about one diameter apart).

Description.- Labrum convex, conspicuously protruding beyond clypeal free margin. Galea with only a few, sparse punctures, as long as 0.8 of scape in female, 0.9 in male. Scutal punctures well defined, about one diameter apart except some discal punctures $2-3$ diameters apart in female from Abydos, Egypt. Mesopleuron coriaceous, dull. Mesothoracic venter with large, sparsely punctate area anterad of each midcoxa (punctures many diameters apart except about one diameter apart anteriorly and adjacent to midline). Propodeal dorsum conspicuously microsculptured, dull, with ill-defined, longitudinal ridges; side ridged. Hindcoxal dorsum with inner margin not carinate.

Setae appressed on postocellar area in female but erect in male (setal length about equal to midocellar diameter); erect on each side of oral fossa next to occipital carina, about $0.3 \times$ basal mandibular width; appressed on scutum; in fresh females fully concealing integument on frons, scutum, and mesopleuron but not on forecoxa nor on hindfemoral outer surface; suberect on mesopleuron in male; oriented anterad on propodeal dorsum in most specimens, but oriented posterad in some females; propodeal side asetose next to metapleural sulcus. Sternum I all or largely glabrous in most specimens, setose in some males.

Head and thorax black except mandible reddish mesally and clypeal lip reddish in some females. Frontal setae silvery in both sexes. Wing membrane hyaline; costal and subcostal veins of forewing yellowish. Femora black (except apically), tibiae red in female, in male varying from largely black (red basally and apically) to largely red (hindtibia all red in some specimens); tarsi red. Gaster in female all red or segments III-VI black; in male gaster all black or segments I and II red. Terga I-IV silvery fasciate apically, also male tergum V laterally.

ㅇ.- Mandible: cleft unusually broad, widely open (as in Fig. 161c). Clypeus (as in Fig. 161c): bevel shorter than basomedian area, delimited anterolaterally by inconspicuous carina that emerges from lip corner; lip somewhat ill defined, minimally arcuate, at most minimally emarginate mesally, roundly emarginate laterally. Width of postocellar area $2.1-2.2 \times$ length. Dorsal length of flagellomere I $2.4-2.5 \times$ apical width. Midtrochanteral venter unsculptured except for a few, sparse punctures. Forefemoral base, on anteroventral surface, with a few large punctures that are many diameters apart, interspaces impunctate in Egyptian specimens, with minute punctures in those from Kenya and Tanzania. Dorsal foretibial surface with two or three spines; outer surface with two or three spines. Forebasitarsus with 6-8 rake spines in Egyptian females, 10 or 11 spines in those from Kenya and Tanzania. Apical tarsomeres with preapical ventral seta. Apical depression of tergum V unsculptured, asetose. Pygidial plate with fine punctures that average many diameters apart; interspaces unsculptured to aciculate; lateral carina obtuse but well defined. Length $8.3-9.9 \mathrm{~mm}, 12.0$ mm in female from Tanzania.
0°.- Mandible: trimmal carina obtusely angulate, without tooth or cleft. Clypeus (as in Fig. 161d): bevel about as long as basomedian area; lip free margin slightly arcuate, almost straight, with obtuse corner; distance between corners $1.2-1.4 \times$ distance between corner and orbit. Width of postocellar area 2.2-2.4 \times length. Dorsal length of flagellomere I 1.7-2.0 \times apical width. Forefemur not emarginate. Outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II about as long as tarsomeres III and IV combined. Sternum VIII with small expansion at center of apical emargination. Length $6.5-7.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 250.

Collecting period.- 3-5 March (Abydos), 3-25 April (Ghiza area), 2-8 December (Archer's Post), 29-31 December (Mkomazi).

Geographic distribution (Fig. 249).Egypt, Kenya, Tanzania.

Records.- EGYPT: Al Jizah (= Ghiza):
 2 o *). Sawhaj: Abydos ($1+2$ o $^{\text {® }}$). KENYA: Eastern Province: near Ewaso Ng'iro River opposite Archer's Post (1 $⿻$ \&). TANZANIA: Tanga Region: 2 km NE Mkomazi (1 f ${ }^{\circ}$).

Tachysphex nitidior de Beaumont

Figures 251-253.
Tachysphex nitidus variété C de Beaumont, penis valve.

Figure 250. Tachysphex niloticus Pulawski: volsella and 1936a:207 (in revision of French Tachysphex), 1936c:8 (specimen in A. Costa collection). Synonymized with Tachysphex nitidior by de Beaumont, 1953b:15.
Tachysphex nitidior de Beaumont, 1940:175, ㅇ, ở. Syntypes: Egypt: Ezbet el Nakhl near Cairo (originally A. Alfieri collection, now Entomological Society of Egypt) and Wadi Hof near Cairo (originally A. Mochi coll., now ?, not in MSNT), not examined. - Honoré, 1942:55 (in checklist of Egyptian Sphecidae); de Beaumont, 1947a:199 (in revision of Egyptian Tachysphex), 1950b:20 (Egypt), 1954a:59 (Italy), 1954b:91 (Italy); Grandi, 1954:239 (Italy); de Beaumont, 1955:184 (Morocco); Ceballos, 1956:377 (listed from Spain); Nouvel and Ribaut, 1958:13 (France); Pulawski, 1958:181 (Bulgaria); de Beaumont, 1959:28 (Italy); Suárez, 1959:58 (Spain); de Beaumont, 1960a:18 (Greece), 1960b:239 (Libya), 1961a:50 (Greece), 1962:26 (Spain); Ceballos, 1964:90 (in supplement to catalog of Spanish Sphecidae); de Beaumont, 1964:77 (Switzerland), 1965:50 (Greece); Balthasar, Hrubant, and Hrubant, 1967:171 (Bulgaria); Heinrich, 1967:75 (Germany, as nitidor); Pulawski, 1967:405 (Turkey), 1971:167 (in revision of Palearctic Tachysphex); Tsuneki, 1972:393 (Mongolia); de Beaumont, Bytinski-Salz, and Pulawski, 1973:8 (Israel); Erlandsson, 1974:72 (Italy, Malta); Bohart and Menke, 1976:275 (listed); Kazenas, 1978:122, 131 (in key to Sphecidae of Kazakhstan and Central Asia); Pulawski, 1978:218, 221 (in key to Sphecidae of European USSR); Pagliano, 1980:127 (Italy); Gayubo, 1984a:85 (Spain), 1984b:365 (Portugal), 1986c:33 (Spain); Gayubo and Sanza, 1986:46 (Spain); Islamov, 1986:526 (Uzbekistan); Gayubo, 1987:113 (Spain); Gayubo and Mingo, 1988:80 (Spain); Gayubo, Asís, and Tormos, 1990:18 (Spain); Pagliano, 1990:104 (in catalog of Italian Sphecidae); Schembri, 1991:180 (Malta); Torregrosa, Gayubo, Tormos, and Asís, 1993:18 (Spain); Gayubo and Borsato, 1994:208 (Italy); Tormos, Asís, and Gayubo, 1994:188, 205 (Spain); Negrisolo in Minelli, Ruffo, and La Posta, 1995b:9 (in catalog of Italian fauna); Voblenko, Gorobchishin, and Nesterov, 1996:14 (Ukraine); Schmidt and Schmid-Egger, 1997:29 (records from Germany are questionable); Gayubo, García, Torres, and González, 1999:90 (Spain); Ljubomirov, 1999b:50 (Bulgaria); Blösch, 2000:229 (in Sphecid Fauna of Germany); Gayubo, González, and Torres, 2000:185 (Spain); Ivanov and Ljubomirov, 2001:212 (Bulgaria); Kazenas, 2001:29 (in checklist of Sphecidae of Kazakhstan and Central Asia); Kazenas and Esenbekova, 2001:134 (Kazakhstan); Schmidt and Bitsch in Bitsch et al., 2001:259 (in Sphecid Fauna of Western Europe); Kazenas 2002:72 (Kazakhstan); Gayubo, Özbek, and Yildirim, 2003:89 (Turkey); Generani, Pagliano, Scaramozzino, and Strumia, 2003:65 (Italy); Gayubo, Nieves-Aldrey, González, Tormos, Rey del Castillo, and Asís, 2004:108 (Spain); Cruz-Sánchez et al., 2005:220 (Spain).

Type material.- De Beaumont (1947a:200) designated a female from Gibraltar as the holotype of nitidior and a male of the same origin as the allotype. This action was illegal because the specimens were not included in his original description of 1940.

Recognition.- Tachysphex nitidior, an all black species occurring north of the equator, has well-defined mesopleural punctures and shiny interspaces, setae erect on the postocellar area, near-

Figure 251. Tachysphex nitidior de Beaumont: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d - penis valve with outlines showing individual variation.
ly so anteriorly on the scutum, suberect on midfemoral venter (about as long as midocellar diameter), and inclined obliquely anterad on the propodeal dorsum. Additionally, it has a flat, not emarginate labrum and unspecialized tarsi (length of midtarsomere II more than twice length, tarsomeres IV longer than wide apically, tarsomeres V without spines on the venter or lateral margins).

The female of nitidior closely resembles tarsinus and like that species has the clypeal bevel convex but shorter than the basomedian area and the lip free margin arcuate, not incised laterally. In nitidior, however, punctures of sternum III and IV are fine but well defined, and they reach the base of the apical depression (in tarsinus, these punctures are ill defined and do not reach the apical depression). Tachysphex nitidior is also similar to lindbergi from Cape Verde Islands and Madeira. It differs from the latter in having somewhat coarser scutal, mesopleural, and sternal punctures, a character that requires comparison with positively identified specimens. The geographic distribution, however, enables recognition, as nitidior does not extend into the Eastern Atlantic islands. Several Palearctic species that extend into North Africa are also similar, particularly angustatus Pulawski. See Pulawski (1971) for their recognition characters.

The male of nitidior differs from similar species in having a relatively large, asetose, and shiny forefemoral notch (Figs. 252a-c), well-defined sternal punctures, and the mandible of most specimens yellowish red mesally. The clypeal lip is narrow in most specimens (corners closer to each other than to respective orbit), but broad in some (corners equidistant from each other and orbit). Additionally, punctures of tergum VII mesally are minute, more than one diameter apart.

Description.- Scutal punctures well defined, on disk either all about one diameter apart or many punctures more than one diameter apart. Mesopleural punctures well defined, large, varying from less than one diameter apart to more than one diameter apart beneath scrobe and anterodorsad
of midcoxa. Propodeal dorsum rugose or irregularly ridged longitudinally; side ridged. Hindcoxal dorsum with inner margin carinate.

Setae erect on postocellar area, nearly erect on each side of oral fossa next to occipital carina (setal length $0.4-0.5 \times$ basal mandibular width), suberect on scutum anteriorly, inclined obliquely anterad on propodeal dorsum, suberect on midfemoral venter (longest setae about equal to midocellar diameter).

Head and thorax black, mandible mesally reddish in female, yellowish red in most males but dark red in some. Frontal setae silvery in both sexes. Wing membrane slightly infumate; costal vein of forewing light brown, subcostal vein dark brown. Femora, tibiae, and gaster black, tarsal apex brown or reddish. Terga I-III silvery fasciate apically in most specimens, but I-V in single female from Kenya.

ㅇ.- Clypeus (Fig. 251a): bevel shorter than basomedian area (but in some specimens with narrow, impunctate area that extends nearly to frontoclypeal suture); lip free margin arcuate, not incised laterally. Width of postocellar area $1.2-1.6 \times$ length. Dorsal length of flagellomere I 1.9-2.7 \times apical width. Dorsal foretibial surface with either a row of fine, suberect bristles or one or two spines; outer surface with one spine near midlength. Forebasitarsus with nine or ten rake spines. Tergum V setose throughout, including apical depression. Pygidial plate microsculptured, dull, with minute punctures that average many diameters apart. Length 7.8-13.0 mm.
δ°.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 251b): bevel shorter than basomedian area, slightly concave in some specimens; lip free margin arcuate, with well-defined, somewhat prominent corner; dis-

FIGURE 252. Tachysphex nitidior de Beaumont: a - forefemoral base in posterior view $(\times 102)$; b - forefemoral base in ventral view $(\times 102)$; $\mathrm{c}-$ forefemoral notch $(\times 360)$. tance between corners $0.5-1.0 \times$ distance between corner and orbit (mostly less than 1.0). Width of postocellar area 1.3-1.7 \times length. Dorsal length of flagellomere I 1.1-1.5 \times apical width. Forefemoral notch larger than average for the genus, glabrous, with sparse pores (Figs. 252a-c). Outer margin of forebasitarsus without preapical spines or, in some specimens, with $1-3$ short spines (one near apex, one or two near base); outer apical spine of foretarsomere II markedly shorter than tarsomere III. Tergum VII mesally with evanescent punctures that are more than one diameter apart. Sternal punctures well defined, relatively large. Length $5.5-9.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 251c, d.

Figure 253. Collecting localities of Tachysphex nitidior.
Geographic distribution (Fig. 253). - North Africa, south to Senegal and Kenya, United Arab Emirates, Europe north to southern France, Romania, and Ukraine, in Asia east to Kazakhstan, Mongolia, and India. Records from Germany by Heinrich (1967) were questioned by Schmidt and Schmid-Egger (1997) and Ohl et al. (2001).

Records (from Pulawski, 1971, if not indicated otherwise).- AZERBAIJAN: Varafta Mts. NW
 $41^{\circ} 48^{\prime} \mathrm{N} 23^{\circ} 10^{\prime} \mathrm{E}$ (Ivanov and Ljubomirov, 2001), Mt. Vitosha near Sofia (Ljubomirov, 1999), Nessebar, Sandanski, Slanchev Bryag near Sozopol (Balthasar, Hrubant, and Hrubant, 1967). CROATIA: Gruz near Dubrovnik, Krk Island: Barka (1 ㅇ, SCHL), Pula and Vipava in Istria Peninsula, Senj (1 of), Uglian Island:

 Nakhl (de Beaumont, 1940), Wadi Hof (de Beaumont, 1940). Al-Uqsur (= Luxor): 3 km W Luxor (4 or). AlWadi al-Jadid: Dakhla oasis: Ewina (3 ${ }^{*}$, ZMAN), Rashda (1 ở $^{\circ}$ ZMAN); Siwa oasis (de Beaumont, 1950): Siwa, Zegawa. Matruh: $20 \mathrm{~km}\left(1 \delta^{\circ}\right), 25-30 \mathrm{~km}\left(1 \delta^{\circ}\right)$, and $64 \mathrm{~km}\left(2 \delta^{\circ}\right)$ W Marsa Matruh. Sina (= Sinai): Wadi Sudr 50 km SE Suez $\left(1\right.$ ㅇ, $\left.1 \sigma^{\circ}\right)$. FRANCE: Ardèche: Privas, Saint-Martin-le-Supérieur. Aude: Leucate
 de-Dôme: Orléat (Bitsch et al., 2001). Pyrénées-Orientales: Banyuls-sur-Mer (1 +1 d ${ }^{\text {® }}$). Var: Montauroux, Toulon, Valescure, a suburb of Fréjus ($1 \mathbf{o}^{7}$). Several other Départements indicated on map 103 in Bitsch et al., 2001. GEORGIA: Sochi. GREECE: Aegean Islands: Rhodes (de Beaumont, 1960a): Kremasti, Ixia, also Vatio at $36^{\circ} 03^{\prime} \mathrm{N} 27^{\circ} 54^{\prime} \mathrm{E}\left(1+9,1 \mathrm{o}^{\circ}\right.$, MSNT). Ionian Islands: Corfu (de Beaumont, 1965). Kriti (= Crete): Ayia Varvara and Gortyn (de Beaumont, 1961a), Heraklion (de Beaumont, 1965), Knossos (2 \&), Sitia (de Beaumont, 1965). Pelopónnisos (de Beaumont, 1965): Corinth, Kalamata. Sterea Ellás (de Beaumont, 1965): Gardhiki at $38^{\circ} 50^{\prime} \mathrm{N} 21^{\circ} 58^{\prime} \mathrm{E}$, Lamia, Lidhorikion at $38^{\circ} 17^{\prime} \mathrm{N} 21^{\circ} 58^{\prime}$ E. INDIA: Karnataka: Bangalore ($1 \mathrm{o}^{\circ}$). IRAN: Ab Ali (1 f), Khunikaka in Kerman Province, Van in Elburz Mountains 50 km N Ab Ali (1 fo). ISRAEL: Akko N Haifa, En Zin in Arava Valley (20°, CSE), 135 km N Elat Iddan at $30^{\circ} 47^{\prime} \mathrm{N} 35^{\circ} 17^{\prime} \mathrm{E}(1$ \& , CSE), En Aqev near Sede Boker at $30^{\circ} 50.01^{\prime} \mathrm{N} 34^{\circ} 48.64^{\prime} \mathrm{E}(1+9, \mathrm{CSE}$), Mazad Aqrabbim 45 km SE Beersheba ($5 \sigma^{\circ}, \mathrm{CSE}$), Qetura Kibutz in Arava Valley ($\left.\sigma^{\circ}, \mathrm{UCD}\right)$, Shizaf Nature Reserve in Arava Valley ($1 \circ$, CSE), Tiberias (de Beaumont, Bytinski-Salz, and Pulawski, 1973). ITALY: Emilia-Romagna (de Beaumont, 1954; Grandi, 1954): Bologna, Borgo Campanne (Bologna), Gaggio Montano (Bologna), Montetortore (Bologna), Rimini, Ronzano (Bologna). Lazio (de Beaumont, 1959): Capo Circeo (Pagliano, 1990), Roma, San Felice Circeo. Liguria: Casella, Chiavari (Pagliano, 1990), Genova, Oneglia (1 \&), Varezze. Marche: Pesaro. Piemonte: Langhe: San Benedetto Belbo (Pagliano, 1980). Sardegna: Domusnovas (Pagliano, 1990). Sicilia:

Monte Etna (de Beaumont, 1959). Toscana: Isola di Capraia (Generani, Pagliano, Scaramozzino, and Strumia, 2003); Isola d'Elba, Taviano (Pistoia). Trentino-Alto Adige: Bolzano. Veneto: Montorio Veronese (Gayubo and Borsato, 1994), Torri del Benaco (Pagliano, 1990). KAZAKHSTAN ($\mathrm{K}=$ Kazenas, 2002, $\mathrm{P}=$ Pulawski, 1971): Aktöbe: 5 km NE Aktöbe (K), Babatay near Uil (K, P), Bolshiye Barsuki sands near Chelkar (K, P). Almaty: Almatinskiy Nature Reserve (Kazenas and Esenbekova, 2001), Almaty (K), 9 km S Almaty (K), 25 km E Chingildy $=120 \mathrm{~km}$ NE Almaty (K), 10 km NW Chundzha (K), Kapchagay (K), 8 km S and 40 km E Kapchagay (K), Kaskelen River 60 km N Almaty ($1+2$ ® $^{\circ}$), 5 km SW Kazakahstan village (K), 40 km SE Kopberlik (K), 10 km E Kzyl-Agach $=60 \mathrm{~km}$ NNE Taldy-Kurgan (K), Lepsy (K), 11 km S Panfilov, now Zharkent (K), $7-8 \mathrm{~km}$ S Talgar (K). Aqmola: 12 km NE Atbasar (K), Bayzhanzhal (P), 2 km N Derzhavinsk at about $51.5^{\circ} \mathrm{N} 66^{\circ} \mathrm{E}(\mathrm{K})$, Kokshetau at Terisakkan River (1 \circ), Lake Ilektykol' on left shore of Terisakkan
 and Zaisan (K), 5 km S and 33 km SSW Ayaguz (K), 4 km W Bazarka (K), 20 km NW Chernyaevka $=60 \mathrm{~km}$ NW Zaysan (K), 40 km S Kyzyl-Kesik $=120 \mathrm{~km}$ E Ayaguz (K), 5 km SW and 20-25 km NW Tansyk (K), 3 km E Ul'ken-Karatal at about $47.7^{\circ} \mathrm{N} 85^{\circ} \mathrm{E}$ (K), 15 km ENE Zaisan (K). Pavlodar. Pavlodar (K). Qaraghandy: 5 km W southern shore of Lake Tenghiz (P), shore of Taly-Manak S Zhana-Arka (P), ZhanaArka $=$ Atasuskiy (P). Qostanay: 25 km NE Amangel'dy (K), 10-20 km SW Arkalyk at about $50^{\circ} \mathrm{N} 67^{\circ} \mathrm{E}(\mathrm{K})$, Zhalanash (K). Qyzylorda: Chokusu railroad station 30 km NW Saksaul'skiy (K), Dzhulek = Chiili (P), 10 km NNW Kamyshlybash (K). South Kazakhstan: 9-18 km S Kaskasu village 70 km E Chimkent (K), 10 km SSE Kaskasu (K), 5 km E Novostroyevka near Lengher at about $42^{\circ} \mathrm{N} 70^{\circ} \mathrm{E}(\mathrm{K}), 15 \mathrm{~km}$ S Pervomaiskoye $=$ 70 km SE Chimkent (K). West Kazakhstan: confluence of Chit-Yrghyz and Yrghyz 100 km NNE Chelkar (P). Zhambyl: 4 km SE and 50-90 km NW Furmanovka (K), 38 km S Kamenka (K). KENYA: Rift Valley Province: Eliye Springs on W shore of Lake Turkana (1 \&). KYRGHYZSTAN: 10 km E Kadzhi-Saj at
 Cyrenaica: Brèga, Tmimi (de Beaumont, 1960b). Tripolitania: Garian Hills. MALTA: Bahria (Schembri, 1991), St. Julians, Wied is-Sewda (Schembri, 1991). MONGOLIA: South Gobi Aymag: Noyon-nuur 34 km NE border post Ovot-Huural (Tsuneki, 1972). MOROCCO (de Beaumont, 1955, or as indicated): Ait Saoun
 (1 ㅇ), Marrakech: Oued Tensift (2 ㅇ, $2 \sigma^{\circ}$), 10 km SE Ouarzazate (l°, CSE), Oued Massa 40 km S Agadir ($1 \sigma^{i}$, CSE), Tiznit: Oued Massa. PAKISTAN: Baluchistan: Hazarganji Chiltan National Park 20 km SW
 km N Sagres at $37^{\circ} 12^{\prime} \mathrm{N} 8^{\circ} 55^{\prime} \mathrm{W}\left(2^{\circ}, \mathrm{CSE}\right.$), Evora, and the following localities in El Algarve (Gayubo, 1984c): Benafim, Marmelete, Quarteira, Salir, São Marcos da Serra, Umbrías de Camacho. ROMANIA: Agigea. RUSSIA: Krasnodar Kray: Lazarevskoye 60 km N Sochi (1 \& \uparrow, $1 \overbrace{}^{\circ}$). Rostov Oblast': Vëshenskaya village area at $49^{\circ} 37^{\prime} \mathrm{N} 41^{\circ} 45^{\prime} \mathrm{E}$ (Shkuratov, 2000). Volgograd Oblast': Sarepta $=$ Krasnoarmeysk. SENEGAL: Ndangane 45 air km SE Mbour ($10^{\boldsymbol{*}}, \mathrm{FB}$). SPAIN: Albacete (Tormos, Asís, and Gayubo, 1994): Bonete, Puente de Torres. Alicante (Torregrosa, Gayubo, Tormos, and Asís, 1993): Agost, Albatera, Alicante, Callosa d'en Sarria, Elche, Monnegre, Muchamiel, San Vicente del Raspeig. Almería: Almería, Laujar (3 or $^{\circ}$). Ávila: Navalperal (Gayubo and Mingo, 1988). Burgos (Gayubo and Sanza, 1986): Doña Santos, Fuentelcésped, Fuentespina, La Aguilera. Cáceres: Horcajo (1 ơ). Ciudad Real (Gayubo, 1987): Corral de Calatrava, Retamar. Gibraltar: Gibraltar (de Beaumont, 1947a). Granada: La Zubia (de Beaumont, 1962), Sierra Lujar. Guadalajara: Albalate (1 甲, SCHL). Huesca: Huesca. Jaen: Las Correderas. Madrid (Gayubo and Mingo, 1988): Alcalá de Henares, El Escorial, Monte de el Pardo (Gayubo, Nieves-Aldrey, González, Tormos, Rey del Castillo, and Asís, 2004:108), Villaverde. Málaga: Ronda. Mallorca: no specific locality. Murcia: Totana-Aledo. Salamanca: La Alberca (Gayubo, 1984a), Fuenteguinaldo (Gayubo, 1984a), Las Arribes del Duero (Gayubo, González, and Torres, 2000), Macotera (Gayubo, 1984a), Salamanca, San Martín del Castañar (Cruz-Sánchez et al., 2005), Sequeros (de Beaumont, 1962), Tamames (Gayubo, 1984a). Soria (Gayubo, García, Torres, and González, 1999): Cuevad de Ayllón, Deza, Fuentecambrón, Soria (Pulawski, 1971). Teruel: Albalate (1 ㅇ, SCHL). Toledo: Toledo. Valencia: Valencia (Gayubo and Mingo, 1988). Valladolid: Valladolid (Gayubo, Asís, and Tormos, 1990). Zamora (Gayubo, 1986a): Brime de Urz, Olmillos de Castro, Peleas de Arriba. SWITZERLAND: south of the Alps (de Beaumont, 1964). TAJIKISTAN: Ayvaj, Kabadyan, Kondara 35 km N Dushanbe ($1 \stackrel{\circ}{ }$, 1 ơ $^{\circ}$), Kurgan-Tyube, Parkhar, Ruydasht 40 km N Dushanbe. TUNISIA: Ain Draham 1 km S Kroumirie ($1+$, CSE), 24 km S Gabès at $33^{\circ} 42^{\prime} \mathrm{N} 10^{\circ} 00^{\prime} \mathrm{E}\left(20^{\circ}\right.$, CSE), Ghar
el Melh 35 km S Bizerte (1 ơ, CSE). TURKEY (Gayubo, Özbek, and Yildirim, 2003, or as indicated); $^{\text {a }}$) Çankiri: Ilgaz (Pulawski, 1967). Erzurum: University campus. Hakkâri: Yüksekova (4 ơ, CSE). Hatay: Antakya (6 0^{7}). Kars: Sankamiș. Tokat: Tokat. TURKMENISTAN: Charjow (1 \boldsymbol{o}^{*}), Firuza 40 km W Askhabad, Kara-Kala, Mary, 40 km N Mary ($1 \stackrel{\circ}{+}, 1 \delta^{*}$), Repetek ($1+\frac{+}{+}$). UKRAINE: Polesye area (Voblenko, Gorobchishin, and Nesterov, 1996), Sevastopol’, Sudak. UNITED ARAB EMIRATES: Hatta (1 ơ; 1 ㅇ, $\left.1 \delta^{7}, \mathrm{KMG}\right)$, Jabal Ali ($1 \sigma^{\pi}, \mathrm{KMG}$). UZBEKISTAN: Aman-Kutan 35 km SW Samarkand, Kitab, Kuropatkino 50 km SW Samarkand, Tashkent, Tashkent Oblast' (Islamov, 1987): village Khumsan in Karshantau Range and village Sidjan in Ugamskiy Range.

Tachysphex nitidissimus de Beaumont

Figures 254, 255.
As Tachysphex No. 11: de Beaumont, 1940:176 (in revision of Egyptian Tachysphex), corrected to Tachysphex nitidissimus by Pulawski, 1971:154.
As Tachysphex No. 14: de Beaumont, 1940:177 (in revision of Egyptian Tachysphex), corrected to Tachysphex nitidissimus by Pulawski, 1971:154.
Tachysphex nitidissimus de Beaumont, 1952a:192, ㅇ, ® *. Holotype: $\overbrace{}^{* 7}$, Algeria: Hoggar: Idjef Mélène near Hirhafok (LAUSANNE), examined before 1971.- de Beaumont, 1958:62 (Algeria: Tassili des Ajjer); Pulawski, 1964:95 (Egypt); de Beaumont, 1965:49 (Greece, diagnostic characters); Pulawski, 1967:405 (Turkey), 1971:154 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:8 (Israel); Bohart and Menke, 1976:275 (listed); Kazenas, 1978b:121, 131 (in key to Sphecidae of Kazakhstan and Central Asia); Guichard, 1980:228 (Oman), 1991:339 (Jordan); Roche and Zalat, 1994:115 (Egypt: Sinai Peninsula); Nazarova, 1998:41 (Tajikistan); Kazenas, 2001:30 (in checklist of Sphecidae of Kazakhstan and Central Asia), 2002:72 (Kazakhstan); Gayubo, Özbek, and Yildirim, 2003:89 (Turkey).
Tachysphex consocius mookonis Tsuneki, 1972e:392, ㅇ. Holotype: 우, Mongolia: Hovd Aymag: 45 km NNE Somon Bulgan (TMB), examined. Synonymized with Tachysphex nitidissimus by Pulawski in Krombein and Pulawski, 1994:28.- Bohart and Menke, 1976:273 (listed).

Recognition.- Tachysphex nitidissimus, an all black species that occurs north of the equator, has the scutal and mesopleural punctures well defined and interspaces shiny, and the setae erect on the postocellar area and distal half of the midfemoral venter (midfemoral setae no longer than one midocellar diameter). Other characteristics include a flat, not emarginate labrum, presence of only three silvery tergal fasciae (exceptionally only two), and unspecialized tarsi (length of midtarsomere II more than twice length, tarsomeres IV longer than wide apically, tarsomeres V without spines on the venter or lateral margins). The clypeal bevel is convex in the female.

Most females of nitidissimus differ from similar species in having a narrow postocellar area (width $0.9-1.3 \times$ length) and setae of postocellar area short (about one midocellar diameter long). The setae, however, are up to about 1.5 midocellar diameter in Egyptian specimens. In some populations (including those from Egypt), the punctures are several to many diameters apart on the postocellar area and scutal disk, thus markedly sparser than in similar species.

The male of nitidissimus differs from most of its congeners in having short flagellomeres I-III (venter of flagellomere I slightly shorter than apical width) that contrast with a markedly longer flagellomere IV (length of flagellomere III about 0.6-0.7 of IV, Fig. 254c). Flagellomeres are similar but somewhat longer in some nitidus and in tarsinus, and almost identical in some fugax (e.g., in specimens from Balkan Peninsula and Israel). Unlike the latter two species the clypeal lip of nitidissimus has no corner (Fig. 254b).

Description.- Scutal and mesopleural punctures well defined; interspaces shiny, unsculptured or nearly so; scutal punctures markedly varying in density (see Variation below), mesopleural punctures at center mostly about one diameter apart, about two diameters in some specimens. Punctures of mesothoracic venter mostly about one diameter apart, but many diameters apart in
some specimens (e.g., those from mainland Egypt and Sinai Peninsula). Propodeal dorsum rugose or irregularly ridged longitudinally; side ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae erect on postocellar area and on each side of oral fossa next to occipital carina (setal length mostly about $1.0 \times$ midocellar diameter, but up to about $1.5 \times$ midocellar diameter in Egyptian specimens), suberect on scutum anteriorly, inclined anterolaterad on propodeal dorsum, and nearly erect in distal half of midfemoral venter (no longer than midocellar diameter).

Head, thorax, gaster, and legs black, mandible reddish basally, tarsal apex brown or reddish. Frontal setae silvery in both sexes. Wing membrane slightly infumate; costal vein of forewing light brown, subcostal vein dark brown. Terga I-III silvery fasciate apically (I and II in single female from Morocco).

ㅇ.- Clypeus (Fig. 254a): bevel longer than basomedian area; lip free margin arcuate or min-

FIGURE 254. Tachysphex nitidissimus de Beaumont: a - female clypeus and mandible; b - male clypeus and mandible; c - base of male antenna; d - volsella with outlines showing individual variation; $\mathrm{e}-\mathrm{penis}$ valve with outline showing individual variation.
imally, obtusely expanded mesally, not incised laterally. Width of postocellar area $0.9-1.3 \times$ length. Dorsal length of flagellomere I 2.0-2.5 \times apical width. Dorsal foretibial surface with one or two fine spines; outer surface with one or two spines. Forebasitarsus with $5-8$ rake spines. Midtrochanteral venter varying from minutely punctate to impunctate. Apical depression of tergum V impunctate, glabrous. Pygidial plate: punctures averaging many diameters apart, interspaces unsculptured except microsculptured basally. Length $5.1-7.8 \mathrm{~mm}$.
$\delta^{\boldsymbol{o}}$.- Mandible: trimmal carina without tooth or cleft. Clypeus (Fig. 254b): bevel shorter than basomedian area; lip free margin arcuate to obtusely pointed, without corner, forming single curved line with that of lateral section (but bevel, at each lateral end, with minuscule tubercle that is close to clypeal margin); tubercles about equidistant from each other and adjacent orbit. Width of postocellar area 1.3-1.6 \times length. Dorsal length of flagellomere I $0.8-1.1 \times$ apical width, equal to about 0.8 of II; ventral length slightly smaller than apical width. Length of flagellomere III about 0.6-0.7 of IV (Fig. 254c). Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere's width. Length $4.0-5.2 \mathrm{~mm}$. Volsella and penis valve: Figs. 254d, e.

Variation.- In many specimens, the postocellar area and scutum are densely punctate (punctures about one diameter apart), but punctures are several to many diameters apart in specimens from the Hoggar and Tassili des Ajjer mountains in Algeria, Lower Egypt, Sinai Peninsula, Arabian Peninsula, some from Israel, and in many specimens from Kazakhstan, Uzbekistan, and Tajikistan.

Geographic distribution (Fig. 255).- Hoggar and Tassili des Ajjer Mountains in Algeria to Morocco and Lower Egypt, Cyprus, Greece and Bulgaria in the north, east to Oman, Turkmenistan, Uzbekistan, Tajikistan, southern Kazakhstan, and Mongolia.

Records (from Pulawski, 1971, if not indicated otherwise).- ALGERIA: Dider and Iherir in Tassili des Ajjer (de Beaumont, 1958), Idjef Mélène near Hirhafok in Hoggar (de Beaumont, 1952a). BULGARIA: Aytos (2 早), Nessebyr, Sandanski (3 ㅇ), Slanchev Bryag near Sozopol (1)), Sofia: Knyazhevo

 Yerasa, Yermasoyia River (2 or $^{\text {f }}$). EGYPT: Al Qahirah (= Cairo): Maadi (1 \&) , Wadi Hof. Sina (= Sinai): Feiran oasis ($2 \not \subset 1 \AA^{\circ}$). GREECE (de Beaumont, 1965): Aegean Islands: Mykonos, Rhodes: Kremasti (1 \&), Tinos. Ionian Islands: Corfu (1 \&). Kriti (= Crete): Gortyn, Heraklion, Yiofiro (1 o). Pelopónnisos: Asini, Kalamata. Sterea Ellás (= Central Greece): Loutraki, Mt. Penteli, Nea Kifissia, Nea Penteli (1 ¢) ,

Figure 255. Collecting localities of Tachysphex nitidissimus.

Thebes. Thessalia: Lehonia 15 km SW Volos. ISRAEL: Beersheba (1 \&), En Zeelim on Dead Sea 5 km N Masada (1 ㅇ, CSE), Jerusalem, Kurnub (1 ㅇ), Mesad Aqrabbim 45 km SE Beersheba (1 ㅇ, CSE), Ramat Gan 5 km E Tel Aviv, Tiberias (1 \&). JORDAN: Aqaba (Guichard, 1991), Djérache (de Beaumont, 1965). KAZAKHSTAN (K = Kazenas, 2002): Aktöbe: 30 km SW Yrghiz (K). Almaty: 15 km E Ayak-Kalkan 150 km NE Almaty on Ili River at about $44^{\circ} \mathrm{N} 78.5^{\prime} \mathrm{E}(\mathrm{K})$, Borandysu 30 km E Chilik (K), 10 km NW Chundzha (K), Dubun at $43^{\circ} 40^{\prime} \mathrm{N} 80^{\circ} 05^{\prime} \mathrm{E}(\mathrm{K})$, Kaskelen River 50 km N Almaty ($2 \mathrm{o}^{\circ}$), 11 km S Panfilov, now Zharkent (K). East Kazakhstan: Rozhkovo at $47^{\circ} 45^{\prime} \mathrm{N} 84^{\circ} 55^{\prime} \mathrm{E}$. Qaraghandy. Balqash (K) Qyzylorda: 3 km NW station Kamyshlybash (1 \&), 15 km S Kazalinsk (K). South Kazakhstan: Otrar at $42^{\circ} 54^{\prime} \mathrm{N} 68^{\circ} 22^{\prime} \mathrm{E}(\mathrm{K})$. Zhambyl: 50-70 km NW Furmanovka (K), Lake Biylikul' (K), Togusken (K), $17-25 \mathrm{~km}$ SE Ulanbel' on Chu River $\left(1 \delta^{\star}\right), 64 \mathrm{~km}$ NW Zhambyl at Lake Biylikul' (K), Zhanatas (K). LEBANON: Kadisha. MONGOLIA: Hovd Aymag: 45 km NNE Somon Bulgan (1 \& , TMB, holotype of Tachysphex consocius mookonis). MOROCCO: 8 km N Ait-Saoun on Ouarzazate-Zagora road ($1+$, KMG). OMAN: Northern Oman: Masirah Island (1 + , KMG), Khasab ($1+$, KMG); also (Guichard, 1980): Nizwa, Tinaf. PAKISTAN: Baluchistan: Peshin (2 ơ, BMNH). SAUDI ARABIA: Ad Diriyah ($\left.1 \sigma^{*}, \mathrm{KMG}\right)$. SYRIA: Damascus: Barze ($2 \circ 1 \sigma^{\circ}$), DamascusKissoue road. TAJIKISTAN: Dashti-Djum E Kulab, Tigrovaya Balka Nature Reserve (Nazarova, 1998). TURKEY: Aydin: Germencik. Erzurum: Tortum (Gayubo, Özbek, and Yildirim, 2003). Hatay: Antakya (1 우). Konya: Beysehir (Pulawski, 1967), Konya. Mersin: Mut (2 우), Tarsus. Urfa: Birecik (1 ㅇ, $1 \circ^{\boldsymbol{*}}$), Urfa.

Tachysphex nitidus (Spinola)

Figures 256, 257.
[N.B. Tachysphex nitidus has been reported more than 130 times in the literature, mostly as locality records from Europe. Only the essential nomenclatural data are provided below. The previous revisionary study is by Pulawski, 1971:149 (as ibericus).]

Astata nitida Spinola, 1805:17, sex not indicated. Lectotype: ㅇ, Italy: Liguria: no specific locality (MSNT), designated by de Beaumont, 1952b:43, examined in 1971.- As Tachytes nitida: Spinola, 1808:76 (new combination).- As Larrada nitida: F. Smith, 1856:275 (new combination).— As Larra nitida: Casolari and Casolari Moreno, 1980:112 (new combination, specimens in M. Spinola collection).- As Tachysphex nitidus: Kohl, 1885:372 (new combination, in revision of Larrini).
Tachytes ibericus de Saussure, 1867:68, ㅇ. Holotype or syntypes: 우, Gibraltar (NHMW), examined before 1971.- Synonymized with Tachysphex nitidus by Kohl, 1885:372.- As Tachysphex nitidus ibericus: Pulawski, 1972:817 (new status).
Tachysphex ibericus borealis Pulawski, 1971:148, 오, $\overbrace{}^{*}$. Holotype: 우, Netherlands: Norwijk a. Z. (RMNH), examined before 1971. Synonymized with Tachysphex nitidus by Pulawski, 1972:817.

Nomenclatural history.- Kohl (1885) thought that Tachysphex nitidus (Spinola, 1806), unicolor (Panzer, 1806-1809), and ibericus (de Saussure, 1867) were all one species, and he synonymized these names. Pulawski (1971) recognized two species that he called nitidus (= unicolor) and ibericus. He subsequently (1972) examined the lectotype of nitidus and found that it was actually identical to ibericus. As a consequence, unicolor became a valid name. This nomenclatural change is unfortunate, as Pulawski's nitidus of 1971 is a different species than his nitidus of 1972 and than nitidus of this paper.

Recognition.- Tachysphex nitidus is an all black Palearctic species. It has well-defined scutal and mesopleural punctures with shiny interspaces and erect setae on the postocellar area and the distal half of the midfemoral venter (setal length, on the midfemur, no more than one midocellar diameter). Other characteristics include a flat, nonemarginate labrum and unspecialized tarsi (length of midtarsomere II more than twice length, tarsomeres IV longer than wide apically, tarsomeres V without spines on the venter or lateral margins). As in agnus and nitidissimus, the clypeal bevel is convex in the female, but unlike agnus the erect setae are straight or angled at apex, not sinuous.

The female of nitidus is similar to nitidissimus, but differs in having the setae of the postocel-
lar area longer than midocellar diameter and the scutal punctures no more than two diameters apart (mostly less than one diameter). In most nitidissimus, the setae of the postocellar area are about one midocellar diameter long but longer in some desert populations in which the scutal punctures are many diameters apart.

Males of nitidus have no lateral corner on the clypeal lip (Figs. 256b), the clypeal free margin thus forming a single, curved line between lip tip and orbit (bevel in some specimens with a lateral tubercle that may superficially look like a lip corner). In addition, the flagellomeres are uniformly sculptured, and sternum VIII is evenly emarginate apically. Two similar species, sympatric with nitidus in many areas, are agnus and nitidissimus. In nitidus, however, the setae are straight or angled apically on the postocellar area and the thorax (sinuous in agnus, at least anteriorly on the mesopleuron), and flagellomeres I-III are not shortened, III nearly as long as IV (markedly shorter in nitidissimus). Also similar are the southern African hermia, longipes, and titania, in which the clypeal bevel is delimited laterally by obtuse carina that emerges from lip and is almost parallel to clypeal free margin. No such carina is present in nitidus in which, in addition, the setae are all appressed on the hindfemoral venter (suberect basally in longipes) and the galea is shorter than wide in profile and densely punctate apically (in titania longer than wide in profile and sparsely punctate apically)

Relationships of Tachysphex nitidus and unicolor.- These two species are largely sympatric and extremely similar, although most males are easily distinguished: in nitidus, the preapical rake spines on the forebasitarsus are present and in most specimens terga I-IV are fasciate; in unicolor the preapical rake spines are absent and only terga I-III are fasciate. None of the two characters is constant, however. For example, in some specimens from Central and Northern Europe with four tergal fasciae, the preapical spines may be present on one leg and absent on the other, possibly disappearing on both legs in some cases. In a male from Abu Rawash, Egypt, that I regard as nitidus, the foretarsal rake is well defined, but only terga I-III are fasciate. Recognition of females is even more difficult: in nitidus the clypeal bevel is shorter than the basomedian area (but narrowly longer mesally in some specimens) and terga I-III or I-IV are fasciate, whereas in unicolor the bevel is as long as or longer than the basomedian area, and only terga I-III are fasciate. In practice, distinguishing between the two bevel sizes may be precarious, and species determination for the females with only three tergal fasciae is especially problematic. I thought in 1971 that the mesopleural punctures were evanescent posteriorly in the females of nitidus, and well defined in unicolor (except for the females from the Canary Islands). Now however, using better optics, I see that punctures are well defined in nitidus as well as in most unicolor, being evanescent posteriorly only in the Canary Island population of unicolor. I conclude that the status of these various populations needs a thorough reevaluation.

Although I reported both nitidus and unicolor from North Africa (Pulawski, 1971), only nitidus is included in this study.

Description.- Scutal punctures well defined, less than one diameter apart in most specimens, but up to about two diameters apart in some. Mesopleural punctures well defined, varying from about two diameters to less than one diameter apart near center. Propodeal dorsum rugose; side ridged. Hindcoxal dorsum with inner margin carinate only basally.

Setae erect on postocellar area, slightly longer than midocellar diameter; suberect on scutum; suberect on each side of oral fossa next to occipital carina, about as long as midocellar diameter; suberect on midfemoral venter, becoming gradually longer toward femoral apex; inclined obliquely anterad on propodeal dorsum.

Head, thorax, gaster, femora, and tibiae black, mandible reddish at about two thirds of length, tarsal apex brown to reddish. Frontal setae silvery in both sexes. Wing membrane nearly hyaline;

Figure 256. Tachysphex nitidus (Spinola): a - female clypeus and mandible; b - male clypeus and mandible with outline showing individual variation; $\mathrm{c}-$ volsella with outlines showing individual variation; $\mathrm{d}-$ penis valve.
costal and subcostal veins of forewing varying from dark brown and black to light brown and brown or to yellowish and brown, respectively. Terga I-III or I-IV silvery fasciate apically.

ㅇ.- Clypeus (Fig. 256a): bevel shorter than basomedian area (except longer along narrow, median zone in some specimens); lip free margin arcuate, not incised laterally. Width of postocellar area 1.3-1.7 \times length. Dorsal length of flagellomere I 2.0-2.7 \times apical width. Dorsal foretibial surface with one or two inconspicuous spines; outer surface with one spine. Forebasitarsus with 5-7 rake spines (mostly 6). Apical depression of tergum V glabrous in most specimens, but setose in single female from Saqqara, Egypt. Pygidial plate with punctures that average many diameters apart, interspaces unsculptured or aciculate. Length $6.0-7.5 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina widely broadened but without tooth or cleft. Clypeus (Fig. 256b): bevel shorter than basomedian area; lip free margin in most specimens pointed and without corner, forming single curved line with rest of clypeal margin (bevel in some specimens with lateral tubercle that may superficially look like lip corner); distance between tubercles up to $1.2 \times$ distance between tubercle and orbit. Width of postocellar area $1.5-2.2 \times$ length. Dorsal length of flagellomere I 1.1-1.3 \times apical width, ventral length slightly more to slightly less $(0.9-1.1 \times$) than apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with up to
three preapical rake spines (without preapical spines on one leg in some specimens); outer apical spine of foretarsomere II markedly shorter than tarsomere III (but as long as tarsomere III in single male from Abu Rawash, Egypt, and another from Palmyra, Syria). Length $4.5-5.7 \mathrm{~mm}$. Volsella and penis valve: Figs. 256c, d.

Nesting behavior.- Observations by Adlerz (1904, as unicolor; 1916, as nitidus) in Sweden almost certainly refer to this species. The nest, starting from a flat surface, consists of an oblique gallery, $30-37 \mathrm{~mm}$ long, and of a single cell that is placed 4 mm below the soil surface. The female performs an orientation flight before she goes hunting. The nest entrance is permanently opened during the provisioning period, but one nest was found closed and empty, and another closed and with two prey but no egg inside. In the latter two cases the temporary closure was probably practiced. The prey, immature acridids, are flown to the nest and held with the wasp's mandible by the bases of their antennae. Upon landing at the nest entrance, the female drops the prey, enters inside, turns around, grasps the grasshopper by the base of an antenna, and drags it inside. The number of prey per cell varies from one to 13 . After completing nest provisioning and after ovipositing, the female closes the nest, facing away from the nest entrance, and using her forelegs to project sand under her body into the entrance. Use of hindlegs for nest closing, reported by Carpenter (1930), is almost certainly a mistake. Observations by Deleurance (1946) probably refer to unicolor.

Geographic distribution (Fig. 257).Canary Islands, North Africa (Morocco, Algeria, Tunisia, Libya, Egypt), Europe (north to southern Britain, southern Sweden, and southern Finland), Israel, Syria, Saudi Arabia, Kazakhstan, Uzbekistan, Turkmenistan.

Records (only African and Arabian local-ities).- CANARY ISLANDS: Fuerteventura: Coti (1 \&). Tenerife (Pulawski, 1971): Adeje, Los Christianos. EGYPT: Al Jizah (= Ghiza): Abu Rawash (1 δ^{*}), Saqqara (1 \&). Aswan: Aswan (4 \&) . Matruh: 20-25 km W Marsa Matruh (1 ㅇ), 25-30 km W Marsa Matruh (1 $\circ ; 1 \quad \circ$, MSNT). LIBYA:

Figure 257. Collecting localities of Tachysphex nitidus (only African and Arabian localities) and oberon. Cyrenaica: Brega. Tripolitania: Hon oasis (1 \circ). MOROCCO: Agadir (2 \& , $2 \sigma^{*}$), Kenitra ($1 \sigma^{*}$), Marrakech: Oued Tensift ($1 \sigma^{*}$), Tetouan ($1+$) . SAUDI ARABIA: Al Ha'ir ($10^{\circ} ; 1$ ㅇ, $\left.1 \sigma^{\circ}, \mathrm{KMG}\right)$. TUNISIA: Djerba Island: SE Haut Souk at $33^{\circ} 52^{\prime} \mathrm{N} 10^{\circ} 55^{\prime} \mathrm{E}(1$ of, $1 \sigma^{\prime} ; 1 \delta^{\prime}, \mathrm{CSE}$) and Rass Rmel Peninsula ($2+1 \delta^{\star}, \mathrm{CSE}$), Kheddache 6 km W Beni at $33^{\circ} 15^{\prime} \mathrm{N} 10^{\circ} 08^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\prime} ; 2 \mathrm{o}^{\circ}$, CSE), 20 km W Matmata at $33^{\circ} 33^{\prime} \mathrm{N} 9^{\circ} 45^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{CSE}\right.$), 10 km SE Tataouine at $32^{\circ} 51^{\prime} \mathrm{N} 10^{\circ} 30^{\prime} \mathrm{E}$ (1 ㅇ, CSE), Tozeur (1 우).

Tachysphex notogoniaeformis Nadig

Figures 258, 259.
Tachysphex notogoniaeformis Nadig, 1933:80, ${ }^{7}$. Holotype: σ^{7}, Morocco: Tizi n'Tichka (originally coll. Nadig, now Zurich Univ.), examined before 1971.- de Beaumont, 1947c:662 (redescription), 1950a:405 (Algeria), 1955a:178 (Morocco, description of female); Pulawski, 1971:307 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:275 (listed).

ReCognition.- Tachysphex notogoniaeformis, ranging from Morocco to Libya, has a convex labrum (protruding beyond the clypeal free margin) and an elongate galea (length equal to 1.2 of
scape). The species is further characterized by a densely punctate scutum (punctures minute, about one diameter apart), the setae adjacent to the hypostomal carina straight and about one midocellar diameter long, and the propodeal dorsum glabrous apicomesally. In addition, it has an infumate wing membrane and all black gaster and tibiae. In the female, the clypeal lip is evenly arcuate (emarginate mesally), but minimally sinuous laterally. In the male, the forebasitarsus has two short preapical spines on the outer margin (spine length smaller than basitarsus width), and the outer apical spine of foretarsomere II is markedly shorter than foretarsomere III.

The species is similar to chephren and liriformis. In notogoniaeformis, however, the propodeal dorsum has a glabrous apicomedian area whereas it is all setose in the other two species (with a minimal glabrous area in some liriformis). In most notogoniaeformis, the midfemoral venter is rounded, whereas it forms an obtuse crest in chephren; also, the setae of the postocellar impression in the male are erect, about $0.5 \times$ midocellar diameter long (best seen in ventral oblique view), whereas they are appressed in chephren and similar but shorter in liriformis. In addition, the dorsal volsellar process (Fig. 258c) is wider than in either chephren or liriformis.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea densely, minutely punctate, its length equal to 1.2 of scape. Scutal punctures minute, about one diameter apart. Mesopleuron dull, uniformly microsculptured. Propodeal dorsum evenly microareolate; side in female ridged (all or only along dorsal and posterior margins), evenly microsculptured in male. Hindcoxal dorsum with inner margin carinate basally.

EH \& JK
Figure 258. Tachysphex notogoniaeformis Nadig: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.

Setae erect on each side of oral fossa next to occipital carina, about as long as midocellar diameter; appressed on postocellar area in female, in male erect on postocellar impression, about $0.5 \times$ as long as midocellar diameter (best seen in oblique ventral view); appressed on scutum; oriented posterolaterad on propodeal dorsum; apicomedian portion of dorsum glabrous (length of glabrous area about $0.2-0.5$ of dorsum).

Head, thorax, legs, and gaster black, mandible reddish mesally, tarsal apex reddish. Frontal setae silvery in both sexes. Wing membrane infumate; costal vein of forewing reddish brown to brown, subcostal vein brown to black. Terga either nonfasciate or terga I and II or I-III silvery fasciate apically.
¢.- Clypeus (Fig. 258a): bevel longer than basomedian area; lip free margin arcuate, emarginate mesally, with minimal sinuosity laterally. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I 3.3-3.5 \times apical width. Dorsal foretibial surface with two or three spines; outer surface with two or three spines. Forebasitarsus with seven or eight rake spines. Apical depression of tergum V asetose (except mesally) in specimen from Garian, Libya, and all setose in that from Ait Saoun, Morocco. Pygidial plate with punctures that average many diameters apart (denser near margin); interspaces unsculptured. Length $10.5-14.0 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 258b): bevel about as long as basomedian area, delimited laterally by oblique carina that emerges from lip corner; lip free margin arcuate, shallowly emarginate mesally in some specimens, with well-defined corner; distance between corners practically equal to distance between corner and orbit. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I $1.2-1.4 \times$ apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with two preapical spines that are shorter than basitarsus width; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Hindfemoral venter with inner (= posterior) margin sharp in distal half. Length $8.0-12.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 258c, d.

Geographic distribution (Fig. 259).Morocco to Libya.

Records.- ALGERIA: Ain Sefra (de Beaumont, 1947c), Bou Hanifia (de Beaumont, 1950a). LIBYA: Garian (1 \&). MOROCCO: Ait Saoun at $30^{\circ} 44^{\prime} \mathrm{N} 6^{\circ} 38^{\prime} \mathrm{W}\left(1+9,1 \delta^{\circ}\right)$, Gorges du Todra at

Figure 259. Collecting localities of Tachysphex notogoniaeformis and octodentatus. $31^{\circ} 36^{\prime} \mathrm{N} 36^{\circ} 00^{\prime} \mathrm{W}\left(1 \delta^{\top}\right)$, Ijoukak ($1 \mathrm{o}^{\top}$), Ksar es Souk (1 ơ $^{\circ}$), Tizi n’Tichka (Nadig, 1933). TUNISIA: Gafsa (de Beaumont, 1947c).

Tachysphex oberon Arnold

Figures 257, 260.
Tachysphex oberon Arnold, 1923a:161, \& (as Oberon, incorrect original capitalization). Holotype: of, Zimbabwe: Sawmills (SAM), examined.—Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:275 (listed).

Recognition.- The female of oberon has short tarsi (e.g., the length of foretarsomere II and of midtarsomere III is about equal to the apical width), a black gaster and yellowish wings, a labrum
whose free margin is arcuate mesally rather than pointed, a galea about as long as wide in profile, an evenly punctate scutum and mesopleuron, and the pygidial plate with punctures that are several to many diameters apart mesally. The legs vary from all black to all red. Specimens with black legs resemble tembe and can be differentiated by the characters given in the Key section (p. 44). Specimens with red legs are similar to saevus, but have the clypeal free margin evenly arcuate mesally (exceptionally with three median teeth), mesopleural punctures no more than one diameter apart and the interspaces almost unsculptured, shiny, the propodeal side ridged at least anteriorly, and the pygidial plate sparsely punctate mesally (punctures averaging more than one diameter apart). In saevus, the clypeal free margin is obtusely pointed mesally; the mesopleural punctures are more than one diameter apart at center and the interspaces are conspicuously microsculptured, dull; the propodeal side is not ridged; and punctures of the pygidial plate average less that one diameter apart (at least mesally).

The male of oberon lacks prominent distinctive features, but can be recognized by the following combination: gaster all or partly red, femora red at least apically, tibiae all red; mesopleural punctures well defined; foretarsus without rake; and setae oriented posterad on the propodeal dorsum (basomedian setae oriented anteromesad in many specimens). Some harpax are similar, but in oberon flagellomere I is short (ventral length minimally shorter to slightly longer than apical width), setae are erect on the postocellar area (but no longer than one midocellar diameter), length of midtarsomere II is $1.5-2.1 \times$ apical width, and the apical tarsomeres each with at most one preapical spine on the venter; also, the labral setae are usual, long and thin. In harpax, the ventral length of flagellomere I is $1.3-1.5 \times$ the apical width, setae are appressed on the postocellar area, length of midtarsomere II is more than twice length, each apical tarsomere has a ventral group of preapical spines, and the labral setae are short, stout (as in Fig. 178c).

Both sexes of oberon closely resemble mashona, but their supraantennal swelling is only slightly more prominent than average for the genus, and the rim of the antennal socket is about the same height ventrally and dorsally. In mashona, the supraantennal swelling is unusually large, and the rim is expanded dorsally.

Description.- Galea in profile about as long as wide, about as long as 0.5 of scape. Supraantennal swelling slightly more prominent than average for the genus. Scutal punctures well defined, averaging about one diameter apart; interspaces inconspicuously microsculptured; in female, most punctures small, but some punctures distinctly larger, many diameters apart. Mesopleural punctures well defined, averaging about one diameter apart (less than that anterad of episternal sulcus); interspaces shiny. Propodeal dorsum evenly microareolate; side inconspicuously ridged in anterior half or less in most specimens, but finely ridged throughout in many Ethiopian and most Kenyan specimens (ridges absent in several males from Kenya). Hindcoxal dorsum with inner margin carinate basally. Sternum I with ill-defined longitudinal carina (carina well defined apically in some males).

Setae suberect on each side of oral fossa next to occipital carina (setal length up to about 0.3 of basal mandibular width); erect on postocellar area, about one midocellar diameter long; appressed on scutum; on propodeal dorsum oriented posterad at least apicomesally (oriented anteromesad near propodeal base mesally, largely so in single male from Niger).

Head and thorax black, mandible reddish mesally. Frontal setae silvery in female, golden in male; all thoracic setae golden in fresh males from Kenya and Tanzania. Wing membrane yellowish (markedly darkened in distal half in Kenyan specimens); forewing costal and subcostal veins reddish brown. Color of femora and gaster: see below. Terga I-IV (I-III in some males) silvery fasciate apically, but fasciae golden and inconspicuous in most Kenyan males.

ㅇ.- Clypeus (Fig. 260a): bevel about as long mesally as basomedian area; lip free margin
arcuate, somewhat produced mesally (with three teeth in single female from Tembe Elephant Park), with at least one adlateral and one lateral incision on each side (adlateral incision may be reduced to sinuosity). Width of postocellar area 1.2-1.3 \times length. Dorsal length of flagellomere I 1.3-1.4 \times apical width. Forefemoral venter minutely punctate, punctures several to many diameters apart; interspaces shiny. Dorsal foretibial surface with a few suberect, inconspicuous bristles; outer surface less densely punctate than remaining surface, with a few, fine but conspicuous bristles. Tarsi short: length of fore- and midtarsomeres II about 1.0 and $1.6 \times$ apical width, respectively; that of midtarsomere III equal to apical width; of fore-, mid-, and hindtarsomeres IV about $0.9,0.9$, and $1.0 \times$ apical width, respectively. Forebasitarsus: apical margin shallowly, roundly emarginate (as in Fig. 54d); outer margin with 9-11 rake spines; four apical spines with basal sockets contiguous or nearly so; spine length about $1.5 \times$ basitarsus width. Apical tarsomeres stout, without spines on venter or lateral margins or with one lateral spine on one side of some tarsomeres. Apical depression of tergum V largely glabrous mesally, setose laterally. Pygidial plate with punctures that are more than one diameter apart mesally, but averaging about one diameter apart near margin and apex; apex emarginate. Length $7.8-10.3 \mathrm{~mm}$. Gaster and legs black in most specimens (including tarsi), but femora, tibiae, and tarsi red in Ethiopian females, in one from Marich Pass, Kenya, and in one from Bubye area, Zimbabwe.
0^{7}.- Mandible: trimmal carina with obtuse tooth, cleft present only in some Ethiopian specimens. Clypeus (Fig. 260b): bevel somewhat ill defined, shorter than basomedian area; lip free margin arcuate to obtusely angulate, with corner mostly well defined (although not prominent), but ill defined in some specimens; distance between corners $0.7-1.0 \times$ distance between corner and orbit,

Figure 260. Tachysphex oberon Arnold: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.
but up to $1.1 \times$ in some males from Zanzibar. Width of postocellar area $0.9-1.1 \times$ length. Dorsal length of flagellomere I 1.2-1.3 \times apical width, equal to 0.7 of II; ventral length slightly less to slightly more than apical width (up to $1.1 \times$). Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines. Midtarsus varying in length: that of tarsomere II $1.5-2.1 \times$ apical width, that of tarsomere III $1.2-1.4 \times$ apical width. Venters of tarsomeres V each with one or none preapical spine. Sternal punctures becoming markedly larger toward gastral apex; in Ethiopian, many Kenyan specimens, and that from Niger, several to many diameters apart on sterna III-VI or IV-VI anterad of apical depression. Sterna III-VI with setae suberect in apical half (all appressed in some specimens from Angola). Sternum VIII with apical margin nearly evenly emarginate in most specimens, tridentate in some (middle tooth varying from inconspicuous to as large as lateral one). Length $6.0-9.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 260c, d. Femora mostly all red or black only basally, but nearly all black (with red apex) in many specimens from Zanzibar; tibiae and tarsi red. Gastral terga I and II or I-III red (tergum I only posteromesally and tergum II only mesally in some specimens from Zanzibar); remainder mostly brown or black, but all gaster red in specimens from Ethiopia, that from Niger, most from Kenya, and some from Angola.

Nest and prey.- A nesting colony of oberon was found on the southern sandy bank of the Morun River, opposite Marich Pass Field Studies Centre, Kenya, in November 2002. The females nested on a slightly oblique slope along a small, shallow, dry irrigation canal. They were flying low over the ground in irregular circles and zigzags, inspecting low, erect plants, lowest branches of the acacias (just above the ground) or searching under small, dry twigs or pieces of bark or dry leaves (disappearing on one side and reappearing on the other). They also frequently entered what appeared to be their own nests or perhaps some other wasps' open nests. Michael A. Prentice captured a female on 27 November 2002 as she was flying with her prey, a young gryllid nymph, under her body. At two instances we saw a female with prey enter an open gallery (without stopping at the entrance), but our attempts to excavate the nests failed.

Geographic distribution (Fig. 257).- Gambia to Somalia, south to Namibia and northeastern South Africa.

Records.- ANGOLA: Giraul River 10 mi NE Namibe ($4 \mathrm{o}^{\pi}$, BMNH), 18 mi NE Luanda ($1 \mathrm{o}^{\circ}$). ETHIOPIA: Gamo Gofa: 42 road km NNE Arba Minch ($2 \stackrel{\circ}{\circ}, 1 \delta^{\star}$), 58 road km NNE Arba Minch ($1 \mathrm{c}^{\star}$), 49

 Ukunda at $4^{\circ} 18^{\prime} \mathrm{S} 39^{\circ} 33^{\prime} \mathrm{E}\left(1\right.$ ค +2 o $^{\circ}$, USNM), Voi area (1 ํ, 6 o $^{\circ}$, OÖLM), Watamu at $3^{\circ} 23^{\prime} \mathrm{S} 39^{\circ} 59^{\prime} \mathrm{E}$ (6 o $^{\circ}$) and $3^{\circ} 23^{\prime} \mathrm{S} 40^{\circ} 00^{\prime} \mathrm{E}\left(1 \sigma^{\circ}, \mathrm{MSNT}\right)$. Eastern Province: near Ewaso Ng'iro River opposite Archer's Post (1 早). Rift Valley Province: Marich Pass area 4 km N road to Sigor ($1 \circ$, $5 \mathrm{o}^{\circ}$), Marich Pass Field Studies Centre

 Sokoke Forest in Kilifi District (2 , LACM). NAMIBIA: Grootfontein District: 90 km NE Grootfontein ($1 \circ$, JG). Karibib District: Khan River 23 km N Karibib (2 o^{r}). Khorixas District: 2 km W Khorixas ($1 \mathrm{o}^{\circ}$).

 ($1 \sigma^{\pi}$, KMG). SOMALIA: Afgoi ($1 \sigma^{\pi}$, RMNH). SOUTH AFRICA: Gauteng: Pretoria: Botanical Garden

 Langjan Nature Reserve (1 ㅇ, PPRI), Nylsvley Nature Reserve (10°, FSCA), Pafuri in Kruger National Park ($1 \sigma^{\circ}$, PPRI), Vaalharts [= Vaal River irrigation scheme, probably near Hartswater] ($1 \delta^{\circ}$, PPRI). TANZANIA: Coast Region: Pugu Forest near Kisarawe ($1 \mathrm{o}^{\circ}$). Kilimanjaro Region: Kisiwani 27 km SE Same (1 \& , $3 \mathrm{o}^{*}$), 19 km SE Same (1 o, 1 intersex). Morogoro Region: 62 road km SW Morogoro (o^{7}), Udzungwa National Park 132 km E Iringa ($\mathbf{1}^{\text {of }}$). Tanga Region: 30 km SW Korogwe ($1 \mathrm{o}^{\circ}$), 10 km WNW Mabokweni (4 ค,
 Region: Unguja (= Zanzibar Island): Chwaka ($3 \sigma^{7} ; 5 \sigma^{\circ}$, MSNT). ZIMBABWE: Bubye River 80 km NE Beit Bridge ($1+$, OÖLM), Bulawayo (1 ㅇ, SAM, holotype of oberon), Penkridge (3 or *, SAM), Redbank at Kami River (3 +) .

Tachysphex octodentatus Arnold

Figures 259, 261, 262.
Tachysphex octodentatus Arnold, 1924:62, 와, 우. Lectotype: 우, Zimbabwe: Sawmills (SAM), here designated, examined.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:275 (listed); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).
Tachysphex octodentatus var. inermis Arnold, 1924:63, ㅇ. . Lectotype: ㅇ, Zimbabwe: Bulawayo (SAM), here designated, examined. New synonym.- As Tachysphex octodentatus inermis: Bohart and Menke, 1976:275 (new status, listed).
Tachysphex tridentatus Arnold, 1924:55, $\stackrel{+}{ }$, \mho^{*}. Lectotype: \mho^{*}, Zimbabwe: Bulawayo (SAM), here designated, examined. New synonym. - Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:277 (listed).
Species 1 (part): van Noort, Prinsloo, and Compton, 2000:348 (Namibia), present correction.
Lectotype selection.- Arnold (1924) labeled a female and a male as types of each octodentatus and tridentatus, and the remaining specimens examined as paratypes. I have selected the female in each pair as the lectotype of the respective nominotypical species, and the male as the paralectotype.

RECOGNITION.- Tachysphex octodentatus is an all black species with unusual sternal punctation (punctures well defined and relatively large on sterna I and II and gradually decreasing in size on the following sterna). The thickened male hindtibial spurs (Figs. 262b, c) are unique within the genus. Subsidiary recognition features are: scutal hindcorner more prominent than in most other species (as in Fig. 334a), hindcoxal dorsum with prominent basal tooth (Fig. 262a) except nonprominent in smallest males, apical tarsomeres without spines on venter or lateral margins, and female labrum and clypeal lip emarginate mesally (Figs. 261a).

JUSTIFICATION OF NEW SYNONYMY.- The type series of octodentatus and of tridentatus are certainly conspecific. The two names were published simultaneously, and I select the former as valid and the latter as its junior synonym.

The holotype of the var. inermis is merely an old specimen, with worn off wing tips and clypeal free margin. The supposed unusually short clypeal teeth that flank the mesal emargination actually result from abrasion.

Description.- Mesothoracic punctures well defined, relatively large, interspaces shiny; scutal punctures averaging about one diameter apart in some specimens, about two diameters in others; mesopleural punctures averaging about one diameter apart in female, less than that in male. Hindcoxal dorsum with inner margin carinate, carina prominently expanded basally (Fig. 262a) except in smallest males. Scutal hindcorner roundly prominent (as in Fig. 334a). Propodeal dorsum rugose, side ridged. Sternal punctures well defined, conspicuous on sterna I and II, gradually decreasing in size on following sterna.

Setae (numbers represent setal length expressed as a fraction of basal mandibular width): erect on postocellar area ($0.6-0.7$); suberect on each side of oral fossa next to occipital carina (0.4), on scutum ($0.3-0.4$ anteriorly), and on midfemoral venter ($0.2-0.3$, or about one midocellar diameter); on propodeal dorsum slightly inclined posterad except slightly inclined anterad basomedially (about 0.5).

Figure 261. Tachysphex octodentatus Arnold: a - female clypeus and mandible with outline showing variation of clypeal free margin; b - male clypeus and mandible with outline showing variation of clypeal free margin; $\mathrm{c}-\mathrm{volsella}$; d - penis valve.

Head, thorax, gaster, and legs black, mandible reddish mesally, tarsi reddish except basally in most specimens. Frontal setae silvery in both sexes. Wing membrane hyaline; forewing costal vein light brown, subcostal vein brown. Terga I-III silvery fasciate apically in both sexes.

ㅇ.- Labrum emarginate mesally. Clypeus (Fig. 261a): middle section slightly convex, bevel about as long as basomedian area; lip free margin arcuate, emarginate mesally, with one or two lateral incisions on each side (dentate in most specimens); both mesal emargination and lateral incisions varying from deep to shallow. Width of postocellar area 1.4-1.5 \times length. Dorsal length of flagellomere I $1.7-1.8 \times$ apical width. Forefemoral venter minutely punctate, punctures several diameters apart. Dorsal foretibial surface with one spine; outer surface with two preapical spines. Forebasitarsus with six rake spines. Apical hindtarsomere in some specimens with one small spine on each lateral margin. Apical depression of tergum V sparsely setose. Length 7.3-10.0 mm.
0^{7}.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 261b): bevel varying from nearly absent to about as long as basomedian area; lip free margin markedly sinuate to sharply pointed mesally; corner well defined, sharply prominent in many specimens (then lobe free margin tridentate); distance between corners $1.1 \times$ distance between corner and orbit. Width of postocellar area $1.5-1.8 \times$ length. Dorsal length of flagellomere I 1.2-1.3 \times apical width. Forefemoral notch glabrous. Outer margin of forebasitarsus with 4-6 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Hindtibial spurs thickened (Figs. 262b, c). Length 4.9-8.0 mm. Volsella and penis valve: Figs. 261c, d.

Figure 262. Tachysphex octodentatus Arnold: a - female hindcoxa ($\times 55$); b - male hindtibial spur, outer side $(\times 250)$; c - male hindtibial spurs, inner side $(\times 250)$.

Geographic distribution (Fig. 259).- Tanzania to Namibia and South Africa.
RECORDS.- BOTSWANA: Serowe ($1 \stackrel{\uparrow}{\circ} 7 \delta^{\star}$). NAMIBIA: Khorixas District: Brandberg: Plateau valley ($3 \sigma^{\star}$, SAM, determined Species 1 by van Noort, Prinsloo, and Compton, 2000). Okahandja District: Okahandja ($1 \circ^{7}, \mathrm{BMNH}$). Opuwo District: Ondorusu Falls ($1 \stackrel{\circ}{+}$, NMN). Rundu District: Popa Falls (2 ㅇ, NMN). Tsumeb District: Ghaub ($1 \stackrel{\circ}{\circ} 1 \stackrel{\circ}{ }, 1 \delta^{\circ}$, PPRI). SOUTH AFRICA: Eastern Cape Province: 6 km N Steytlerville ($2 \sigma^{\circ}$, USU), 9 km E Willowmore ($1 \stackrel{+}{\circ}, 1 \circ^{\circ}$), 37 km NW Willowmore in Grootrivierberg Range (1 ㅇ, USU). Mpumalanga: Crocodile Bridge in Kruger National Park (2 \&, PPRI). Northern Cape Province: Buffels 50 km SW Springbok ($1 \stackrel{\circ}{ }, 1 \circ^{\top}$, OÖLM), 25 km E Hondeklipbaai ($1 \sigma^{\top}$, OÖLM). Northern Province: Afgun ($1 \delta^{*}$, AMG), Ellisras: Hope ($1 \sigma^{*}$, AMG), 10 km SW Naboomspruit ($1 \stackrel{\circ}{ }$, FSCA), Pafuri in Kruger National Park ($1 \stackrel{\circ}{+}, \mathrm{PPRI}$). Western Cape Province: Cape Town: Table Mountain at $33^{\circ} 57^{\prime} \mathrm{S} 18^{\circ} 24^{\prime} \mathrm{E}(1$ 운, $5 \sigma^{\star}$), Clanwilliam: Bulshoek ($1 \sigma^{\star}, ~ S A M$), Huguenot ($1 \delta^{\star}, \mathrm{BMNH}$), Kobee 10 km NE Vanrhynsdorp ($1 \mathrm{o}^{\star}$, OÖLM), Laingsburg at $33^{\circ} 12^{\prime} \mathrm{S} 20^{\circ} 51^{\prime} \mathrm{E}\left(1 \sigma^{\circ}\right)$, Matjiesfontein (2 $\sigma^{\circ} ; 1$ ㅇ, $3 \sigma^{\circ}$, BMNH), 5 km W Robertson (1 δ^{*}), Stellenbosch: Jonkershoek Reserve ($1+$, PMA), Tierberg Farm 23 km NE Prince Albert (1 ㅇ, $3 \delta^{\star}$),
 Region: 48 km W Morogoro ($1 \stackrel{\circ}{\circ}, 1 \delta^{*}$), 62 road km SW Morogoro ($3 \sigma^{*}$), Ruaha River bank 7 km S Mikumi
 including holotype and paratype $+\frac{\circ}{}$ of inermis; paralectotype σ^{\star} of octodentatus, $1 \stackrel{+}{\circ}$ and $2 \sigma^{\circ}$ paratypes of octodentatus; and lectotype σ^{*} and paralectotype \circ of tridentatus; 2 ㅇ, 2 or $^{\circ}$, TMP), Kami Ruins (11 ㅇ,

Tachysphex omoi Guiglia

Figures 263, 264.
Tachysphex omoi Guiglia, 1943b:72, ㅇ. Holotype: $\uparrow+$, Ethiopia: Gamo Gofa: Condaraba (as Gondaraba) at $4^{\circ} 58^{\prime} \mathrm{N} 36^{\circ} 49^{\prime} \mathrm{E}$ (GENOVA), examined.- Bohart and Menke, 1976:275 (listed).
Tachysphex omoi Guiglia, 1950:252, \&. Objective synonym of Tachysphex omoi Guiglia, 1943.
Recognition.- Tachysphex omoi, from Ethiopia and Kenya, has an all black gaster and femora (except the pygidial plate may be reddish apically), shiny mesopleuron with well-defined punctures, setae erect on the postocellar area (Figs. 263a, b), oriented obliquely anterad and anterolaterad on the propodeal dorsum (except anteriorly), and suberect on the midfemoral venter. Additionally, the labrum is flat, the galea is shorter than wide in profile, hindwing crossvein cu-a is vertical, the middle tarsomeres are not shortened, and the apical tarsomeres are not modified, without ventral spines. The axilla appears to be sloping more steeply laterad than in most other African Tachysphex, a character difficult to quantify or illustrate.

Like that of erythrurus, the female of omoi has the tibiae red (all or partly so). It differs from erythrurus in having the middle clypeal section differentiated into a basomedian area and a welldefined bevel (Figs. 263c), antenna black, and at most a part of the pygidial plate red. In the female of erythrurus, the basomedian clypeal area and the bevel are not differentiated and the basal flagellomeres and gastral segments V and VI are reddish. Unlike the North African anubis and yarrowi, the emargination of the clypeal free margin, between the lip and orbit, is not unusually shallow (Fig. 263c), and the mesopleural setae are about as dense as those on the metapleuron and not concealing the integument. The width of postocellar area is $2.1-2.2 \times$ length, whereas $1.5-1.7 \times$ in consocius.

The male of omoi resembles consocius and diversilabris in having a longitudinal sulcus on flagellomeres III-IX that separates two differently setose areas (as in Figs. 98c-f). As in consocius and unlike diversilabris, the clypeal lip has a well-developed corner and is not pointed mesally. Unlike consocius, the tibiae of omoi are partly red (rather than all black) and the apical margin of sternum VIII is not tridentate (tridentate in most consocius).

Description.- Mandible: outer ridge somewhat swollen and expanded over notch. Scutal punctures well defined, averaging about 1-2 diameters apart on disk but up to many diameters apart in some males (interspaces unsculptured, shiny). Axilla somewhat swollen between horizontal portion and lateral slope. Mesopleural punctures markedly finer than those on scutum, averaging 2-3 up to several diameters apart below scrobe (interspaces unsculptured, shiny). Propodeal dorsum irregularly rugose, side ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae nearly erect on each side of oral fossa next to occipital carina, about $0.4 \times$ basal mandibular width; erect on postocellar area, about $0.3 \times$ basal mandibular width (Figs. 263a, b); nearly erect on scutum; conspicuous although not concealing integument on mesopleuron; on midfemoral venter suberect to nearly erect, about equal to midocellar diameter; on propodeal dorsum inclined anterad except oriented anterolaterad on side, inclined posterad basomedially, and inclined posterolaterad near spiracle.

Head and thorax black, mandible red (black basally in Kenyan specimens). Frontal setae silvery in both sexes. Wing membrane nearly hyaline; forewing costal vein yellowish brown, subcostal vein brown. Femora black; tibiae varying from largely red (only fore-and midtibial venters darkened) to largely black (fore- and midtibiae reddish basally and apically, hindtibia largely reddish dorsally); tarsi red to almost black. Gaster black, female pygidial plate reddish in apical half to all black; male segment VII reddish in some specimens. Terga I-IV in female, I-V in male, silvery fasciate apically.

ㅇ. - Clypeus (Fig. 263c): lobe relatively short, wide (distance between lip corners about $1.9-2.2 \times$ clypeal midlength); bevel about as long as basomedian area; lip slightly arcuate, not incised laterally in Ethiopian specimens, but minimally emarginate laterally in those from Kenya (emargination can be absent on one side). Width of postocellar area 2.1-2.2 \times length (Fig. 263a). Dorsal length of flagellomere I $2.2 \times$ apical width. Forefemoral venter minutely punctate, punctures 2-3 diameters apart. Dorsal foretibial surface without spines or suberect bristles; outer surface setose throughout, without spines or (some specimens) with one spine. Forebasitarsus with six or

Figure 263. Tachysphex omoi Guiglia: a - female head in frontal view; b-male head in frontal view; c - female clypeus; d - male clypeus; e - volsella; f - penis valve.
seven rake spines. Apical depression of tergum V unsculptured, glabrous. Pygidial plate narrowly truncate apically, aciculate, with punctures located mainly near lateral margin, several to many diameters apart near midline. Length 4.9-7.0 mm.
σ^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 263d): bevel shorter than basomedian area; lip free margin arcuate, with well-defined corner; distance between corners $1.3 \times$ distance between corner and orbit. Width of postocellar area 2.5-3.0 \times length (Fig. 263b). Dorsal length of flagellomere I 1.3-1.5 \times apical width; flagellomeres III-IX dorsally with longitudinal sulcus that separates two differently setose areas (as in Figs. 98c-f). Forefemoral notch glabrous. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Sternum VIII at most with rudiment of apicomedian tooth. Length 4.1-5.5 mm. Volsella and penis valve: Figs. 263e, f.

Collecting period.- 2 September (Ethiopia), 2-8, 13 and 29-30 December (Kenya).

Geographic distribution (Fig. 264).Southwestern Ethiopia and Kenya.

Records.- ETHIOPIA: Gamo Gofa: Condaraba (2 甲 , GENOVA, holotype and paratype

Figure 264. Collecting localities of Tachysphex omoi, onager, and osiris. of omoi). KENYA: Eastern Province: near Ewaso
 Kisima in Lorogi Plateau at about $0^{\circ} 56^{\prime} \mathrm{N} 36^{\circ} 47^{\prime} \mathrm{E}$ (1 早) $^{\circ}$.

Tachysphex onager Pulawski, sp. nov.

Figures 264, 265.
Derivation of name.- Onager, Latin for wild donkey, in reference to this species similarity to asinus (Latin for donkey).

RECOGNITION.- Tachysphex onager resembles asinus and scaber in having the supraantennal swelling punctate and setose (rather than impunctate, glabrous), propodeal side ridged, and legs and terga largely red. In the female, flagellomeres III-X are flattened laterally, each with a characteristic sensory area (as in Figs. 38c-e), the pygidial plate is punctatorugose (as in Figs. 39a, b), and the length of midtarsomere II is less than twice its width. Subsidiary recognition features are: cephalic setae all golden in both sexes (also thoracic setae in most specimens) and wings markedly bicolored (yellow basally, brown with violet shimmer in the apical third).

The female of onager differs from these two species by its scutal punctation: most discal punctures are minute, several diameters apart, but some punctures are contrastingly larger, many diameters apart. In asinus, the small punctures are no more than one diameter apart, and in scaber the punctures are coarse, of equal size, slightly larger than those on the postocellar area. In addition, the female of onager has a subbasal spine or a pair of spines on the venter of the apical mid- and hindtarsomeres, whereas the spines are absent in the other two species.

In the male, the scutal punctures are slightly larger than those on the postocellar area, and at least several of them are more than one diameter apart. Scutal punctures are less than one diameter apart in asinus, and coarse, larger than those on the postocellar area in scaber. In addition, the

Figure 265. Tachysphex onager Pulawski, sp. nov.: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.
clypeal lip of onager is obtusely pointed (Fig. 265b) while arcuate in scaber (Fig. 336b), the clypeal bevel about as long as basomedian area (absent or shorter than basomedian area in asinus), the mesopleuron is shiny between the punctures (dull in asinus), and the setae are suberect on apical depressions of sterna III-VI (appressed or nearly so in scaber).

Description.- Labrum convex at very apex, slightly protruding beyond clypeal margin. Galea shiny, with a few ill-defined punctures in some specimens, and many conspicuous punctures in others, slightly longer than wide in profile, as long as 0.7 of scape. Supraantennal swelling ill defined, punctate and setose like remaining frons. Scutal punctures more than one diameter apart at least mesad of each adlateral line (up to several diameters apart in specimens from Tanzania), in female also with larger punctures that are many diameters apart. Mesopleural punctures well defined, several diameters apart near center; interspaces aciculate but shiny. Episternal sulcus complete. Mesothoracic venter, in some males, with punctures many diameters apart between signum and midcoxa. Propodeal dorsum finely rugose, in most specimens with irregular, longitudinal ridges basally; side ridged. Hindcoxal dorsum carinate only basally, carina somewhat expanded.

Setae erect on each side of oral fossa next to occipital carina (setal length more than midocellar diameter); appressed on postocellar area and scutum; oriented anterad on propodeal dorsum except lateral setae oriented posterad and joining apicomesally.

Head and thorax black, mandible reddish mesally; scape, pedicel, and at least flagellomere I reddish (also flagellomere II in most females); pronotal lobe reddish, clypeal bevel dark reddish in female. Setae golden on head in both sexes, in most specimens also on thorax. Wing membrane con-
spicuously yellow, contrastingly brown with violet shimmer in apical third or so; forewing costal and subcostal veins reddish. Femora, tibiae, and tarsi red, fore- and midfemora black basodorsally in some males. Gastral terga largely red, but the following are black: female tergum V or terga IV and V (except apical depressions), in male base of tergum I and terga IV and V, and parts of terga II and III to various degree in some females and males; sterna largely black.

ㅇ.- Clypeus (Fig. 265a): bevel about as long as basomedian area; lip free margin arcuate, with two lateral incisions on each side. Width of postocellar area $1.2-1.3 \times$ length. Dorsal length of flagellomere I 2.2-2.4× apical width; flagellomeres III-X flattened laterally, with characteristic sensory areas. Midtrochanteral venter with impunctate area. Fore- and midfemora glabrous posteroventrally, with a few, minute punctures that are many diameters apart. Dorsal foretibial surface with a few suberect, inconspicuous bristles; outer surface with three thin spines, otherwise impunctate and glabrous. Forebasitarsus with 10 or 11 rake spines. Tarsi short: length of fore- and midtarsomeres II $0.9-1.1$ and $1.5-1.6 \times$ apical width, respectively; that of midtarsomere III $1.0-1.1 \times$ apical width; and that of fore-, mid-, and hindtarsomeres IV about $1.0-1.1,0.8-0.9$, and $1.0 \times$ apical width, respectively. Venter of mid- and hindtarsomeres V with subbasal spine or pair of subbasal spines. Apical depression of tergum V impunctate, glabrous. Pygidial plate punctatorugose, shallowly emarginate apically. Length $11.1-12.3 \mathrm{~mm}$.
δ°.- Mandible: trimmal carina with tooth, without cleft (Fig. 265b). Clypeus (Fig. 265b): bevel about as long as basomedian area; lip free margin obtusely pointed mesally, with well-defined corner; distance between corners $0.8-1.0 \times$ distance between corner and orbit. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I 1.3-1.5 \times apical width. Forefemoral notch microscopically setose. Posteroventral forefemoral surface, between notch and apex, impunctate and glabrous or with a few minute punctures that are many diameters apart; midfemoral venter impunctate and glabrous. Outer margin of forebasitarsus without preapical spines or, in some specimens, with one preapical spine next to apical one; outer apical spine of foretarsomere II shorter than tarsomere III. Length of midtarsomeres II and III 2.0-2.2 and 1.2-1.3 \times apical width, respectively. Apical tarsomeres with varying number of spines on venter. Sterna III-VI with dense, suberect setae that are up to one midocellar diameter long. Sternum VIII tridentate apically. Length $8.9-12.3 \mathrm{~mm}$. Volsella and penis valve: Figs. 265c, d.

Habitat.- The specimens from Tanzania were collected at the sandy bottom of a dry stream. They were flying in straight or circular patterns or sitting on sand, dead leaves, branches, or other objects.

Geographic Distribution (Fig. 264).— Tanzania, Malawi.
Records.- Holotype: \circ, TANZANIA: Morogoro Region: 62 road km SW Morogoro, 22-23 July 2001, Omary S. Haji and WJP (CAS). Paratypes: MALAWI: Mlanje, 4 Oct 1913, S.A. Neave (2 ơ, BMNH, CAS); Ruo Valley, 25 Oct 1913, S.A. Neave ($1 \delta^{*}$, BMNH). TANZANIA: same data as holotype (5 ํ, 37 o *); same data but 6 July 2001 (1 ${ }^{\text {or }}$).

Tachysphex osiris de Beaumont

Figures 264, 266.
Tachysphex osiris de Beaumont, 1940:170, \circ, ® $^{\text {º }}$. Lectotype: $\stackrel{\circ}{ }$, Sudan: Nabardi [= Bir Um-Nabardi 160 km SE Wadi Halfa] (BMNH), designated by de Beaumont, 1947a:179, examined.- Honoré, 1942:56 (in checklist of Egyptian Sphecidae); de Beaumont, 1947a:178 (in revision of Egyptian Tachysphex), 1950b:18 (Egypt), 1958:61 (Algeria); Pulawski, 1971:422 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:275 (listed); Roche and Zalat, 1994:115 (Egypt: Sinai Peninsula).

Recognition.- Tachysphex osiris has the apical depression of sternum I intersected by a longitudinal carina and hindwing vein cu-a oblique (anal end further away from wing base than cubital
end). The female is further characterized by a slightly prominent upper frons, the mesothoracic venter completely concealed by vestiture, absence of spines on the lateral margins of apical tarsomeres, flagellum largely red, and marginal cell sparsely microsetose. As in grandissimus, the appressed vestiture conceals integument of the mesopleuron and all or most of the scutum. Because of similar coloration and dense cephalic and thoracic vesti-

Figure 266. Tachysphex osiris de Beaumont: female in lateral view. ture, the female of osiris can be easily confused with isis, from which it differs in having a longitudinal carina on sternum I, frons less prominent, propodeal side glabrous along metapleural sulcus, outer surface of the hindfemur not concealed by vestiture, and pygidial plate evenly narrowing posterad (rather than constricted preapically).

In the male, sternum II is covered with microscopic setae, and sterna III-V have apical, subappressed fringes of dense (as if agglutinated) setae. Tachysphex grandissimus is similar, but in osiris punctures are about one diameter apart on the scutal disk and several diameters apart on the mesopleuron (except above and just beneath the scrobe), and the frontal setae are golden. In grandissimus, scutal and mesopleural punctures are almost compressed against each other, and the frontal setae are silvery. Also similar is sordidus, but osiris has a well-defined foretarsal rake: outer margin of forebasitarsus with 4-6 rake spines, outer apical spine of foretarsomere II longer than tarsomere III. In sordidus, the forebasitarsus has at most one preapical spine (that is located next to the apical spine), and the outer apical spine of foretarsomere II is as long as foretarsomere III or shorter.

Description.- Gena unusually narrow in dorsal view. Scutal punctures nearly compressed against each other in female, about one diameter apart in male; those of mesothoracic venter up to several or many diameters apart in male. Mesopleuron dull, markedly microsculptured, with shallow, ill-defined punctures, but shiny near midcoxa in male. Propodeal dorsum longitudinally ridged to irregularly rugose (ridges and rugae partly effaced in some males), intersecting posterior surface at about right angle; propodeal side ridged but ridges anastomosed in many specimens and effaced in smallest ones; posterior surface, in dorsal third or so, with wide median impression. Hindwing jugal lobe enlarged (as in Fig. 102a), crossvein cu-a oblique (anal end further away from wing base than cubital end). Hindcoxal dorsum with inner margin carinate basally, carina not expanded. Sternum I with apical depression that is bisected by longitudinal, obtuse carina (as in Fig. 132a).

Setae appressed on postocellar area and scutum; erect on each side of oral fossa next to occipital carina (length about $0.4 \times$ basal mandibular width); sinuous, oriented obliquely posterad on propodeal dorsum; in female fully concealing integument on postocellar area, scutum, mesopleuron, and mesothoracic venter. Sternum I largely glabrous in most specimens. Midfemoral venter practically glabrous.

Body coloration: see below. Frontal setae silvery in female, golden in male. Wings hyaline; forewing costal vein yellowish brown, subcostal vein brown.

ㅇ.- Labrum: median notch evanescent. Clypeus: bevel inconspicuous, shorter than midocellar diameter, slightly step-like; lip at most shallowly notched mesally. Width of postocellar area
$1.0-1.2 \times$ length. Dorsal length of flagellomere I 1.8-2.1 \times apical width. Dorsal foretibial surface with two or three spines; outer surface glabrous, with three spines. Forebasitarsus with $9-11$ rake spines. Apical mid- and hindtarsomeres without spines on lateral margins, with a few basoventral spines. Apical depression of tergum V impunctate, glabrous. Length $11.0-13.0 \mathrm{~mm}$. Head and thorax varying from black to red, mandible nearly black in apical third; antenna all red or flagellum almost black. Gaster and legs red. Terga I-V silvery fasciate apically.
σ^{*}.- Inner mandibular margin with tooth and cleft. Clypeus: bevel markedly shorter than basomedian area; free margin of lobe arcuate or slightly sinuate, with well-defined corner, distance between corners $1.2 \times$ distance between corner and orbit. Width of postocellar area $0.9 \times$ length. Dorsal length of flagellomere I 1.8-2.0 \times width. Forefemoral notch asetose, proximally with one or a few erect setae. Outer margin of forebasitarsus with 4-6 rake spines, outer apical spine of foretarsomere II longer than tarsomere III. Sternum II uniformly microsetose throughout; apical depressions of sterna III-V with subappressed, dense, as if agglutinated setae that are markedly longer than on remaining surface, remaining surface punctate to largely impunctate. Length $8.1-10.0 \mathrm{~mm}$. Volsella and penis valve as in costae (Figs. 102b, c). Head and thorax black, mandible largely red, pronotal lobe brown in some specimens. Femora black, red apically, tibiae and tarsi red. Gastral segments I-III red or gaster all black. Terga I-III silvery fasciate apically.

Floral records.- The specimens from Bahariya oasis were collected on flowers of Cornulaca monacantha Delile (Chenopodiacee), as recorded by J.M. Carpenter and A. Davidson, the collectors.

Geographic distribution (Fig. 264).— Egypt and Sudan to Chad and Algeria.
Records.- ALGERIA: El Bioth (de Beaumont, 1947a), Tassili des Ajjer: reg between oueds Sersouf and Isandilène (de Beaumont, 1958) and Toukmatine (1 \& OÖLM). CHAD: Bir Nazara in Borkou Range (1 đ $^{\top}$). EGYPT: Al Jizah (= Ghiza): Ghiza (de Beaumont, 1947a), [Ghiza] Pyramids (1 ㅇ, NHMW). Aswan: Aswan (de Beaumont, 1947a), Korosko to Abu Hamed (2 ${ }^{\circ}$, BMNH). Matruh: NW Bahariya oasis at $29^{\circ} 12^{\prime} 21^{\prime \prime} \mathrm{N} 28^{\circ} 51^{\prime} 41^{\prime \prime} \mathrm{E}\left(4\right.$ ㅇ, 2 o $^{\circ} ; 8$ ㅇ, 4 o $^{\circ}$, AMNH); Sitra in Siwa oasis (1 ㅇ, BMNH). Sawhaj: 4 km W Abydos (3 ${ }^{\text {o }}$). Sina (= Sinai): no specific locality (Roche and Zalat, 1994). LIBYA: Cyrenaica: Djarabub (de Beaumont, 1947a). SUDAN: Nabardi = Bir Um-Nabardi 160 km SE Wadi Halfa (1 ค, 1 ơ, BMNH, including lectotype of osiris).

Tachysphex ovambo Pulawski, sp. nov.

Figures 267, 268.
Derivation of name.- Named after the Ovambo people of southwestern Angola and northwestern Namibia; a noun in apposition to the generic name.

Recognition.- The female of ovambo has an enlarged supraantennal swelling (Fig. 267c) that is not fused with the antennal socket rim, shortened legs (e.g., length of midtarsomeres II and III is 1.8 and $1.3 \times$ the apical width, respectively), and a densely punctate pygidial plate (Fig. 267d). Additionally, the setae of the propodeal dorsum are inclined posterad, the gaster is all black, and terga I-IV are silvery fasciate apically. Females of bipustulosus and mashona also have enlarged supraantennal swellings, but their tarsi are even shorter (length of midtarsomeres II and III, respectively, 1.4-1.6 and $1.0 \times$ apical width). Also, the supraantennal swelling of ovambo is lower than in bipustulosus, with sides rounded rather than nearly vertical, not fused with the antennal socket rim (fused in mashona), and the femora and tibiae are red (black or red in bipustulosus, black in mashona).

The male of ovambo has the following unique combination: flagellomere I short (dorsal length about 0.75 of flagellomere II), supraantennal swelling slightly but visibly enlarged, and each apical tarsomere with one or two apicoventral setae. Subsidiary recognition characters include a black

Figure 267. Tachysphex ovambo Pulawski, sp. nov.: a - female clypeus and mandible; b-male clypeus and mandible; c - female supraantennal swelling and base of antenna; d - pygidial plate; e - volsella; f - penis valve.
gaster with silvery fasciate terga I-IV, obtusely pointed clypeal lip, and setae of the propodeal dorsum all inclined posterad.

Description.- Galea slightly longer than wide in profile, as long as 0.7 of scape. Supraantennal swelling enlarged in female (Fig. 267c), only slightly so in male, not connected to antennal socket. Scutum evenly, minutely punctate (punctures averaging about one diameter apart),
in female also with ill-defined, large punctures that are many diameters apart. Mesopleural punctures larger than those on scutum, about one diameter apart below scrobe; interspaces microsculptured. Episternal sulcus complete in female, incomplete in male. Propodeal dorsum evenly microareolate; side finely punctate at center, finely ridged along metapleural sulcus and posterior edge. Hindwing crossvein cu-a either vertical or slightly inclined (anal end slightly further away from wing base than cubital end). Hindcoxal dorsum carinate basally. Sternum I not carinate except apical depression with median carina.

Setae erect on each side of oral fossa next to occipital carina (setal length about $0.3 \times$ basal mandibular width); erect, about one midocellar diameter long on postocellar area; appressed on scutum; inclined posterad on propodeal dorsum.

Head and thorax black, mandible dark reddish mesally. Frontal setae silvery in both sexes. Wing membrane infumate; costal and subcostal veins of forewing brown. Leg coloration: see below. Gaster all black or female pygidial plate reddish. Terga I-IV silvery fasciate apically.

ㅇ.- Labrum shallowly, broadly emarginate. Clypeus (Fig. 267a): bevel as long as basomedian area or shorter; lip free margin arcuate, with two lateral incisions on each side. Width of postocellar area $1.3 \times$ length. Dorsal length of flagellomere I 1.6-1.8 \times apical width; flagellomeres III-X slightly flattened, each with sensory area ventrally. Fore- and midfemoral venters aciculate, with minute punctures that are several diameters apart and also with a few large punctures. Dorsal foretibial surface setose, without spines or suberect bristles; outer surface with two bristles. Tarsi short: length of fore- and midtarsomeres II about $1.2 \times$ and $1.8 \times$ apical width, respectively; that of midtarsomere III $1.3 \times$ apical width; of fore-, mid- and hindtarsomeres IV about $1.0,1.0$, and $1.2 \times$ apical width, respectively. Forebasitarsus with 10 or 11 rake spines. Venters of apical tarsomeres each with one or two small spines. Apical depression of tergum V punctate throughout (punctures difficult to see from certain angles). Pygidial plate (Fig. 267d) emarginate apically, with small punctures that average one diameter apart or less (punctures absent along margin) and also with large punctures that average several to many diameters apart. Length $9.3-10.3 \mathrm{~mm}$. Femora all red or forefemur black basally and midfemur black basodorsally. Tibiae red, tarsi red or dark brown.
δ^{7}.- Mandible: trimmal carina with obtuse tooth and cleft. Clypeus (Fig. 267b): bevel ill defined or absent, delimited anterolaterally by small carina that emerges from lip corner; lip free margin obtusely pointed, with well-defined corner; distance between corners $1.0-1.1 \times$ distance between corner and orbit. Width of postocellar area 1.0-1.1 \times length. Dorsal length of flagellomere I $1.2-1.4 \times$ apical width, equal to about 0.75 of II, ventral length in some specimens equal to apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Length of midtarsomeres II and III 2.3 and $1.5-1.6 \times$ apical width, respectively. Venter of apical tarsomeres with one or two small spines next to apical margin. Sternum VIII tridentate apically. Length $7.5-9.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 267e, f. Femora black except narrowly red apically; tibiae varying from mostly red (with only narrow dorsal

Figure 268. Collecting localities of Tachysphex ovambo and palopterus.
zone dark) to predominantly black (fore- and midtibiae reddish basally and apically, also foretibial inner surface); tarsi red to largely black.

Geographic distribution (Fig. 268).- Known from one locality in southwestern Angola.
Records.- Holotype: ${ }^{\text {P }}$, ANGOLA: $10 \mathrm{mi}[=16 \mathrm{~km}]$ NE Moçâmedes, now Namibe, 27-29 Feb
 BMNH).

Tachysphex palopterus (Dahlbom)

Figures 268, 269.
Tachytes palopterus Dahlbom, 1845:470, đ̛ (as paloptera, incorrect original termination). Lectotype: ${ }^{\circ}$, Egypt: no specific locality (NRS), here designated, examined.- Kohl, 1885:405 (in checklist of world Tachytes).-As Tachysphex palopterus: Kohl, 1885:396 (new combination, original description copied); Dalla Torre, 1897:682 (in catalog of world Hymenoptera); de Beaumont, 1940:165 (in revision of Egyptian Tachysphex); Honoré, 1942:56 (in checklist of Egyptian Sphecidae); de Beaumont, 1947a:162 (in revision of Egyptian Tachysphex), 1950a:405 (Algeria), 1955:176 (Morocco; description of 早); Pulawski, 1964:83 (Egypt, recognition characters), 1971:338 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:11 (Israel); Bohart and Menke, 1976:275 (listed); Guichard, 1980:227 (Oman).
As Tachysphex nattereri: Kohl, 1888a:144 (o only), corrected to Tachysphex palopterus by Pulawski, 1971:323 and 338.
Tachysphex No. 1: de Beaumont, 1940:166 (description of $\boldsymbol{+}$, Egypt). Corrected to Tachysphex palopterus by de Beaumont, 1955a:176.

Lectotype selection.- Dahlbom (1845) did not specify the number of specimens on which he based his description of palopterus. De Beaumont (1940) examined the only specimen in existence and commented "j'ai examiné le type". This was a valid lectotype selection according to the Third Edition of the Code (1985, Article 74b), but not the first two editions nor the current Fourth Edition (1999, Article 74.6). I therefore designate as lectotype of palopterus the specimen so labeled by de Beaumont in 1947 (which I have also examined).

Recognition.- Tachysphex palopterus, occurring in North Africa south to Mauritania, Niger, and Sudan, in Israel, and in the Arabian Peninsula, is one of the species in which the labrum is conspicuously convex and protruding from beneath the clypeus and the galea is longer that wide in profile. Also, the scutal punctures average less than one diameter apart, the propodeal side is uniformly microsculptured, the setae adjacent to the hypostomal carina are straight and no longer than one midocellar diameter, appressed on the postocellar area and scutum, and oriented posterad on the propodeal dorsum's apicomedian third or so. In the female, the outer foretibial surface is all setose and the apical depression of tergum V is impunctate and asetose, and in the male the forebasitarsus has 2-6 rake spines and the outer apical spine of foretarsomere II is as long as foretarsomere III or longer.

Like that of taita, the female of palopterus differs from other species with the above characteristics in having the clypeal lip slightly sinuous or entire rather than incised laterally (Fig. 269a). The two species are nearly identical morphologically, but in palopterus the thoracic setae are silvery or with golden tinge on the scutum. In taita (known from Kenya and Tanzania), the setae are conspicuously golden on the thoracic dorsum (including the propodeum). Also, the apical depression of tergum V is all asetose in palopterus, but setose mesally in many taita. In Israel and possibly also in the Sinai Peninsula, palopterus overlaps with persa Gussakovskij in which the propodeal side is glabrous anteriorly. In the females of palopterus, the propodeal side is all setose in most specimens, but glabrous anteriorly in some from Israel, Egypt, Morocco, and Sudan.

Figure 269. Tachysphex palopterus (Dahlbom): a - female clypeus and mandible; b - male clypeus and mandible; c - volsella with outline showing variation of the dorsal process; d - volsella of lectotype with outline showing variation of the dorsal process; $\mathrm{e}-$ penis valve.

The male can be recognized, in addition to the above, by a wide middle clypeal lobe, with lip corners closer to the respective orbit than to each other (equidistant in some specimens) and the shape of the volsella, with dorsal process either higher than wide and forming an obtuse angle with volsella's apical portion or about as high as wide (Figs. 269c, d). The volsella is similar in some dissimulatus, a southern African species.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea longer than wide in profile, densely punctate in most females but sparsely so in those from Morocco, varying from densely to sparsely punctate in male, as long as scape in female, as $0.8-0.9$ of scape in male. Scutal punctures ill defined, about one diameter apart. Mesopleuron uniformly microsculptured. Propodeal dorsum and side evenly microsculptured. Hindcoxal dorsum with inner margin carinate.

Setae appressed on postocellar area and scutum; erect and straight on each side of oral fossa next to occipital carina (setal length equal to or slightly less than midocellar diameter); variously oriented on propodeal dorsum but pointing posterad on apicomedian third or so; fully concealing integument on mesopleuron in most females, but not in those from Ghiza and Luxor areas, Egypt, and one from Agadir area, Morocco; propodeal side all setose except glabrous anteriorly in females from same three areas and also Sudan.

Head and thorax black, mandible yellowish red at least mesally, clypeal bevel red in many females (all clypeus red in those from El Riyadh, Saudi Arabia). Thorax black, but largely red in females from El Riyadh, in some with only part of scutum, scutellum, and postscutellum black. Frontal setae silvery in most females, but golden in those from El Riyadh, and in male. Wing membrane nearly hyaline, slightly infumate, or yellowish; costal vein of forewing brownish yellow, subcostal vein brownish yellow to brown. Femora varying from all red to nearly all black; tibiae red or partly black; tarsi red except dark in many Egyptian females. Gaster in female all red or apical two or three segments brown to black; in male segments I and II or I-III red, remainder black. Terga I-IV or I-V silvery fasciate apically in most females, but only terga I-III fasciate in those from El Riyadh, Saudi Arabia, and in males.

ㅇ.- Clypeus (Fig. 269a): bevel longer to shorter than basomedian area; lip free margin arcuate in most specimens but straight or minimally concave in those from Ghiza and Luxor areas, Egypt, emarginate mesally, slightly sinuous or straight laterally. Width of postocellar area 0.7-0.9 \times length. Dorsal length of flagellomere I $2.5-3.1 \times$ apical width. Dorsal foretibial surface with three spines (exceptionally two); outer surface with one or two spines. Forebasitarsus with 6-10 rake spines. Apical spines of hindtarsomere IV almost reaching claw bases. Apical depression of tergum V impunctate, glabrous. Pygidial plate punctate, most punctures several to many diameters apart; interspaces unsculptured, alutaceous in occasional specimens; integument in many specimens slightly concave near midlength (concavity easiest to see in profile). Length $6.5-12.6 \mathrm{~mm}$.
σ^{7}.- Mandible: trimmal carina with obtuse tooth, without cleft. Clypeus (Fig. 269b): bevel about as long as basomedian area, delimited anterolaterally by oblique carina arising from lip corner; lip free margin arcuate to nearly straight, in most specimens emarginate mesally, with welldefined corner; distance between corners $1.2-1.5 \times$ that between corner and orbit ($1.0 \times$ in some specimens). Width of postocellar area $0.8-1.0 \times$ length. Dorsal length of flagellomere I $1.5-1.9 \times$ apical width. Forefemoral notch microscopically setose in most specimens, asetose in some Egyptian males. Outer margin of forebasitarsus with 2-6 rake spines; outer apical spine of foretarsomere II mostly longer than tarsomere III, as long as tarsomere III in some specimens. Length $5.2-9.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 269c-e.

Geographic distribution (Fig. 269).- North Africa to Gambia, Niger, and Sudan, Israel, Arabian Peninsula.

 (= Cairo): Katamia area 40 km E Maadi (1 \& , MSNT), Maadi (12 ® $^{\circ}$). Al-Uqsur (= Luxor): near Medinet Habu temple 3 km W Luxor (4 ㅇ, 8 o $^{*} ; 1$ o $^{\boldsymbol{*}}$, SCHL). Matruh: 20 km E Marsa Matruh (1 ㅇ) , $20-25 \mathrm{~km}$ W Marsa
 No specific locality: $1 \sigma^{\circ}$, lectotype of palopterus. GAMBIA: Banjul ($1 \delta^{\circ}$, ZMAN). ISRAEL (de Beaumont, Bytinski-Salz, and Pulawski, 1973, or as indicated): Bat Yam ($1+5$ ® $^{\circ}$), Beersheba (2 ค, 2 o $^{\circ}$), Bne Braq, Ramat Gan, Revivim, Shizaf Nature Reserve at $30^{\circ} 46.0^{\prime} \mathrm{N} 35^{\circ} 15.4^{\prime} \mathrm{E}(1 \circ ; 1$ 우, CSE), Urim. MAURITANIA: 153 km NE Nouakchott ($2 \delta^{7}$, MSNT). MOROCCO: Agadir (1 \&), between Asni and Imlil (1 \& , CSE), Aoulouz 140 km E Agadir ($2 \sigma^{\circ} ; 2 \mathrm{o}^{\circ}$, CSE), Erfoud in Tafilalt oasis ($1 \mathrm{~d}^{\circ}$), 1 km E Essaouira at $31^{\circ} 30^{\prime} \mathrm{N}$ $9^{\circ} 44^{\prime} \mathrm{W}\left(2 \circ\right.$ ㅇ, CSE), Marrakech: Oued Tensift ($1 \sigma^{\circ}$), Mhamid in Draa Valley 80 km S Zagora ($1 \circ \rightarrow 3$ ơ $^{\circ}, \mathrm{CSE}$),
 Region: 8 km ENE Nguigmi at $14^{\circ} 17.2^{\prime} \mathrm{N} 13^{\circ} 10.1^{\prime} \mathrm{E}(1+9), 12 \mathrm{~km}$ ENE Nguigmi at $14^{\circ} 18.9^{\prime} \mathrm{N} 13^{\circ} 13.2^{\prime} \mathrm{E}$ (7 if), 11 km NNE Nguigmi at $14^{\circ} 20.8^{\prime} \mathrm{N} 13^{\circ} 07.9^{\prime} \mathrm{E}(1 \quad+), 13 \mathrm{~km}$ NNE Nguigmi at $14^{\circ} 23.0^{\prime} \mathrm{N} 13^{\circ} 08.0^{\prime} \mathrm{E}$ (4 ㅇ) , 13 km SW Nguigmi at $14^{\circ} 10.3^{\prime} \mathrm{N} 13^{\circ} 01.3^{\prime} \mathrm{E}$ (1 \&) . OMAN: Felidj Ma'ald ($1 \mathrm{o}^{\star}$, BMNH), Salalah in
 TUNISIA: no specific locality (de Beaumont, 1940). YEMEN: Al Kadan ($1 \iota^{*} ; 2$ 早, $1 \sigma^{*}$, ZMAN), Al Lahima

Tachysphex panzeri (Vander Linden)

Figures 270-272.
[N.B. There are more than 200 literature citations of panzeri and its synonyms subsequent to the original descriptions, mostly locality records from Europe and North Africa, but only the essential nomenclatural references are provided here. Previous revisionary studies are by de Beaumont, 1936a:192, 1947a:156, Pulawski, 1971:262, and Krombein and Pulawski (1994:12, 63).]
 ic locality (lost). Neotype: σ^{7}, Spain: Toledo (RMNH), designated by Pulawski, 1971:262, examined before 1971.-As Lyrops panzeri: Casolari and Casolari Moreno, 1980:113 (new combination).-As Tachysphex panzeri: Kohl, 1883a:177 (new combination).
Lyrops rufiventris Spinola, 1839:479, ㅇ. . Holotype or syntypes: $\circ+$, France: Corse: no specific locality (not in MSNT, probably lost: see de Beaumont, 1952e:47; not listed by Casolari and Casolari Moreno, 1980), not examined. Synonymized with Tachytes panzeri by A. Costa, 1884:246 and 1885:17, and by Pulawski in Krombein and Pulawski, 1994:63.- Kohl, 1885a:356 (tentative new synonym of Tachysphex panzeri).As Larrada rufiventris: F. Smith, 1856:280 (new combination).- As Tachytes rufiventris: A. Costa, 1882b:22 and 34 (new combination); nec Magretti, 1884 (= Tachysphex argentatus and luxuriosus).- As Tachysphex rufiventris: Kohl, 1885a:397 (tentative new combination).- As Tachysphex panzeri rufiventris: Pulawski, 1971:270 (new status).
Tachytes oraniensis Lepeletier de Saint Fargeau, 1845:253, 우, đ才 (as Oraniensis, incorrect original capitalization). Syntypes: Algeria: Oran (MNHN), not examined. Synonymized with Tachysphex panzeri by Kohl, 1884:368, and by Pulawski in Krombein and Pulawski, 1994:63.- As Tachysphex oraniensis: Kohl, 1884:368 (new combination).-As Tachysphex panzeri var. oraniensis: Medina, 1896:107 (new status).As Tachysphex panzeri forme oraniensis: de Beaumont, 1955:174 (new status).— As Tachysphex panzeri oraniensis: Schulz, 1905:45 (new status).
Tachytes aurifrons Lucas, 1849:246, ․ Syntypes: Algeria: La Calle, now El Kala (MNHN), not examined. Synonymized with Tachysphex panzeri by Kohl, 1884:368 (tentatively) and de Beaumont, 1947c:662, who examined type material.
Tachytes discolor Frivaldszky, 1877:351, ơ'. Syntypes: Hungary: Budapest, also Grebenácz in Temes Komitat, now in Timiș District in Romania (lost). Neotype: ơ, Hungary: Budapest-Rákos (TMB), designated by Pulawski in Krombein and Pulawski, 1994:63, examined. Synonymized with Tachysphex panzeri by Kohl, 1883d:226.-As Tachysphex panzeri var. discolor: Morice, 1911:104 (new status).
Tachytes pulverosus Radoszkowski, 1886:32, ㅇ, ở. Lectotype: o^{7}, Uzbekistan: Samarkand (KRAKÓW), designated by de Beaumont, 1936b:610 ("qui doit être considéré comme type"), examined before 1971. Synonymized with Tachysphex panzeri by Pulawski in Krombein and Pulawski, 1994:63.-As Tachysphex pulverosus: Kohl in Dalla Torre, 1897:684 (new combination, in catalog of world Hymenoptera).- As Tachysphex panzeri pulverosus: Pulawski, 1971:274 (new status, in revision of Palearctic Tachysphex).
Tachytes ceylonicus Cameron, 1900a:21, ơ (as ceylonica, incorrect original termination). Holotype or syntypes: $\overbrace{}^{7}$, Sri Lanka: no specific locality (OXUM), examined in 1974. Synonymized with Tachysphex panzeri by Pulawski, 1975:312.
Tachytes aurifrons Cameron, 1900:23, \ddagger (actually or $^{\text {t }}$), junior primary homonym of Tachytes aurifrons Lucas, 1849. Lectotype: σ^{7}, Sri Lanka: Trincomalee (BMNH), designated by Pulawski, 1975:312, examined in 1974. Synonymized with Tachysphex panzeri by Pulawski, 1975:312.

Tachysphex ablatus Nurse, 1909:516, 우. Lectotype: ํ, India: Gujarat: Deesa (BMNH), designated by Pulawski, 1975:312, examined in 1974. Synonymized with Tachysphex panzeri pulverosus by Pulawski, 1975:312.
Tachysphex panzeri fortunatus de Beaumont, 1968:261, ㄷ, $\overbrace{}^{\top}$. Holotype: $ํ$, Canary Islands: Gran Canaria: Maspalomas (BMNH), examined before 1971. Synonymized with Tachysphex panzeri by Pulawski in Krombein and Pulawski, 1994:63.
Tachysphex panzeri cyprius Pulawski, 1971:272, ㅇ, đ̛. Holotype: ㅇ, Cyprus: Limassol (CAS), examined.

Synonymized with Tachysphex panzeri by Pulawski in Krombein and Pulawski, 1994:63.
Tachysphex panzeri sareptanus Pulawski, 1971:272, ㄷ, ه̛. Holotype: \uparrow, Russia: Sarepta, now Krasnoarmeysk (ZIN), reexamined in 2006. Synonymized with Tachysphex panzeri by Pulawski in Krombein and Pulawski, 1994:63.

Recognition.- Tachysphex panzeri, occurring in northern third of Africa, in Europe, and in Asia, has the labrum convex and conspicuously protruding beyond the clypeal free margin (Fig. 270e), galea longer than wide in profile (Figs. 270a, b), and the propodeal side evenly microsculptured. It is further characterized by the setae appressed on the postocellar area and straight, about one midocellar diameter long on each side of the oral fossa next to the occipital carina, female tergum V evenly micropunctate and setose (including the apical depression), and presence of a foretarsal rake in the male.

Other species share the above characteristics. Krombein and Pulawski (1994) discussed recognition of panzeri from similar Asian species: conclusus Nurse, 1903 (India: Gujarat and Rajasthan), diadelus Pulawski, 1994 (Sri Lanka), lucillus Pulawski, 1971 (Turkmenistan), noar Pulawski, 1994 (Sri Lanka), and tessellatus Dahlbom, 1845 (Greece, Turkey). The following features help distinguish panzeri from similar African species:
(1) the mandibular notch is the usual size, while unusually large in buyssoni (Figs. 73c, d);
(2) the free margin of the lateral clypeal lobe is deeply concave, while shallow in cheops and ramses (compare Figs. 270c, d, and 91a, b);
(3) the free margin of the clypeal lobe, in the female is not incised laterally, while incised in incertus, most mocsaryi, and in palopterus;
(4) the setae of the lower gena are about as long as one midocellar diameter (slightly longer than midocellar diameter in some southern Saharan populations); these setae are longer than one midocellar diameter in cheops and in populations of calidus from Kenya, Ethiopia, and from West Africa where the two species overlap;
(5) the gaster is red at least basally in the continental African populations but all black in specimens from the Canary Islands, and all black or nearly so in specimens from Oman and United Arab Emirates (also all black in chephren and notogoniaeformis);
(6) at least terga I-III are silvery fasciate apically (fasciae absent in aemulus, liriformis, and notogoniaeformis);
(7) the pygidial plate, in the female, is dull, markedly microsculptured between punctures (unsculptured in mycerinus, practically unsculptured in ptah), and with a well-defined lateral carina (carina lower than average for the genus in mycerinus);
(8) the foretibia is densely setose throughout (outer face glabrous or sparsely setose in sycorax);
(9) the volsella is distinctive in having a low, mostly rounded dorsal process (Fig. 271), although similar to that of excavatus (in which the forefemoral notch is unusually large), of pulcher, sycorax, and the extralimital tessellatus. A similar volsella is also found in many dissimulatus, a southern African species, although in most specimens the dorsal process is either truncate apically or not separated from the distal volsellar portion (Fig. 120c). No other character has been found to separate the males of these two species.

Tachysphex panzeri is externally identical to pseudopanzeri de Beaumont, 1955 (southern France, Iberian Peninsula, Morocco) whose male, however, can be instantly recognized by a sharply pointed dorsal volsellar process (as in incertus). De Beaumont (1955) and Pulawski (1971) thought, probably in error, that the females could be differentiated by their color pattern and silvery tergal fasciae. They assigned to panzeri those French and Iberian specimens in which the gaster was red basally and black apically, and to pseudopanzeri the females that had the gaster red basally and apically but black preapically (segment IV or III and IV black). They thought that the Moroccan females with an all red gaster were panzeri if they had silvery fasciae on terga I-III, and

Figure 270. Tachysphex panzeri (Vander Linden): a - female head in frontal view ($\times 17$); b-male head in frontal view ($\times 18$); c - female clypeus ($\times 42$); d - male clypeus ($\times 48$); e - female clypeus and labrum in lateral oblique view ($\times 53$).
pseudopanzeri if the fasciae were present on terga I-IV. The color pattern, however, most likely has no value in species discrimination, because females colored as the supposed French and Iberian pseudopanzeri also occur in those areas (Romania to Sri Lanka) where males of pseudopanzeri have never been collected. Most likely, the true female of pseudopanzeri is still unrecognized.

Description.- Labrum convex, markedly protruding from beneath clypeus (Fig. 270e). Galea longer than wide in profile, as long as 1.0-1.2 of scape (Figs. 270a, b). Scutal punctures ill defined, about one diameter or less apart. Mesopleuron dull, microsculptured, impunctate. Propodeal dorsum and side evenly microsculptured. Hindcoxal dorsum with inner margin carinate basally.

Setae appressed on frons, postocellar area, scutum, mesopleuron, and midfemoral venter; suberect, about one midocellar diameter long on each side of oral fossa next to occipital carina; variously oriented on propodeal dorsum: admedian setae pointing obliquely anteromesad, or pointing toward midline, or pointing posterad.

Head and thorax black, mandible yellowish red mesally, clypeus black or partly yellowish. Frontal setae silvery in female and smallest males, golden in most males. Wing membrane slightly infumate to nearly hyaline; costal and subcostal veins of forewing ranging from reddish brown and brown, respectively, in European specimens, and from yellowish brown to reddish brown, respectively, in many desert specimens. Femora, tibiae, and gaster ranging from all black to all red (see Variation below). Terga I-III or I-IV silvery fasciate apically.

ㅇ.- Clypeus (Fig. 270c): bevel as long as basomedian area or longer; lip free margin arcuate, emarginate mesally, in most specimens sinuous laterally. Width of postocellar area $0.6-0.9 \times$ length. Dorsal length of flagellomere I 2.4-3.1 \times apical width. Dorsal foretibial surface with three spines; outer surface with two to several spines. Forebasitarsus with 7-9 rake spines. Apical spines of hindtarsomere IV almost reaching claw bases. Tergum V finely punctate and setose throughout, including apical depression. Pygidial plate markedly microsculptured, with punctures that average more than one diameter apart. Length $9.0-14.0 \mathrm{~mm}$.
0^{7}. - Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 270d): bevel as long as basomedian area or shorter, delimited ventrolaterally by obtuse, oblique carina that emerges from lip corner; lip free margin arcuate, shallowly emarginate mesally (emargination vestigial in some specimens), with well-defined corner; distance between corners $0.9-1.1 \times$ distance between corner and orbit. Width of postocellar area $0.6-1.2 \times$ length. Dorsal length of flagellomere I 1.5-2.3 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with 4-7 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Hindfemoral venter with inner (= posterior) margin sharp in distal half. Length 6.5-10.8 mm. Volsella and penis valve: Fig. 271.

Variation.- Tachysphex panzeri varies considerably over its range, mainly in the size of its gena, in color, and amount of vestiture. Details are presented below:

Gena. The gena is moderately thick in dorsal view in specimens from temperate climates,

Figure 271. Tachysphex panzeri (Vander Linden): volsella with outlines showing individual variation and penis valve. but thin in specimens from African and Asian deserts, particularly females.

Thoracic vestiture. Vestiture is moderately dense in specimens from temperate climates and
also those from Nigeria (not concealing integument in female), markedly denser in populations from Asian and African deserts (almost totally concealing integument in female).

Propodeal setae. The propodeal side is glabrous anteriorly (along the metapleuron) except entirely setose in many desert populations.

Silvery fasciae of female gaster. Terga I-IV are silvery fasciate apically in most populations, but I-V in those from Burkina Faso (most specimens), Niger, Sinai, Oman, and United Arab Emirates, and only I-III in females from Canary Islands, in many specimens from North Africa (Morocco, Algeria, Tunisia, Egypt) and from Nigeria and Israel, and in one $+\frac{+}{}$ from Carpentras, France (Pulawski, 1971).

Color of female clypeus. The female clypeus can be: a. all black (most European specimens, Canary Islands), b. the bevel reddish brown (many specimens from southern Europe, Asian Turkey, some from Morocco, Syria, and Iran, all those from Oman and United Arab Emirates), c. the bevel red (many specimens from North Africa, Israel, and Kazakhstan), or d. the bevel or the entire middle clypeal section predominantly yellow (Egypt, Mauritania, Mali, Burkina Faso, Niger, Nigeria, Central Asia, Pakistan, India, Sri Lanka, some specimens from Morocco and Iran).

Color of femora. In the female, the femora can be: a. all black (Netherlands, Poland, Lithuania, Slovakia, Hungary, Oman, United Arab Emirates), b. all black except red apically (France including Corsica, Italy including Sardinia, Spain, Canary Islands, Sinai, Turkey), c. varying from all black to largely red (Romania, Bulgaria, Hoggar Mountains in Algeria, Iran, Central Asia, Sri Lanka), or d. all red or nearly so (Cyprus, Africa, Central Asia, Pakistan, India). In the male, the femora are either all black (Europe, Canary Islands, Syria), or black with red apex (Turkey, some from Cyprus, some from Central Asia and India, those from Sri Lanka), or all red or nearly so (Africa, most males from Cyprus, many from Central Asia, some from India).

Color of tibiae and tarsi. These vary from all black (e.g., many European males) to all red (e.g., Africa, Sinai, India), mostly black but foretibial outer surface red (Sri Lanka), and mostly red but partly darkened (males from Canary Islands). In specimens from Oman, the foretibia is all or largely red, the midtibia partly red (largely so in some specimens), and the hindtibia is black.

Color of gaster. In the female, the gaster can be: a. red basally and black apically (most specimens from Europe and Turkey, Sinai, many from Kazakhstan), b. all red (most specimens from Corsica, Sardinia, Cyprus, southeastern European Russia, Africa, Pakistan, many from Iran), c. red basally and apically, with segments IV and V black or brown (India, Sri Lanka, also some from Romania, Corsica, Sardinia, Cyprus; the females from southwestern Europe and Morocco currently assigned to pseudopanzeri may actually belong here), d. all black or with terga I and II reddish posteriorly (Oman, United Arab Emirates), or e. all black (Canary Islands). In the male, the gaster can be: a. all black (Canary Islands, Oman except the specimen from Sohar, United Arab Emirates, many specimens from central Europe between the Netherlands, Lithuania and Hungary, from Crete and Kazakhstan), b. red basally and brown or black apically (most European, many Asian, some North African specimens, also single male from Nigeria; the amount of red increasing toward the south), or c. all red (some specimens from Cyprus, many from North Africa, all those from Mauritania, Senegal, Mali, Niger).

In several of the specimens collected $25-35 \mathrm{~km}$ south of Richard Toll, Senegal, the flagellum is black and the thoracic and female frontal setae are silvery, as in other desert populations. In other specimens from that area, the flagellum is partly reddish (especially basally), and the scutal and female frontal setae are golden (slightly to conspicuously so). The flagellum is reddish basally, and the scutal setae are golden in single female from Nigeria. Thoracic setae are also golden in the males from Banjul, Gambia, and one of the two males from Kayar, Senegal.

ReCognition of subspecies.- Pulawski (1971) recognized seven subspecies of panzeri, but
later (in Krombein and Pulawski, 1994) sunk them all into synonymy for the following reasons: 1. morphotypes that qualify for two subspecies are sometimes intermixed within the same population (e.g., two color forms of the Corsican and Sardinian females, see Pulawski, 1971:271), 2. in many cases, variation reflects ecological but not geographic differences, and population separated by an insignificant distance could be assigned to two subspecies, 3. transition from one subspecies to another is clinal (e.g., from panzeri panzeri to panzeri sareptanus, and from the latter to panzeri pulverosus, and many populations are intermediate), and 4. recognition of formal subspecies leads to an unnecessary proliferation of names.

Nesting behavior.- Nesting habits of panzeri were studied by Fabre (1886) and Deleurance (1946) in France, Grandi (1961) in Italy, and Krombein in Sri Lanka (in Krombein and Pulawski, 1994). Their observations are summarized below.

The female excavates her nest with forelegs, but she can also evacuate small lumps of soils or sand grains with her mandibles while walking backward. The burrow, $4-9 \mathrm{~cm}$ long, penetrates the ground at an oblique angle (30° according to Krombein), either straight or bending, and ends in a single cell that is 3 cm long. After completion of the nest, the female closes the entrance with soil, walks around, performs an orientation flight, and goes hunting. The prey consists of adult or nymphal acridids that are held by the wasp's mandibles during transportation. They are either carried on foot (Krombein), in a series of hopping flights (Deleurance), or in a continuous flight (Grandi), apparently depending on the prey's size and weight. Arriving to the nest, the female drops the prey, opens the nest's entrance and goes inside, then turns around, reappears headfirst, grabs the prey with her mandibles, and drags it inside. Either one or two prey specimens are stored per cell, laid on their back or partly on a side, with their heads toward the cell's end. The egg is placed transversely on the acridid body, just behind the forecoxae, with the cephalic end near the articulation membrane of either the right or the left coxa, and the cocoon is incrusted with sand grains. A variety of prey species have been recorded: Dociostaurus genei (Ocskay) by Bernard (1934), Myrmeleotettix ? maculatus (Thunberg) by Goebel (1937, as Gomphocerus), Calliptamus italicus (Linnaeus) by Grandi (1961), Calliptamus barbarus (Costa) by Asís and Jiménez (1988), Schistocerca gregaria (Forskål) by de Beaumont (1956a), Sphingonotus rubescens (Walker) by Gayubo (1986b), Aulacobothrus luteipes Walker and Trilophidia annulata (Thunberg) by Krombein (1988), while Deleurance (1946) listed Acrotylus insubricus (Scopoli), Dociostaurus genei (Ocskay), Dociostaurus maroccanus (Thunberg), Euchorthippus pulvinatus (Fischer-Waldheim), Oedipoda caerulescens (Linnaeus), and Sphingonotus coerulans (Linnaeus). Kazenas (2001) recorded a nymphal acridid about 10 mm long.

Geographic distribution (Fig. 272).Africa between the Mediterranean coast and southern Sahara (south to about 12° of northern latitude), Europe north to North Sea in Holland and to Baltic Sea in Poland and Lithuania (unknown from Switzerland and British Isles), Asia (including Arabian Peninsula) east to Kazakhstan, Sri Lanka, and Mongolia (Tsuneki, 1972). Records of panzeri from Ethiopia

Figure 272. Collecting localities of Tachysphex panzeri (African and Arabian localities only) and paulus.
(Guiglia, 1939b), southern Africa (Bischoff, 1913; Arnold, 1923, 1924, 1947), and Thailand (Krombein and Pulawski, 1994) are all misidentifications.

Records (only African and Arabian localities are recorded; literature data prior to de Beaumont, 1947, are not included as reliable recognition features were not known; see Pulawski, 1971, and subsequent faunal papers for records from Europe and Palearctic Asia, and Krombein and Pulawski, 1994, for records from Pakistan, India, and Sri Lanka).- ALGERIA: Biskra (Pulawski, 1971), El Kala (Lucas, 1849), Hammam Lif (1 ค, NHMW), Idjef Mélène in Hoggar Mts. (1 , 1 o $^{\text {o }}$), Oran (Lepeletier de Saint Fargeau, 1845), Oued el Kebir near Jijeli (also spelled Djidjeli) ca 80 km NW Constantine (10°, MSNT), Oued Ténéouène in Tassili des Ajjer (de Beaumont, 1958). BURKINA FASO: 1 km NE Gorom Gorom at $14^{\circ} 27.3^{\prime} \mathrm{N} 0^{\circ} 13.1^{\prime} \mathrm{W}\left(4 \circ, 18^{\circ}\right), 99 \mathrm{~km}$ E Ouagadougou at $12^{\circ} 14.9^{\prime} \mathrm{N} 0^{\circ} 42.3^{\prime} \mathrm{W}(18)$), 4 km NW Ouahigouya at $13^{\circ} 37.0^{\prime} \mathrm{N} 2^{\circ} 27.6^{\prime} \mathrm{W}\left(2\right.$ 우). CHAD: N'Djamena ($1 \circ+1$ of $^{\circ} ; 2$ ㅇ, 1 ơ, ZMAN). EGYPT: $^{\circ}$, Al Fayyum: Kom Osheim ($7 \delta^{\circ} ; 1$ \& $1 \delta^{\circ}$, MSNT). Al Iskanderiyah (= Alexandria): 50 km SSW Alexandria (1 ค, MSNT), Amrye (de Beaumont, 1966). Al Jizah (= Ghiza): Abu Rawash (1 of), Dahshur (1 \&), Ghiza
 temple 3 km W Luxor ($2 \sigma^{\circ} ; 1 \delta^{\circ}$, SCHL). Al-Wadi al-Jadid: Dakhla oasis: Ewina (2 ở, $^{\circ}$ ZMAN), Ezeb el
 ZMAN), Sheik Waley (10^{\star}, ZMAN), Tineida (Pulawski, 1971). As Suways ($=$ Suez): 10 km N Suez at $30^{\circ} 03^{\prime} \mathrm{N}$ $32^{\circ} 34^{\prime} \mathrm{E}\left(1+\circ, 1 \mathrm{~d}^{\circ}, \mathrm{CSE}\right.$). Aswan: Aswan: west bank (4 δ°), near Kom Ombo temple ($1 \delta^{\circ}$). Matruh: 20-25
 Sina (= Sinai): Wadi Garandal 30 km NW Abu Zenima (1 早), Wadi Ghaib $50 \mathrm{~km} \operatorname{SSE}$ Nuweiba ($1 \mathrm{of}^{\circ}$, MSNT),
 Beaumont, 1956a and 1960b, or as indicated): Cyrenaica: Bersis, Rommel's Pool 10 km NE Benghazi, Tmimi, Wadi Derna. Fezzan: Brak, Mourzouk, Oum el Araneb. Tripolitania: Ain Zara, Aziza District (2 9), Cussabat, Garian, Sabratha, 2 km E Wadi Caam. MALI: Adrar (2 ơ 7, KMG), Aguelhok ($1 \stackrel{\circ}{ }$, KMG), Anefis ($1 \delta^{\circ}, \mathrm{KMG}$), Gao ($2 \uparrow$, KMG), 10 km S Mopti ($2 \circ ; 1 \circ$, MS). MAURITANIA: Kaédi ($1 \sigma^{\circ}, \mathrm{FB}$), Lake Aleg

 Jadida at $33^{\circ} 15^{\prime} \mathrm{N} 8^{\circ} 30^{\prime} \mathrm{W}\left(1 \delta^{\circ}\right)$, Erfoud in Tafilalt Province (Pulawski, 1971), 1 km E Essaouira at $31^{\circ} 30^{\circ} \mathrm{N}$ $9^{\circ} 44^{\prime} \mathrm{W}\left(1 \sigma^{\circ}, \mathrm{CSE}\right.$), Fès, Ifrane, Ixmoart (Pulawski, 1971), Kenitra (1 ơ $^{\circ}, \mathrm{SCHL}$), Kenitra: Mehdia (1 ㅇ, 1 o $^{\circ}$),
 Safi (1 ㅇ, $1 \delta^{\circ}$, SCHL), Settat ($1 \stackrel{q}{\circ}$, FSAG), Tafraout, Tanger ($1 \sigma^{\circ}$, SCHL), E Taroudant ($1 \delta^{\circ}$, CSE), Tetouan (Pulawski, 1971), Timhedite in High Atlas (Pulawski, 1971), Tinerhir, Tiznit: Oued Massa ($1 \circ+2$ o $^{\circ}$), 30 km
 Region: 5 km N Agadez at $17^{\circ} 01.2^{\prime} \mathrm{N} 8^{\circ} 00.7^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\text {º }}$). Diffa Region: 12 km ENE Nguigmi at $14^{\circ} 18.9^{\prime} \mathrm{N}$ $13^{\circ} 13.2^{\prime} \mathrm{E}(1 \quad$) $)$, 13 km NNE Nguigmi at $14^{\circ} 23.0^{\prime} \mathrm{N} 13^{\circ} 08.0^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right)$. Tillabéri Region: 11 km N Ayorou at
 ($1 \circ+2 \delta^{\circ}$, BMNH). OMAN: Adam ($1 \delta^{\circ}, \mathrm{KMG}$), Al Mazara at $23^{\circ} 05.2^{\prime} \mathrm{N} 58^{\circ} 51.6^{\prime} \mathrm{E}$ (1 o°), Hail al Ghaf at $23^{\circ} 09.7^{\prime} \mathrm{N} 58^{\circ} 55.5^{\prime} \mathrm{E}\left(20^{\circ}\right)$, Muscat: Seeb ($10^{\circ}, \mathrm{KMG}$), Rostaq ($10^{\circ}, \mathrm{KMG}$), Samail Gap ($10^{\circ}, \mathrm{KMG}$), Sohar ($1 \sigma^{\circ}, \mathrm{KMG}$), Wadi Ghul near Nizwa at $22^{\circ} 53.0^{\prime} \mathrm{N} 57^{\circ} 31 \cdot 2^{\prime} \mathrm{E}\left(7\right.$ of, 100°), Wadi Quryat ($1 \delta^{\circ}, \mathrm{KMG}$). Dhofar: Ayun Pools ($3 \mathrm{o}^{\boldsymbol{*}}, \mathrm{KMG}$), km 48 of S-N road ($1 \mathrm{o}^{7}, \mathrm{KMG}$). QATAR: Al Shahaniyeh ($1 \mathrm{o}^{\circ}, \mathrm{KMG}$). SAUDI

 (1 ㅇ, MSNT), Saint-Louis ($1 \circ^{*}$, FB). SUDAN: Khartum (1 ㅇ, ZMAN), Wadi Medani (Pulawski, 1971). TUNISIA: Djerba ($1 \mathrm{o}^{\circ}$), Djerba: N Mezraia ($1 \mathrm{o}^{\circ}$, CSE), 5 km W Douz at $33^{\circ} 29^{\prime} \mathrm{N} 8^{\circ} 59^{\prime} \mathrm{E}(1 \circ$, CSE), 17 km
 at $35^{\circ} 14^{\prime} \mathrm{N} 8^{\circ} 59^{\prime} \mathrm{E}\left(18^{\circ}, \mathrm{CSE}\right.$), Kebili ($1 \circ$, SCHL), Korba (1 ơ $^{\circ}, \mathrm{FSAG}$), 10 km SE Matmata at $33^{\circ} 30^{\prime} \mathrm{N}$ $10^{\circ} 01^{\prime} \mathrm{E}\left(2 \mathrm{o}^{\circ}, \mathrm{CSE}\right), 3 \mathrm{~km}$ SW Matmata ($1+\frac{\circ}{}$, CSE), 12 km W Matmata at $33^{\circ} 32^{\prime} \mathrm{N} 9^{\circ} 50^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{CSE}\right)$, Monastir 15 km S Sousse (1 ㅇ, CSE), Nefta ($1 \circ$, MS), 15 km W Nefta at $33^{\circ} 50^{\prime} \mathrm{N} 7^{\circ} 43^{\prime} \mathrm{E}\left(3\right.$ ㅇ, 3 o $^{\circ}, \mathrm{CSE}$), 30 km SW Sfax ($1 \mathrm{\sigma}^{\prime}, \mathrm{MS}$), 3 km E Tabarka (3 \& + , CSE), Tozeur (Pulawski, 1971). UNITED ARAB EMI-

Tachysphex paulus Pulawski, sp. nov.

Figures 272-274.
Derivation of name.- Paulus, Latin for small, little; with reference to this wasp's body size.
ReCognition.- Tachysphex paulus is one of many species in which the labrum is flat and the hindwing crossvein cu-a vertical (or the anal end is closer to the wing base than the cubital end). It has a black gaster and red tibiae, and the scutal setae are appressed.

The female of paulus has distinctive tarsi: tarsomeres V with 1-3 minute spines near midlength of each lateral margin (Fig. 273e), venter with a preapical group of such spines, and apicoventral margin convex (Fig. 273e). Several species are similar, but in paulus tarsomeres IV are slightly longer than apically wide, with the dorsoapical emargination acutely angulate (Fig. 273c). In addition, the labrum and clypeal lip are emarginate mesally (Fig. 273a).

In the male of paulus, the clypeal lip is roundly prominent to obtusely pointed mesally, with a well-defined corner (Fig. 273b), flagellomere I of the usual length (dorsal length 1.4-1.6 \times apical width), the forebasitarsus without preapical rake spines, and sternal setae are appressed. Several other species are similar, but they differ by their unusual features that are lacking in paulus: in bipustulosus, the supraantennal swelling is conspicuously enlarged (Figs. 58c-e); in hippolyta, the lateral margins of apical tarsomeres are expanded (Figs. 184e, f); in harpax, the setae are short and thickened on the labrum free margin (Fig. 178c); in saevus, the wings are yellow (rather than slightly infumate), and the forefemoral posteroventral surface is sparsely punctate. Unlike ovambo, the mesopleural punctures of paulus are ill defined; unlike gessianus, the clypeal lobe is not elongate (midlength about equal to distance between lip corners rather than $1.2 \times$ that distance); and unlike $m k o m a z i$, the inner mandibular margin is evenly curved distad of tooth (rather than emarginate), and the galea is evenly, sparsely punctate (rather than with sharply delimited, densely punctate area).

Description.- Scutal punctures well defined, averaging 1-2 diameters apart on disk; interspaces dull to shiny. Mesopleuron dull, markedly microsculptured, with ill-defined punctures that are about 1-2 diameters apart below scrobe. Propodeal dorsum rugose or irregularly ridged; side varying from finely ridged to not ridged (and then punctate). Hindcoxal dorsum with inner margin carinate basally.

Setae subappressed on each side of oral fossa next to occipital carina (about as long as midocellar diameter); suberect on postocellar area (no longer than one midocellar diameter); appressed on scutum and midfemoral venter; suberect, inclined posterad on propodeal dorsum.

Head and thorax black, mandible reddish mesally. Frontal setae silvery in female, golden in male. Wing membrane slightly infumate; costal vein of forewing light brown, subcostal vein dark brown. Fore- and midfemora black except red apically, hindfemur red except black basally in most specimens but black except narrowly red apically in South African males; tibiae red; tarsi red except female mid- and hindtarsomeres I-IV nearly black. Gaster black. Terga I-III silvery fasciate apically.

ํ.- Labrum emarginate. Clypeus (Fig. 273a): bevel as long as basomedian area or shorter; lip free margin arcuate, emarginate mesally, with one or two lateral incisions on each side. Width of postocellar area $1.0-1.1 \times$ length. Dorsal length of flagellomere I $1.8-2.2 \times$ apical width. Dorsal foretibial surface with two spines; outer surface with two spines. Forebasitarsus with $10-12$ rake spines. Tarsomeres IV slightly longer than wide, with acutely angulate dorsoapical emargination (Fig. 273c). Apical tarsomeres with 1-3 (mostly two) spines near midlength of each lateral margin (Fig. 273e); venter with preapical group of small spines; apicoventral margin convex (Fig. 273e). Outer claws of mid- and hindtarsi minimally shorter and thinner than inner claws (opposite on foretarsus). Apical depression of tergum V impunctate, glabrous. Pygidial plate with punctures that average several diameters apart; interspaces unsculptured. Length $7.5-9.1 \mathrm{~mm}$.

Figure 273. Tachysphex paulus Pulawski, sp. nov.: a - female clypeus and mandible ($\times 63$); b - male clypeus and mandible ($\times 44$); $\mathrm{c}-$ female hindtarsomere IV dorsally $(\times 216)$; d - female hindtarsomere V and claws in oblique lateral view ($\times 111$); e - female hindtarsomere V ventrally ($\times 252$); $\mathrm{f}-$ male hindtarsomere V ventrally $(\times 300)$.
σ^{7}.- Mandible: trimmal carina with tooth, with or without cleft. Clypeus (Fig. 273b): bevel unsharply delimited but about as long as basomedian area; lip free margin roundly prominent to obtusely pointed mesally, with well-defined corner; distance between corners $1.1-1.3 \times$ distance between corner and orbit. Width of postocellar area $0.9-1.1 \times$ length. Dorsal length of flagellomere I 1.4-1.6 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus
without preapical rake spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Venters of tarsomeres V each with one preapical spine (Fig. 273f). Sternum VIII with variously shaped apical margin: mostly with median point, but nearly straight in some specimens, or median point incised. Length $6.6-8.2 \mathrm{~mm}$. Volsella and penis valve: Fig. 274.

Geographic distribution (Fig. 272).Namibia, South Africa.

Records.- Holotype: ㅇ, NAMIBIA: Otjiwarongo District: 18 km NE Kalkfeld at $20^{\circ} 45^{\prime} \mathrm{S}$ $16^{\circ} 16^{\prime} \mathrm{E}, 22$ Feb 1996, WJP (CAS). Paratypes: NAMIBIA: Gobabis District: Okahoa Farm 10 km

Figure 274. Tachysphex paulus Pulawski, sp. nov.: volsella and penis valve. N Gobabis, 16 Dec 1933, J. Ogilvie (1 \&, BMNH).
 District: Leeu River 9 km W Okahandja, 13 Feb 1996, WJP (1 ơ); Okahandja, 2-4 Feb 1972, [British Museum] Southern African Expedition (1 ơ, BMNH); 27 km S Okahandja, 18 Feb 1990, MS (1 ơ, MS);
 Otjiwarongo District: 18 km NE Kalkfeld, 22 Feb 1996, WJP (3 \& +2 ® $^{\text {® }}$); 25 km NE Kalkfeld, 27 Feb 1996, WJP (5 ơ *); 20 km N Otjiwarongo, 13 Mar 1990, MS (2 o $^{\text {º }}$, MS); 44 km SW Otjiwarongo, 4 Mar 1996, WJP (3 ${ }^{\circ}$). Windhoek District: 36 km E Windhoek, 16 Feb 1990, WJP ($1 \mathrm{o}^{\circ}$). SOUTH AFRICA: Gauteng: Pretoria: Botanical Garden, 7-8 Jan 1996, WJP ($1 \mathrm{o}^{\circ}$); Rietvlei (= van Riebeck) Nature Reserve at $25^{\circ} 52^{\prime}$ S $28^{\circ} 16^{\prime}$ E, 5 Jan 1996, WJP ($12 \sigma^{\circ}$); Tswaing (as Soutpan) at $25^{\circ} 24^{\prime}$ S $28^{\circ} 06^{\prime} \mathrm{E}, 14$ Dec 1982, CDE ($2 \circ$, PPRI). Northern Cape Province: Steinkopf, 21 Nov 1990, R. Miller and L. Stange ($1 \delta^{\circ}$, FSCA).

Tachysphex pentheri Cameron

Figures 275-279.
Tachysphex pentheri Cameron, 1905:212, of , actually \circ (as Pentheri, incorrect original capitalization). Holotype or syntypes: \uparrow, South Africa: Eastern Cape Province: Grahamstown (AMG according to original description, now TMP), here designated as lectotype, examined.- Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).-As Tachysphex panzeri var. pentheri: Arnold, 1923:175 (new status, listed), 176 (original description copied), 1930:4 (in checklist of Afrotropical Sphecidae).-As Tachysphex panzeri pentheri: Bohart and Menke, 1976:275 (new status, listed); Gess, 1981:20 (South Africa, nesting in friable soils).
Tachysphex panzeri var. nanus Arnold, 1924:71, 우, \boldsymbol{o}^{\top}. Lectotype: \boldsymbol{o}°, South Africa: Eastern Cape Province: Willowmore (TMP), here designated, examined. New synonym.- Arnold, 1930:4 (in checklist of Afrotropical Sphecidae).-As Tachysphex panzeri nanus: Bohart and Menke, 1976:275 (new status; listed).
As Tachysphex panzeri var. caliban: Arnold, 1923:169, of only, present correction.
Tachysphex panzeri var. zavattarii Guiglia, 1939b:74, o (as Zavattarii, incorrect original capitalization). Holotype: 우, Ethiopia: Sidamo: Negele (as Neghelli) in Borana area (GENOVA), examined. New syn-onym.-As Tachysphex panzeri zavattarii: Bohart and Menke, 1976:275 (new status; listed).

Interpretation of species name.- The holotype or the only surviving syntype of pentheri is a female, and not a male as stated in Cameron's (1905) original description. It lacks the head now, but its identity can be established based on the scutal punctation, propodeal sculpture and pilosity, shape of foretarsomeres I and II, and color (in particular, the apical half of the clypeus and the labrum were yellow according to Cameron, as it is the case in most specimens). This combination
of characters is found in no other species occurring near Grahamstown, South Africa, the type locality.

Recogntion.- Tachysphex pentheri, one of the commonest sub-Saharan species, has a labrum convex and protruding beyond the clypeal free margin, an elongate galea (length equal to $0.9-1.0$ of scape), propodeal dorsum all setose, with setae diverging obliquely anterad from the midline, the propodeal side all ridged (only anteriorly in some specimens), and the upper metapleural pit oblong. In addition, scutal punctures are well defined (interspaces unsculptured or microsculptured); setae are straight on the head, on the postocellar area appressed and no longer than one midocellar diameter.

The female differs from other such species except montivagus in having foretarsomeres I and II not broadened (outer margin not expanding over rake spine bases) and a relatively long clypeus (Fig. 275a): the clypeal midlength is about $0.75 \times$ distance between lobe corners (about 0.65 or less in most other species). Subsidiary recognition features include: dorsal length of flagellomere I at most $2.8 \times$ apical width, width of postocellar area $0.7-1.0 \times$ length. Unlike montivagus, the midand hindtibiae of pentheri are red rather than black (only a part of the midtibia is red in the darkest specimens) and the pygidial plate is unsculptured and shiny between punctures (rather than dull, microsculptured).

The male of pentheri differs from similar species by: well-defined lateral margin of the clypeal lip (Fig. 275b); lip corners, in the vast majority of specimens, closer to each other than to the adjacent orbit; sterna V and VI each with erect, subbasal fringe of agglutinated setae (Figs. 276a-f),

Figure 275. Tachysphex pentheri Cameron: a - female clypeus ($\times 46$); b - male clypeus ($\times 51$); $\mathrm{c}-$ apical portion of male sternum VIII ($\times 180$).

Figure 276. Tachysphex pentheri Cameron: $a-$ gastral segments II-VII of male in lateral view ($\times 30$); b-gastral segments II-VII of male in ventral oblique view $(\times 30)$; $\mathrm{c}-$ sternal fringes of male in lateral view $(\times 180)$; $\mathrm{d}-$ sternal fringes of male in ventral view $(\times 120)$; $\mathrm{e}-$ sternal fringe of male in lateral oblique view $(\times 720) ; \mathrm{f}-$ sternal fringe of male in flat view ($\times 720$).
although the fringes are visible only when the segments are fully extended; and sternum VIII deeply emarginate, with each of its apical prongs, in most specimens, incised apically (Fig. 275c), although the incision may be reduced on one or both sides.

Justification of new synonymy.- Arnold could not recognize Tachysphex pentheri and did not realize that it was identical to his nanus. The types of these two species are conspecific, as is that of zavattarii. All three names are therefore synonyms.

Description (see also Dimorphic Males below).- Labrum convex, markedly protruding from
beneath clypeus. Galea aciculate, sparsely punctate, as long as $0.9-1.0$ of scape. Scutal punctures well defined, about one diameter apart in most specimens, up to two or three diameters apart in some (interspaces shiny, microsculptured to unsculptured). Mesopleural punctures minute, superficial, about 1-2 diameters apart. Propodeal dorsum, in some specimens, longitudinally ridged (except laterally), but ridges more or less reduced in most and absent in some; side ridged in most specimens, but with only traces of ridges (next to anterior margin) in occasional males from Namibia and South Africa; upper metapleural pit oblong. Hindcoxal dorsum with inner margin carinate (except apically), carina not expanded.

Setae appressed on postocellar area; about one midocellar diameter long on each side of oral fossa next to occipital carina; appressed or nearly so on scutum and no longer than one midocellar diameter in most specimens, but suberect, about $1.5 \times$ midocellar diameter long in many specimens from Namibia and western South Africa; on propodeal dorsum diverging obliquely anterad from midline, but pointing laterad on sides; practically appressed on midfemoral venter.

Head and thorax black, mandible red or yellowish (except apically); clypeal bevel, lip, and labrum pale yellow or partly reddish, but partly black in females from Okahandja and Okaukuejo, Namibia, and all black in some males from Okaukuejo. Frontal setae silvery in both sexes, but golden in some males from Namibia and western South Africa. Wing membrane nearly hyaline; costal vein of forewing reddish brown, subcostal vein brown. Femora, tibiae, and tarsi red in most specimens but femora all or largely and tibiae largely black in some (e.g., femora largely black in specimens from Oman; femora, part of midtibia and hindtibia black in single female from Karen, Kenya; femora and hindtibial venter black in specimens from Okaukuejo). Gaster red basally and black apically in most specimens, but all red in some and all black in others (specimens with black gastral apex and those with all red gaster occur together and intergrade in many localities). Terga I-IV in female, I-V or I-VI in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 275a): bevel longer than basomedian area; lip either biarcuate or broadly, shallowly emarginate mesally, incised or not incised laterally. Width of postocellar area $0.7-1.0 \times$ length. Dorsal length of flagellomere I 2.2-2.8 \times apical width, up to $3.2 \times$ in many specimens from Namibia. Dorsal foretibial surface with two spines; outer surface with one spine near midlength. Forebasitarsus with 6-8 rake spines. Apical depression of tergum V microsculptured and setose (at least sparsely so). Pygidial plate with punctures that average many diameters apart; interspaces unsculptured. Length $5.9-10.2 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 275b): bevel about as long as basomedian area, markedly longer in some specimens; lip free margin slightly arcuate to shallowly concave, with well-defined corner and lateral margin; distance between corners 0.8-1.1 \times distance between corner and orbit. Width of postocellar area $0.8-1.1 \times$ length. Dorsal length of flagellomere I 1.7-2.2 \times apical width. Forefemoral notch asetose, absent in some specimens (see Dimorphic Males below). Outer margin of forebasitarsus with 4-6 rake spines (with 2-4 spines in specimens with nonemarginate forefemur); outer apical spine of foretarsomere II longer than tarsomere III. Hindfemoral venter with inner (= posterior) margin sharp in distal half. Tergum VII: punctures varying from less than one diameter to about 1-2 diameters apart. Sterna V and VI (except laterally) each with subbasal, erect fringe of agglutinated setae (Figs. 276a-f), fringes visible only when sterna are fully extended; shallowly concave between fringe and hindmargin. Sternum VIII with well-defined apical emargination, each lateral prong incised apically (Fig. 275c), but one or both incisions absent in occasional specimens. Length $5.0-9.2 \mathrm{~mm}$. Volsella and penis valve: Figs. 277a-c; venter of penis valve in most specimens angulate between basal (smooth) and apical (dentate) portions (Fig. 277b), but angle reduced in specimens from Oman and most from Namib Desert (Fig. 277c).

DIMORPHIC MALES AND THEIR STATUS.- The male forefemur is emarginate basally in the vast majority of populations, but entire in many specimens from the Namib and Karoo deserts, with no known intermediates. I have not noticed any other constant differences between these two phena. They are largely allopatric, but mixed populations were found together in at least nine localities (Namibia: 30 km E

Figure 277. Tachysphex pentheri Cameron: a - volsella, b-penis valve of a specimen from Namibia; c - penis valve of a specimen from Oman. Karasburg, Karas Mountains, Karibib, 15 km E Karibib, Swakopmund; and South Africa: Knersvlakte, 5 km S Lambert's Bay, Langberg, and Swartrivier 7 km NW Prince Albert; specimens collected by H. Brauns in the early $\mathrm{XX}^{\text {th }}$ century and labeled Willowmore may have originated from different sites). The females cannot be easily associated with one or the other male form in the transition areas: essentially, their scutal setae are fully appressed or nearly so in the main form (male femur emarginate), whereas nearly erect in the females of the non-emarginate male form. Some South African females associated with the usual males, however, have the setae nearly erect, and some females associated with the non-emarginate males have the setae subappressed.

The nonemarginate male femur, in Tachysphex in general, may be a species group characteristic (geniculatus and its relatives), a species character (e.g., zambius), or just individual variation (brevipennis and scopa). The two forms considered are most likely individual forms of one species, overlapping in some localities. In contrast, the emarginate and nonemarginate forms of the Malagasy excisus are sympatric.

Prey.- Several females from Lesotho, Namibia, and South Africa are pinned with their prey, all nymphal acridids (det. F.W. Gess).

Floral record.- Namibian specimens were collected on flowers of Psilocaulon glareosum (Berger) Dinter and Schwantes (Aizoaceae), Welwitschia mirabilis J.D. Hooker, Galenia sp. (Aizoaceae), Limeum sulcatum (Klotsch) Hutch. (Molluginaceae), Zygophyllum cylindrifolium Schinz, and Z. simplex Linnaeus (Zygophyllaceae), as recorded by F.W. and S.K. Gess, the collectors.

Geographic distribution (Figs. 278, 279).-Senegal to Yemen and Oman, south to Cape of Good Hope.

Records (the σ^{π} symbol refers only to males with emarginate forefemur, an n instead of sex symbol indicates males with nonemarginate forefemur)- ANGOLA: Bruco (1 \&, $2 \sigma^{\circ}$, BMNH),
 Folgares SE 1415Cc [$\left.=14^{\circ} 45^{\prime}-15^{\circ} 00^{\prime} \mathrm{S} 15^{\circ} 00^{\prime}-15^{\circ} 15^{\prime} \mathrm{E}\right]$ (10°, NMN), 12 mi SW Luimbala (10°, BMNH), 5 mi NE Negola (20°, BMNH), Rocadas at Cunene River (1 ㅇ, BMNH). BOTSWANA: 1.5 km E Cheleka in

Figure 278. Collecting localities of Tachysphex pentheri with emarginate male forefemur.

Figure 279. Collecting localities of Tachysphex pentheri with entire male forefemur.

 GHANA: Kawampe 45 km N Kintampo at $8^{\circ} 30^{\prime} \mathrm{N} 1^{\circ} 35^{\prime} \mathrm{W}(1 \quad \circ)$, Legon 12 km NNE Accra ($3 \mathrm{o}^{\circ}$), Tema
 KENYA: Coast Province: Kitani Lodge in Tsavo West National Park (1 or $^{\boldsymbol{*}}$), Mount Kasigau (3 \&), Taita
 Taita Discovery Centre (1 우), 2 km S Voi ($2 \rightarrow 2$ of *), Voi area (1 우, OÖLM). Eastern Province: near Ewaso
 in Machakos District ($1 \circ^{*}$), Laisamis ($1+9$), 32 km NW Mtito Andei (1 \&), 12 km SW Mwingi (1 \&), 94 km
 on Ewaso Ng'iro River (2 +), Lorogi Plateau 6 mi S Kisima (2 ơ *), Magadi road 25 air km SW Nairobi (1 \& ,

 BMNH), 30 km NW Naivasha ($1 \delta^{*}$), Olorgesailie (5 ㅇ, $16 \sigma^{7} ; 2$ ㅇ, $5 \sigma^{7}$, NMK), Ol Punyata ca 16 mi N Nakuru at $0^{\circ} 08^{\prime} \mathrm{S} 36^{\circ} 05^{\prime} \mathrm{E}\left(2+{ }^{\circ}, 1 \mathrm{o}^{\prime}, \mathrm{LACM}\right), 10 \mathrm{mi}$ SW Sukuta Lol Marmar at $0.82^{\circ} \mathrm{N} 36.68^{\circ} \mathrm{E}(1+\circ, \mathrm{LACM}), 10 \mathrm{mi}$

 NAMIBIA: Bethanien District: Barby 26 [Farm] SE 2516 Dc [$=$ between $25^{\circ} 45^{\prime}$ and $26^{\circ} 00^{\prime}$ S and $16^{\circ} 30^{\prime}$ and $16^{\circ} 45^{\prime} \mathrm{E}(1 \quad$ ㅇ, NMN), Riverside 135 [Farm 15 km SW Bethanie] (3 ㅇ, 1 n , NMN). Gobabis District: near Gobabis ($1 \circ$, AMG), 40 km W Witvlei ($5 \mathrm{o}^{\star} ; 6 \mathrm{o}^{\circ}$, MS). Grootfontein District: Alexander Farm 35 km SE

 NMN), Great Karas Mountains ($1 \stackrel{\circ}{+}, S A M$), 30 km E Karasburg (5 ㅇ, 1 of $^{\circ}, 5 \mathrm{n}$, AMG), Karas Mountains at

 Karibib (3 $\uparrow+1 \delta^{\circ} ; 1$ ㅇ, MS), Spitzkoppe 17 km from Usakos (1 n , PPRI), 97 km from Swakopmund on road to Usakos ($1 \stackrel{\circ}{ }, 1 \mathrm{n}, \mathrm{AMG}$), just E Usakos ($1 \stackrel{\circ}{+}, \mathrm{AMG}$), 4 km N Usakos ($1 \stackrel{\circ}{+}, \mathrm{AMNH}$), 55 km SW Usakos (7 ํ, $2 n ; 5$ ㅇ, $1 \mathrm{n}, \mathrm{MS}$), 65 km SW Usakos (9 우, $2 \mathrm{n}, \mathrm{MS} ; 7$ ํ, 4 n), $17 \mathrm{~km} \mathrm{~W} \operatorname{Usakos}$ (1 우).

Keetmanshoop: Keetmanshoop (1 우, AMG), Mount Brukkaros at $25^{\circ} 52^{\prime}$ S $17^{\circ} 48^{\prime} \mathrm{E}\left(1^{\circ}\right.$ ㅇ, USNM), Tses to Bersheba (1 n , AMG). Khorixas District: Brandberg: Hungorob Ravine at $21^{\circ} 1^{\prime} 30^{\prime \prime} \mathrm{N} 14^{\circ} 31^{\prime} 40^{\prime \prime} \mathrm{E}(1 \mathrm{n}$,
 ($1 \circ, 1 n$), 120 km from Khorixas on road to Palm (1 ค, 2 n , AMG), road 3245 E Skeleton Coast Park at $20^{\circ} 14^{\prime} \mathrm{S} 13^{\circ} 53^{\prime} \mathrm{E}(4+\mathrm{P}, \mathrm{AMG})$, on road to Uis Myn: 94 km from coast at $21^{\circ} 26^{\prime} \mathrm{S} 14^{\circ} 45^{\prime} \mathrm{E}(6 n, \mathrm{AMG}), 120 \mathrm{~km}$ from coast at $21^{\circ} 14^{\prime} \mathrm{S} 14^{\circ} 51^{\prime} \mathrm{E} 93\left(1+8,2 \mathrm{n}\right.$, AMG). Lüderitz District: Aurusberg at $27^{\circ} 39^{\prime} \mathrm{S} 16^{\circ} 19^{\prime} \mathrm{E}(1+$ of,
 at $26^{\circ} 50.07^{\prime} \mathrm{S} 16^{\circ} 17.65^{\prime} \mathrm{E}\left(2\right.$ 9 $9,7 \mathrm{n}, \mathrm{AMG}$), Klein-Aus Vista at $26^{\circ} 39^{\prime} \mathrm{S} 16^{\circ} 15^{\prime} \mathrm{E}(2 \circ$ ㅇ, AMG), Namib Farm 70 km N Aus (1 ค, 2 ơ $^{\circ}$, OHL), Namib Farm 60 km NE Aus (1 n , OHL), Plateau 38 [Farm] 20 km E Aus (1 \& , 9 ơ 7, NMN), 16 km S Rosh Pinah (1 \& , AMG), Uguchab River near Aurusberg (1 q , PPRI). Maltahöhe District: SE Büllsport 4 km from road C14 on D854 ($1 \stackrel{\circ}{ }$, AMG), 76 km from Helmeringhausen on road to Spes Bona ($1 \mathrm{n}, \mathrm{AMG}$). Mariental District: Gochas (1 ค, FSCA), Mariental (1 ơ, AMG; 1 ค, OHL), 5 km
 319 [Farm] (4 o *, AMG). Okahandja District: Leeu River 9 km W Okahandja (2 ㅇ, 16 o $^{\text {® }}$), Okahandja (1 ค,

 MS), 32 km W Omaruru (2 甲 9 , $1 \mathrm{o}^{\circ}$, AMG). Otjiwarongo District: Kalkfeld ($1 \mathrm{o}^{*}$, MS), 18 km NE Kalkfeld
 25 km NW Otjiwarongo ($1 \mathrm{\sigma}^{\star}, \mathrm{MS}$), 28 km NW Otjiwarongo ($2 \mathrm{o}^{\star}$), 80 km S Otjiwarongo ($1 \mathrm{o}^{\star}$, MS). Outjo
 32 mi ENE Okaukuejo (1)), W Ugab River 12 km SE Outjo (1 \&) . Rehoboth District: 10 km N Kalkrand

 Pass to Kuiseb Pass ($1 n$, AMG), Gobabeb ($2 n$, ZMUC), Welwitschia Forest near Gobabeb ($1 n$), Homeb ESE Gobabeb in Welwitschia valley ($1 \mathrm{n}, \mathrm{ZMUC}$); N Homeb at $23^{\circ} 38^{\prime} \mathrm{S} 15^{\circ} 13^{\prime} \mathrm{E}(1 \mathrm{P}$, PPRI), Kuiseb River near Gobabeb (1 早), Mirabeb (1 n , PPRI), SE corner of Namib Desert Park at SE 2315Db [= between $23^{\circ} 30^{\prime}$ and $23^{\circ} 45^{\prime} \mathrm{S}$ and $15^{\circ} 45^{\prime} \mathrm{E}$ and $16^{\circ} 00^{\prime} \mathrm{E}$] (1 ค, 1 n , ZMUC), Namib Desert Research Station ($5 \circ+\mathrm{CSE} ; 2 \circ$, USU), near Rossing Mountain at $22^{\circ} 34^{\prime} \mathrm{S} 14^{\circ} 49^{\prime} \mathrm{E}\left(2+\mathrm{\circ}\right.$, AMG), 12 km E Springbokwater at $20^{\circ} 15^{\prime} \mathrm{S} 13^{\circ} 44^{\prime} \mathrm{E}(1+$ o , AMG), Swakop River mouth (1 ㅇ, $10 n$; 1 n, ZMUC), Swakopmund (2 ㅇ, $3 n$, AMG; 1 ㅇ, 5 ơ, JG; $^{2} n$, MS), 5 km E Swakopmund ($1 \circ+1 \mathrm{n}$, ZMUC), 10 km E Swakopmund ($6 n$), 15 km E Swakopmund ($1 \circ+1 \mathrm{n}$, JG), 63 km NE Swakopmund (18 $9,45 \mathrm{n}$), 40 km NE Swakopmund in rocky hills (2 \& , ZMUC), Uis to Hentiesbaai

 Bay Territory: Rooibank ($1 \delta^{\circ}$). Windhoek District: Aris 25 km S Windhoek (1 ㅇ, MS; 2 o $^{\circ}$, CAS, MS),
 ($3 \mathrm{o}^{\text {r }}, \mathrm{AMG}$), Neudamm 25 km NNE Windhoek ($1 \mathrm{o}^{\circ}, \mathrm{NMN}$), Regenstein 15 mi SSW Windhoek (1 q , BMNH), 17 km ESE Seeis ($1+$ ㅇ, AMNH), Solitaire at $23^{\circ} 52^{\prime} \mathrm{S} 16^{\circ} 00^{\circ} \mathrm{E}\left(1 \stackrel{\circ}{\circ}\right.$, AMG), Wasservallei ($2 \mathrm{o}^{\circ}$, NMN), Windhoek ($1 \stackrel{\circ}{ }, 2 \sigma^{\circ}$, NMN), 53 km E Windhoek ($1 \sigma^{\circ}, \mathrm{MS}$), 8 km S Windhoek ($1 \mathrm{o}^{\circ}$, FSCA), 28 km SE Windhoek ($1 \sigma^{\circ}$). OMAN: Ain Razat (1 ค, KMG), Behla ($2 \sigma^{\circ} ; 3 \sigma^{\circ}, \mathrm{KMG}$), Salalah at $17^{\circ} 00.3^{\prime} \mathrm{N} 54^{\circ} 07.1^{\prime} \mathrm{E}$ (1 ㅇ) , Samail Gap ($1 \mathrm{o}^{\circ}, \mathrm{KMG}$), Wadi Ghul near Nizwa at $22^{\circ} 53.0^{\prime} \mathrm{N} 57^{\circ} 31.2^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right)$, Wadi Quryat (1 if,
 5 km SW Thiès ($1 \mathrm{o}^{7}$). SOMALIA: Bohotle ($1 \circ$, BMNH), Kismaayo (3 \circ, BMNH). SOUTH AFRICA: Eastern Cape Province: 42 km W Aberdeen at $32^{\circ} 31^{\prime} \mathrm{S} 23^{\circ} 37^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$), Algoa Bay ($6 \circ$ o 3 ơ' $^{\circ}$, TMP), Aliwal

 London (10°, USU), Clifton 18 km NW Grahamstown at $33^{\circ} 11^{\prime} \mathrm{S} 26^{\circ} 24^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{AMG}\right)$, Colchester at $33^{\circ} 42^{\prime} \mathrm{S}$ $25^{\circ} 50^{\prime} \mathrm{E}\left(1 \stackrel{\circ}{\circ}, 1 \mathrm{o}^{\circ}\right)$, Cookhouse (1 ㅇ, SAM), Cradock ($3 \mathrm{o}^{\circ}$, AMNH), 21 mi N Cradock (1 ㅇ, 2 o $^{\circ}$, AMNH), 7 km S Cradock (1 ㅇ, 3 ơ운, OÖLM), De Aar (1 ㅇ, AMG), Elandsheuwels Farm 40 km W Steytlerville (4 우,
 Gamtoos River mouth at $33^{\circ} 58^{\prime} \mathrm{S} 25^{\circ} 01^{\prime} \mathrm{E}\left(1 \delta^{\star}, \mathrm{SAM}\right)$, Goodehoop Farm 16 km W Steytlerville ($1 \circ 5$ o $^{\circ}$, USU), Graaff-Reinet ($2 \delta^{*}, ~ A M G$), Grahamstown ($1 \delta^{*}$, AEI; $1 \circ$, PPRI; $1 \circ$, TMP, lectotype of pentheri), 18 km WNW Grahamstown: Hilton Farm ($2 \uparrow, 1 \circ^{*} ; 23 \circ, 1 \circ^{*}$, AMG; $4 \circ$ determined as panzeri pentheri by F. Gess), Kenton-on-Sea ($1 \stackrel{\circ}{ }$, AMG), Kirkwood ($2 \uparrow$, OÖLM), Klipdaal in Cradock District (1 o $^{*}, \mathrm{SAM}$), Middelburg District (2 ㅇ, SAM), Mountain Zebra National Park at $32^{\circ} 15^{\prime} \mathrm{S} 25^{\circ} 27^{\prime} \mathrm{E}(1 \quad \circ)$, Olifantsrivier 30 km NNE Uniondale at $33^{\circ} 27^{\prime} \mathrm{S} 23^{\circ} 19^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\star}\right)$, Port Elizabeth ($1 \stackrel{\circ}{\circ}, 1 \mathrm{o}^{\circ}$, MTM), Queenstown ($1+9$ o $^{\circ}$, BMNH; 1 ㅇ, AMG), Resolution 17 air km NNE Grahamstown (10 우, TMP), Somerset East ($1 \mathrm{o}^{\circ}$, AEI),
 km S Steytlerville: Wolwekraal Farm and 30 km S Steytlerville at $33^{\circ} 32.8^{\prime} \mathrm{S} 24^{\circ} 21.3^{\prime} \mathrm{E}\left(14+9,10 \sigma^{\prime}\right.$, USU) and $33^{\circ} 38.9^{\prime} \mathrm{S} 24^{\circ} 20.9^{\prime} \mathrm{E}\left(1+1 \delta^{\circ}\right)$, Strowan Farm 5 air km W Grahamstown ($1 \circ$, AMG), Sundays River (1 ㅇ, $1 \sigma^{\star \prime}$, TMP), Table Farm 10 km NW Grahamstown (2 $+1 \mathrm{o}^{7}$, AMG), Waterford ($1 \mathrm{o}^{7}$, AMG), Willowmore
 (1 ㅇ, 2 ه *), 43 km NE Willowmore: Plessierivier ($3 \circ, 2 \delta^{\circ}$, USU), 37 km NW Willowmore in Grootrivierberg Range (9 오, 3 ơn $^{\circ}$, USU), 11 km SW Willowmore at $33^{\circ} 22.3^{\prime} \mathrm{S} 23^{\circ} 24.7^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\prime}\right.$, USU), 12 km W Willowmore
 Caledon River between Bethulie and Alival North ($1 \sigma^{7}, \mathrm{SAM}$), 30 km N Colesville at Orange River (4 ㅇ, $1 \sigma^{\circ}$, OÖLM), Harrismith ($1 \sigma^{\circ}, \mathrm{BMNH}$), Sandveld Nature Reserve ca 5 air km E Bloemhof at $27^{\circ} 40^{\prime} \mathrm{S} 25^{\circ} 41^{\prime} \mathrm{E}$ (3 σ^{*}), Tussen Die Riviere Game Reserve ($2 \circ$ ㅇ, PPRI). Gauteng: Benoni ($1 \circ ; 1 \circ$, AMG), Bordeaux ($1 \circ$, SAM), Bronkhorstbaai ca $8-9 \mathrm{~km} \mathrm{~S}$ Bronkhorstspruit($2 \stackrel{\circ}{\circ}$, AMG), Florida Lake (1 ㅇ, $1 \mathrm{o}^{\circ}$), Johannesburg
 1 ㅇ, AMG; 1 ㅇ, TMP), Pretoria: Botanical Garden ($8 \sigma^{\circ}$), Pretoria: Lynnwood at $25^{\circ} 48^{\prime} \mathrm{S} 28^{\circ} 22^{\prime} \mathrm{E}\left(4 \sigma^{\circ}\right)$, Randburg (1 ㅇ)), Roodeplaat (2 ㅇ, PPRI), Tswaing ($4 \delta^{\circ}$), Wapadrand 8 km E Pretoria at $25^{\circ} 48^{\prime} \mathrm{S} 28^{\circ} 22^{\prime} \mathrm{E}$
 Mbazwana ($1+$, OÖLM), Ndumu Game Reserve ($1 \mathrm{o}^{\circ}, \mathrm{ZMAN}$), 5 km W Port Shepherd ($1 \stackrel{\circ}{ }$, USNM), St. Lucia Bay (+ , RMNH). Mpumalanga: Barberton (1 , AMG), Crocodile Bridge in Kruger National Park
 Loskop Dam Nature Reserve ($1 \stackrel{\circ}{ }$, $1 \sigma^{7}$, PPRI), Pretoriuskop in Kruger National Park ($1 \sigma^{\pi}$, USNM), Sabie ($2 \circ^{*}, ~ A M G$), Satara in Kruger National Park ($1 \stackrel{\circ}{ }$, PMA), Skukuza in Kruger National Park ($1 \stackrel{\circ}{\circ}$, PPRI, 2 ㅇ, PMA), Struben's Valley ($3 \stackrel{\circ}{ }$, $1 \circ^{*}$, AMG). Northern Cape Province: Aggeneys (2 ㅇ, SAM), Augrabies to Blouputs at $28^{\circ} 36^{\prime} \mathrm{S} 20^{\circ} 13^{\prime} \mathrm{E}(1 \stackrel{\circ}{\circ}$, AMG), Colesberg ($1 \stackrel{\circ}{ }+\mathrm{SAM}$), Garies: Klip Vlei ($1 \stackrel{\circ}{ }$, SAM), 40 km SE
 Hondeklipbaai (10^{\prime}, OÖLM), 18 km E Hondeklipbaai at $30^{\circ} 21^{\prime} 34^{\prime \prime} \mathrm{S} 17^{\circ} 26^{\prime} 27^{\prime \prime} \mathrm{E}(1+9, \mathrm{CSE}$), Kamiesberg to Sors Sors at $30^{\circ} 11^{\prime} \mathrm{S} 18^{\circ} 01^{\prime} \mathrm{E}$ (1 ㅇ, AMG), E Kamieskroon ($1+$, OÖLM), Langklip 103 km WNW Upington (1 ㅇ, AMG), Olifantshoek (11 ơ, FSCA), Onseepkans ($1+$, AMG), Pachtvlei E Alexander Bay at $28^{\circ} 33^{\prime}$ S $16^{\circ} 34^{\prime} \mathrm{E}(1 \mathrm{n}, \mathrm{AMG})$, Pofadder ($1 \mathrm{n}, \mathrm{SAM}$), 60 km N Port Nolloth at $28^{\circ} 47^{\prime} \mathrm{S} 16^{\circ} 37^{\prime} \mathrm{E}(1 \mathrm{n}, \mathrm{AMG}$), Richtersveld National Park at $28^{\circ} 18.9^{\prime} \mathrm{S} 16^{\circ} 58.3^{\prime} \mathrm{E}\left(2 \sigma^{\circ}\right)$ and Koeroegabvlakte at $28^{\circ} 11^{\prime} \mathrm{S} 17^{\circ} 03^{\prime} \mathrm{E}(1 \mathrm{n}$, AMG), road to Richtersveld National Park between Annis and Dabie Rivers at $28^{\circ} 20^{\prime} \mathrm{S} 16^{\circ} 55^{\prime} \mathrm{E}(1 \mathrm{n}$, AMG), Roggekloof S Sutherland ($1+$, OHL), 90 km ENE Springbok at $29^{\circ} 20.1^{\prime} \mathrm{S} 18^{\circ} 44.3^{\prime} \mathrm{E}(1 n)$, SW Springbok at Buffels River ($2 \sigma^{*}$, OÖLM), 50 km SW Springbok at Buffels River ($1 \sigma^{\star}$, OÖLM), Steinkopf (10^{\star}, FSCA), Tanqua Karoo at Renoster River ($1 \stackrel{\circ}{ }$, SAM), Upington (1 Norvalspont ($2 \rightarrow$, AMG), 90 km W Van Zylsrus which is $26^{\circ} 52^{\prime} \mathrm{S} 22^{\circ} 04^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right.$, MS), Vioolsdrift (3 n , SAM), 22 km E Williston ($1 \mathrm{o}^{*}, \mathrm{AMG}$). Northern Province: Afguns (1 ㅇ, AMG), Beacon Ranch 20 km NW

 Klaserie (3 ㅇ, $3 \sigma^{\circ}$, PMA), Klaserie ($3 \sigma^{\circ}$, PMA), Langjan Nature Reserve (3 오, PPRI), Lapalala Nature Reserve at $23^{\circ} 51^{\prime} \mathrm{S} 28^{\circ} 17^{\prime} \mathrm{E}$ ($1 \sigma^{\circ}$, PPRI), Messina (${ }^{\circ}+$, PPRI) , Mogol Nature Reserve ($16 \stackrel{\circ}{\circ}, 18$ o $^{\circ}$, PPRI), Naboomspruit (1 ㅇ, PPRI; 1 ㅇ, SDNHM), 10 km SW Naboomspruit (16 ㅇ, FSCA), Nwanblya waterhole near Shingwidzi in Kruger National Park (1 ¢, ZMAN), Nylsvley Nature Reserve (10°, PPRI), Pafuri in Kruger
 ZMAN), 5 mi N and 5 mi W Warmbad ($4 \stackrel{+}{\circ} 3 \mathrm{o}^{\circ}$, USNM), "N.E. Zoutp. dist." [probably NE Zoutpansberg

 AMG). Western Cape Province: Barrydale ($1 \delta^{\circ}$, OÖLM), Beaufort West ($1 \mathrm{o}^{\circ}$, SAM), Bo Kouga in

 OHL), 20 km N Citrusdal ($13 \mathrm{o}^{\circ}$, OÖLM), Clanwilliam ($1 \stackrel{\circ}{\circ}$, USU), Clanwilliam: Bulshoek ($1 \stackrel{\circ}{\circ}$, SAM), 40 km E Clanwilliam: Sevilla ($4+9$, 6 r $^{\circ}$, USU), 21.5 km ENE Clanwilliam at $32^{\circ} 04^{\prime} 45^{\prime \prime} \mathrm{S} 19^{\circ} 05^{\prime} 00^{\prime \prime} \mathrm{E}(1+$ of, CSE), 18 km S Clanwilliam at $32^{\circ} 17^{\prime} \mathrm{S} 18^{\circ} 56^{\prime} \mathrm{E}$ ($2 \mathrm{o}^{\circ}$, AMNH), 11 km W Clanwilliam: Ysterfontein Farm ($2 \sigma^{\text {o }}$, USU), Dasklippas in Cederberg Mts. NE Porterville ($1 \sigma^{\circ}$, OHL), Dikbome Farm near Merweville (5 o , $2 n$, SAM), Doringbos at $31^{\circ} 58^{\prime} 19^{\prime \prime}$ S $19^{\circ} 13^{\prime} 33^{\prime \prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right.$, CSE), Elisabethfontein 19 km NE Clanwilliam at $32^{\circ} 04^{\prime} 45^{\prime \prime} \mathrm{S} 19^{\circ} 03^{\prime} 29^{\prime \prime} \mathrm{E}(1+\mathrm{q}, \mathrm{CSE})$, Graafwater (1 \& , FSCA), Greyton (1 \& , 2 o $^{\circ}$, OÖLM), Hermanus (1 早, SAM), Karoo National Park at $32^{\circ} 20^{\prime}$ S $22^{\circ} 30^{\prime}$ E ($4 \circ, 1 \delta^{\circ}$, PPRI), Keurboom River near Plettenberg Bay at $34^{\circ} 02^{\prime} \mathrm{S} 23^{\circ} 24^{\prime} \mathrm{E}\left(1 \quad\right.$ ㅇ, PPRI), Knersflakte: Heuweltjie at $31^{\circ} 17.1^{\prime} \mathrm{S} 18^{\circ} 36.1^{\prime} \mathrm{E}(1 \quad \circ, \mathrm{OHL})$, Knersflakte: Kalkgat (1 우; 2 ㅇ, 5 o $^{\circ}$, OHL), Konstabel Farm 30 km WSW Matjiesfontein (2 ㅇ, 2 o $^{\circ}$), Koup at $33^{\circ} 07^{\prime} \mathrm{S}$ $21^{\circ} 17^{\prime} \mathrm{E}(1+9)$, Laingsburg at $33^{\circ} 12^{\prime} \mathrm{S} 20^{\circ} 51^{\prime} \mathrm{E}(1$ 우), Laingsburg Division (1 ㅇ, SAM), Lambert's Bay (4 우, OÖLM), 9 km ENE Lambert's Bay at $32^{\circ} 04^{\prime} 30^{\prime \prime}$ S $18^{\circ} 23^{\prime} 30^{\prime \prime}$ (1 ㅇ, CSE), S Lambert's Bay (10 ㅇ, 7 o $^{\circ}$, OÖLM), 5 km S Lambert's Bay ($13 \mathrm{o}^{\circ}, 2 \mathrm{n}$, OÖLM), 40 km S Lambert's Bay (45 o , 72 đ ${ }^{\circ}$, OÖLM), Lammerfontein in Moordenaars Karoo (1 甲, SAM), Langberg (1 ค, 17 o $^{*}, 9 n$, OÖLM), Little Karoo SE Groot

 Plettenberg Bay ($1 \circ$, RMNH), 10 km NW Prince Albert (1 n , UCD), Stellenbosch (1 ㅇ, TMP), Swartrivier 7 km NW Prince Albert ($1 \mathrm{o}^{7}, 1 \mathrm{n}$), Swellendam ($3 \mathrm{o}^{\circ}$, FSCA), Theronsberg Pass 29 km ENE Ceres (1 of, AMG), Tierberg Farm 23 km NE Prince Albert (1 \& , 1 n), 18 mi SE Touwsrivier (1 ơ, KU), Uniondale (1 \& ,
 Witzenberg Valley near Ceres ($1 \stackrel{\circ}{\circ}$, BMNH). TANZANIA: Coast Region: 17 km E Chalinze ($\begin{aligned} & 1 \\ & \circ\end{aligned}+1 \mathrm{o}^{\circ}$). Dar es Salaam Region: Dar es Salaam ($1 \quad+$, ZMAN). Iringa Region: 18 km W Iringa ($1 \circ+1 \mathrm{o}^{\text {of }}$).

 ($1 \mathrm{o}^{\top} ; 2$ of, FSAG). YEMEN: El Air ca 3 mi W San’aa ($1 \mathrm{o}^{\circ}, \mathrm{KMG}$). ZAIRE: Kasai-Oriental: 39 mi NE Lusambo (1 \&). Shaba: Kitele at $11^{\circ} 22^{\prime} \mathrm{S} 28^{\circ} 24^{\prime} \mathrm{E}(1 \quad$ \& $)$. ZAMBIA: Central Province: Chibombo 97 road

 Petauke ($5 \sigma^{\circ} ; 2$ ㅇ, $2 \sigma^{\circ}$, MSNT), 42 km SW Petauke ($2 \mathrm{o}^{\mathrm{r}}$). Luapula Province: Monfuli at Lake Bangweulu (1 ㅇ, BMNH). Lusaka Province: Chilanga 15 km S Lusaka (2 $\boldsymbol{\sigma}^{\star}$), Lusaka International Airport (2 ㅇ, 4 o $^{\boldsymbol{*}}$),

 (3 of $^{\boldsymbol{\circ}}$), 18 km NE Pemba (1 ค). ZIMBABWE: Beitbridge (1 ค, BMNH), Bembesi River ($1 \circ$, TMP),

 Harare ($2 \circ 1 \mathrm{o}^{\circ}, \mathrm{BMNH}$), Dawn Mine 45 km NE Bulawayo ($1 \circ+1 \circ^{\circ}$), Gokwe: Sengwa ($1 \circ$, PMA), 15 km E Gweru (1 \&), 30 km S Gweru ($1 \mathrm{o}^{\text {º }}$, USU), Harare: Mukuvisi Game Park ($1 \mathrm{o}^{7}$), 30 km W Harare
 USNM), Kariba (2 ㅇ 4 o $^{\text {a }}$), Lion and Cheetah Park 24 km W Harare (1 ㅇ) , Masvingo (1 ㅇ, OÖLM), Matobo (1 ㅇ, OÖLM), Mbizi Game Park (= Rocky Farm) 20 km SE Harare (1 ํ, 2 ơ), 11 km NE Nyamandhlovu

 Shangani ($1 \stackrel{\circ}{ }$, BMNH), T.R.S. [= Trelawney Research Station WNW Harare] ($1 \mathrm{o}^{\circ}$, AMG), Victoria Falls (1 ㄴ, 3 ơ; 6 ㅇ, 2 ठ , KMG).

Tachysphex perniger Arnold

Figures 280-281.
Tachysphex perniger Arnold, 1947:166, \uparrow, ơ . Lectotype: \uparrow, Madagascar: Antsirabe (MNHN), here designated, examined.- Leclercq, 1960:98 (comparison with Tachysphex micromegas), 99 (Madagascar: locality records); Bohart and Menke, 1976:275 (listed); Pulawski, 2003:798 (in checklist of Malagasy Sphecidae).

Recognition.- Tachysphex perniger, an all black endemic of Madagascar, has the setae straight, oriented anterolaterad on the propodeal dorsum, and no ventral spines on apical tarsomeres. Unlike other Madagascan species with these characteristics (anceps, fugax, saturnus, seyrigi), the female of perniger has the silvery tergal fasciae inconspicuous, present only laterally. In addition, the foretibial outer surface of some, but not all, females has an impunctate, glabrous zone (tibiae evenly punctate and setose throughout in the other species). The male clypeus is distinctive (Fig. 280b): the free margin of the middle lobe has a well-defined corner, the corners being closer to each other than to the adjacent orbit. Additionally, sterna III-VI are practically impunctate anterad of the apical depressions. The clypeus is similar in platystethus, in which, however, most erect setae are sinuous and the sterna are densely punctate.

Description.- Scutal punctures well defined, averaging less than one diameter apart (but many discal punctures up to 2-3 diameters apart in female and some males). Scutellum slightly flattened. Mesopleural punctures well defined, about one diameter apart at center; interspaces microsculptured. Episternal sulcus complete. Propodeal dorsum irregularly rugose, side ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae erect on postocellar area and midfemoral venter, about one midocellar diameter long; erect on each side of oral fossa next to occipital carina, about $0.3 \times$ basal mandibular width; erect on scutum; diverging anterolaterad from midline on propodeal dorsum.

Head, thorax, legs, and gaster black, mandible reddish in apical half (excluding apex), tarsal apex brown. Frontal setae silvery in both sexes. Wing membrane moderately infumate; forewing costal and subcostal veins brown. Terga I-III silvery fasciate apically, but fasciae present only laterally in female and some males; also tergum IV fasciate laterally in some males.

ㅇ.- Labrum emarginate. Clypeus (Fig. 280a): bevel slightly longer than basomedian area; lip free margin arcuate, with two lateral incisions on each side. Width of postocellar area $1.4-1.6 \times$ length. Dorsal length of flagellomere I $1.9-2.0 \times$ apical width. Scutellum slightly flattened. Forefemoral venter with minute, ill-defined punctures that are several diameters apart. Dorsal foretibial surface with a few, suberect bristles; outer surface with a few bristles, in some specimens impunctate and glabrous. Forebasitarsus with nine rake spines. Apicoventral margin of apical tarsomeres minimally arcuate. Tergum V with a few, sparse punctures; apical depression impunctate, glabrous. Pygidial plate with minute punctures that average many diameters apart; interspaces unsculptured. Length $7.3-7.8 \mathrm{~mm}$.
σ°.- Mandible: trimmal carina with tooth, without cleft or with small cleft. Clypeus (Fig. 280b): bevel ill defined, shorter than basomedian area; lip in most specimens inconspicuous, present only mesally, roundly arcuate, absent in some specimens; free margin of middle lobe with welldefined corner; distance between corners $0.7 \times$ distance between corner and orbit. Width of postocellar area $1.4-1.5 \times$ length. Dorsal length of flagellomere I 1.6-1.7 \times apical width. Forefemoral

FIGURE 280. Tachysphex perniger Arnold: a - female clypeus; b - male clypeus; c - volsella; d - penis valve.
notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Venter of tarsomeres V, in many specimens, with thin preapical spine. Sterna III-VI with a few, sparse punctures except apical depressions punctate. Sternum VIII evenly emarginate apically or bottom of emargination markedly convex mesally. Length $5.2-7.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 280c, d.

Prey.- A female (SAM) is pinned with a gryllid nymph, 5.5 mm long, presumably her prey, as reported by Arnold (1947).

Geographic distribution (Fig. 281).Madagascar.

Records.- MADAGASCAR: Antananarivo: Antsirabe (1 ค, $1 \circ^{\circ} ; 1$ ㅇ, $1 \circ^{\circ}, \mathrm{BMNH} ; 2$ ㅇ, $10 \sigma^{\circ}$, MNHN, including lectotype $+\frac{+}{}$ of perniger;

Figure 281. Collecting localities of Tachysphex perniger and platystethus.
 paratypes). Fianarantsoa: Ankazomivady 28 km SSW Ambositra at $20^{\circ} 46.5^{\prime} \mathrm{S} 47^{\circ} 10.1^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\prime}$), Ivato ($1 \mathrm{o}^{\circ}$, LB). Toamasina: Morarano-Chrome ($2 \sigma^{7} ; 2 \delta^{7}$, MRAC).

Tachysphex platystethus Pulawski, sp. nov.

Figures 281, 282.
Derivation of name.- Platystethus derives from two Greek words: platys, flat; and stethos, breast, thorax. An allusion to the flattened thorax of this species female.

Recognition.- Tachysphex platystethus, an all black endemic of Madagascar, is easily recognizable by its propodeal sculpture: the entire dorsum is ridged, but the ridges diverge posterad on the basal quarter to half and are contrastingly transverse on the remaining surface (Fig. 282c), although the ridges are similar in many saturnus and some seyrigi. The female has a unique combination of a flattened thorax and the apical tarsomeres not angulate basoventrally and without spines on venters or lateral margins (Fig. 282e); also, the pygidial plate is unusually narrow, with the lateral carinae present only apically (carinae almost parallel). The male clypeus is distinctive although somewhat similar to that of perniger: the lip is rounded to nearly rectangular mesally, nearly reduced laterally, with a well-defined corner (Fig. 282b). Also, male sterna of platystethus are densely punctate, but largely impunctate in perniger. The thoracic setae of most platystethus are also distinctive, although similar to those of ampijoroa: sinuous on the mesopleuron and pointing obliquely anterad on the propodeal dorsum (but pointing posterad in some specimens). See ampijoroa for differences (p. 688)

Description.- Frons dull, markedly microsculptured. Scutal punctures well defined, averaging several diameters apart in female, 2-3 diameters in male; interspaces uniformly microsculptured. Mesopleural punctures averaging 3-4 diameters apart; interspaces uniformly microsculptured. Punctures of mesothoracic venter several diameters apart. Propodeal dorsum finely ridged; ridges divergent posterad on basal quarter to half, becoming transverse on remaining surface (Fig. 282c); side varying from punctate to ridged. Hindcoxal dorsum with inner margin carinate, carina slightly expanded basally.

Setae (numbers represent setal length expressed as a fraction of basal mandibular width): erect on postocellar area, sinuous in female (0.3-0.4), straight or slightly sinuous in male (0.3); erect, at least slightly sinuous on each side of oral fossa next to occipital carina (0.4); on scutum erect or inclined posterad ($0.2-0.3$), sinuous in female, straight in male; sinuous on mesopleuron; erect on midfemoral venter, sinuous in female (0.4) and some males, straight in most males (0.1-0.2); on propodeal dorsum sinuous, in most specimens oriented obliquely anterad except oriented obliquely posterad basomedially, but oriented posterad in males from Parc National de Baie de Baly.

Head, thorax, legs, and gaster black, mandible reddish mesally, tarsal apex black or brown. Frontal setae silvery in both sexes. Wing membrane slightly infumate, almost hyaline; forewing costal and subcostal veins dark brown. Terga I-III silvery fasciate apically, tergum IV fasciate apicolaterally.

ㅇ. - Labrum emarginate. Clypeus (Fig. 282a): bevel about as long as basomedian area; lip free margin arcuate, not emarginate mesally, laterally broadly, shallowly sinuous but not incised. Width of postocellar area 1.1-1.2 \times length. Dorsal length of flagellomere I $2.2-2.4 \times$ apical width. Thorax flattened, scutellum barely convex. Midtrochanteral venter with minute punctures that are several diameters apart. Fore- and midfemoral venter with minute punctures that are many diameters apart. Dorsal foretibial surface with one or two thin spines and a few suberect bristles; outer surface narrowly asetose, with several erect bristles. Forebasitarsus with 9-11 rake spines. Tarsomeres IV as wide as long; dorsoapical emargination somewhat rounded basally; apicoventral margin almost straight. Tarsomeres V somewhat elongate, not angulate basoventrally, without spines on venter or lateral margin; apicoventral margin arcuate (Fig. 282e). Tergum V with minute punctures that are many diameters apart, apical depression impunctate, glabrous. Pygidial plate narrower than aver-

Fourth Series, Volume 58, Supplement I

Figure 282. Tachysphex platystethus Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible with outline showing variation of free margin; c - propodeal dorsum showing sculpture; d - pygidial plate of female; e - female hindtarsomere V in ventral view; f - volsella; g - penis valve.
age for the genus (Fig. 282d, most punctures more than one diameter apart (but less than that apically), interspaces unsculptured; lateral carina well defined only apically (carinae nearly parallel). Length $9.0-10.0 \mathrm{~mm}$.
ơ'. - Mandible: trimmal carina obtusely dentate, without cleft. Clypeus (Fig. 282b): bevel $_{\text {2 }}$ markedly shorter than basomedian area; lip rounded to nearly rectangular mesally (separated by constriction from basomedian area in some specimens), nearly reduced laterally, with well-defined corner; distance between corners $0.8-0.9 \times$ distance between corner and orbit. Width of postocellar area 1.2-1.3 \times length. Dorsal length of flagellomere I 1.9-2.0 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Length 6.8-8.0 mm. Volsella and penis valve: Figs. 282f, g).

Geographic distribution (Fig. 281).— Madagascar.

Records. - Holotype: i, MADAGASCAR: Toliara Province: 12 km SE Toliara at $23^{\circ} 25^{\prime} \mathrm{S}$ $43^{\circ} 45^{\prime}$ E, WJP, 12-13 Apr 1994, WJP (CAS). PARATYPEs: MADAGASCAR: Antsiranana: Orangea 3 km SE Ramena, 27-30 Jan 2001, M.E. Irwin, E.I. Schlinger, and R. Harin'Hala ($1 \mathrm{o}^{\circ}$); 1 km W Sakalava Beach (o°), 21-23 Jan 2001, same collectors ($1 \mathrm{o}^{\circ}$); 3 km W Sakalava Beach, 23-27 Jan 2001, same collectors ($1 \mathrm{o}^{\text {o }}$). Fianarantsoa: Isalo National Park at $22^{\circ} 36^{\prime} \mathrm{S} 45^{\circ} 10^{\prime} \mathrm{E}, 18-19 \mathrm{Mar} 1994$, AM (1 ㅇ, MSNT). Mahajanga: Mahavavy River 6.2 km SE Mitsinjo at $16^{\circ} 03^{\prime} 06^{\prime \prime} \mathrm{S} 45^{\circ} 54^{\prime} 30^{\prime \prime} \mathrm{E}, 1-5$ Dec 2002, B. Fisher, Ch. Griswold, et al. (2 8°); Parc National d'Ankarafantsika: Forêt de Tsimaloto 18.3 km NE Tsaramandroso at $16^{\circ} 13^{\prime} 41^{\prime \prime} \mathrm{S}$ $46^{\circ} 8^{\prime} 31^{\prime \prime}$ E, 2-8 Apr 2001, B. Fisher, Ch. Griswold, et al. (1 δ°); Parc National de Baie de Baly at $16^{\circ} 00^{\prime} 36^{\prime \prime} \mathrm{S}$ $45^{\circ} 15^{\prime} 54^{\prime \prime}$ E, $26-30$ Nov 2002, B. Fisher, Ch. Griswold, et al. (1 d°); Parc National Tsingy de Bemaraha at Ankidrodroa River at $19^{\circ} 07^{\prime} 56^{\prime \prime} \mathrm{S} 44^{\circ} 48^{\prime} 53^{\prime \prime} \mathrm{E}, 11-15$ Nov 2001, B. Fisher, Ch. Griswold, et al. ($4 \mathrm{o}^{\circ}$). Toamasina: botanical garden near entrance to Andasibe National Park at $18^{\circ} 55^{\prime} 58^{\prime \prime} \mathrm{S} 48^{\circ} 24^{\prime} 47^{\prime \prime} \mathrm{E}, 1-5$ Sept 2001, R. Harin' Hala (1 ㅇ, 1 o $^{\top}$). Toliara: Bereboka 60 km NE Morondava, 18-23 May 1983, J.S. Noyes and M.C. Day (3 ค, $4 \delta^{\circ}$, BMNH); Berenty, $5-15$ May 1983, J.S. Noyes and M.C. Day (1 ; ; 3 ㅇ, $2 \delta^{\pi}$, BMNH), 2-9 Apr 1994, WJP ($\mathbf{1}^{\text {o }}$); Forêt de Kiryndy 15.5 km ENE Marofandilia at $20^{\circ} 02^{\prime} 42^{\prime \prime} \mathrm{S} 44^{\circ} 39^{\prime} 44^{\prime \prime} \mathrm{E}$, 28 Nov3 Dec 2001, B. Fisher, Ch. Griswold, et al. ($1^{\circ}+2 \delta^{\circ}$); Ifaty 22 km N Toliara at $23^{\circ} 1^{\prime}$ 'S $43^{\circ} 37^{\prime} \mathrm{E}, 18$ Apr 1998, M.E. Irwin and E.I. Schlinger (1 \&); Manderano at $23^{\circ} 31^{\prime} 38^{\prime \prime}$ S $44^{\circ} 05^{\prime} 15^{\prime \prime}$ E, $22-29$ May 2002, Frontier Wilderness Project (1 ơ); Mangily 7 km N Ifaty, 27-30 May 2000, L. Blommers (1 ค, LB); 50 km NE
 MSNT); 12 km SE Toliara at $23^{\circ} 25^{\prime} \mathrm{S} 43^{\circ} 45^{\prime} \mathrm{E}$, WJP, 26-28 Mar 1994 (3 o ${ }^{\circ}$), 12-13 Apr 1994 (1 1).

Tachysphex plicosus (A. Costa)

Figures 283-285.
Tachytes plicosus A. Costa 1867a:83, 우 (as plicosa, incorrect original termination). Holotype: ㅇ, Italy: Calabria: Aspromonte (NAPOLI), examined in 1971.- As Tachysphex plicosus: Kohl, 1885:396 (new combination, original description copied); Dalla Torre, 1897:684 (in catalog of world Hymenoptera); de Beaumont, 1936c:7 (synonymy); Giordani Soika, 1939:73 (Italy); de Beaumont, 1940:174 (in revision of Egyptian Tachysphex); Honoré, 1942:55 (in checklist of Egyptian Sphecidae); Guiglia, 1943a:71 (Albania); de Beaumont, 1947a:203 (in revision of Egyptian Tachysphex), 1954:58 (Italy); Grandi, 1954:240 (Italy); de Beaumont, 1959:28 (Sicily); Pulawski, 1971:258 (in revision of Palearctic Tachysphex); Erlandsson, 1974:73 (France, Yugoslavia); Evans, 1974:719 (larva); Pulawski, 1974b:715 (Bulgaria, nest and prey); Bohart and Menke, 1976:276 (listed); Pulawski, 1978:216, 220 (in key to Sphecidae of European USSR); Pagliano, 1980:128 (Italy); Rodgers and Homewood, 1982:233 (Tanzania); Hensen and van Ooijen, 1987:16 (Turkey); Pagliano, 1990:105 (in catalog of Italian Sphecidae); Gayubo and Borsato, 1994:208 (Italy); Krombein and Pulawski, 1994:11 (summary of life history), 43 (in revision of Sri Lankan Tachysphex); Negrisolo in Minelli, Ruffo, and La Posta, 1995b:9 (in catalog of Italian fauna); SchmidEgger and Bitsch in Bitsch et al., 2001:266 (in Sphecid Fauna of Western Europe); Gayubo, Gonzáles, Tormos, and Asís, 2002:5 (distribution in Spain).
Tachytes plicosus A. Costa 1867b: 27, \& (as plicosa, incorrect original termination). Objective synonym of Tachytes plicosus A. Costa, 1867a.
Tachysphex gallicus Kohl, 1883a:167, 오 (as gallica, incorrect original termination). Syntypes: ㅇ, France: Marseille (NHMW), examined before 1971. Synonymized with Tachysphex plicosus by de Beaumont,

1936a:211 and 1936c:7.- Kohl, 1885:377 (in revision of Larrini); Dalla Torre, 1897:680 (in catalog of world Hymenoptera); de Gaulle, 1908:121 (listed from France); Berland, 1925:119 (in Sphecid Fauna of France); de Beaumont, 1936a:211 (in revision of French Tachysphex, description of ơ); Grandi, 1937:332 (Italy); Dollfuss, 1989:13 (type material in NHMW).
Tachysphex striolatus Cameron, 1903:126, \& (as striolata, incorrect original termination). Holotype: \circ, India: Barrackpore 20 km N Calcutta (OXUM), examined in 1970. Synonymized with Tachysphex plicosus by Pulawski, 1971:460.
Tachysphex egregius Arnold, 1924:66, 0°. Holotype: 0^{7}, Zimbabwe: Bulawayo (SAM), examined. Synonymized with Tachysphex plicosus by Pulawski in Krombein and Pulawski, 1994:44.- Arnold, 1929:384 (description of q, South Africa), 1930:3 (in checklist of Afrotropical Sphecidae), 1951:155 (Ghana, Mali); Bohart and Menke, 1976:273 (listed).

RECOGNITION.- Tachysphex plicosus has a distinctive propodeal sculpture: the side has large, sparse punctures and is separated by a carina from the dorsum, which in most specimens is obliquely ridged except ridges are transverse mesally or apicomesally (Figs. 283c, d); transverse ridges are inconspicuous in occasional specimens, and the entire dorsum is transversely ridged in others. In the female, the trimmal carina has a prominent tooth but no cleft (Fig. 283a), the forebasitarsus has no spines on the venter, and the rake spines of its outer margin are separated into a distal and an apical groups (Fig. 283e). Additional recognition features are: erect setae of head and thorax sinuous, hindcoxal dorsum with basal tooth, and clypeal lip markedly sinuate in female (Fig. 283a), rounded in male (Fig. 283b).

Description.- Frons in most specimens dull, conspicuously microsculptured, with evanescent punctures that are several diameters apart, but shiny in some specimens, with microsculpture inconspicuous and punctures well defined. Scutum with short, longitudinal ridges next to hindmargin, with punctures averaging more than one diameter apart on disk (several diameters apart in many specimens). Mesopleuron with conspicuous punctures; punctures of mesothoracic venter, in many specimens, averaging more than one diameter apart. Upper metapleuron with longitudinal carina in front of propodeal spiracle (beneath flange's posterior end); carina varying from conspicuous to evanescent. Propodeum with longitudinal carina between dorsum and side; dorsum, in most specimens, obliquely ridged except transversely ridged mesally or apicomesally (Figs. 283c, d); in some specimens transverse ridges nearly absent, inconspicuous, in others all ridges transverse; side with large, sparse punctures (interspaces shiny), but ridged adjacent to anterior, ventral, and posterior margins. Forebasitarsus without ventral spines. Hindcoxal dorsum with inner margin conspicuously angulate basally.

Setae suberect to erect and sinuous on head and thorax (longest setae about half length of basal mandibular width), not concealing integument, somewhat inclined posterad on propodeal dorsum.

Head, thorax, legs, and gaster black, apical tarsomeres brown. Frontal setae silvery in both sexes. Wing membrane hyaline, costal vein of forewing light brown, subcostal vein dark brown to black. Terga I-IV silvery fasciate apically, but fasciae ill defined in many specimens.

ㅇ.- Mandible: trimmal carina with prominent tooth and no cleft, broadly emarginate distad of tooth (Fig. 283a). Clypeus (Fig. 283a): bevel shorter than basomedian area, free margin of lip markedly sinuate, with roundly prominent corner, not emarginate mesally or laterally. Width of postocellar area 1.9-2.2 \times length. Dorsal length of flagellomere I $1.8-2.1 \times$ apical width. Forefemoral venter shiny, with minute punctures that are several to many diameters apart. Dorsal foretibial surface with several suberect, inconspicuous bristles; outer surface of foretibia with a few short, suberect bristles but without spines. Forebasitarsus with concave outer margin, with nine or ten rake spines that are divided into basal and apical groups (Fig. 283e). Length of hindtarsomere IV equal to apical width. Pygidial plate sparsely punctate, rounded or truncate apically (Fig. 283f), aciculate between punctures. Length $7.0-8.5 \mathrm{~mm}$.

Figure 283. Tachysphex plicosus (A. Costa): a - female clypeus and mandible; b - male clypeus and mandible with outline showing variation of clypeal free margin; c - propodeal dorsum showing sculpture; d - propodeal dorsum of a different specimen; e - female forebasitarsus; f - pygidial plate of female; g - volsella; h - penis valve.
σ^{π}.- Mandible: trimmal carina with conspicuous tooth, without cleft (Fig. 283b), reduced, obtuse just distad of tooth. Clypeus (Fig. 283b): bevel ill defined but shorter than basomedian area, delimited laterally by obtuse carina that emerges from lip corner (carina absent in smallest specimens); lip free margin arcuate, with well-developed corner in most specimens, but corner absent in single male from Morocco (here forming single curved line with rest of clypeal margin). Width of
postocellar area 2.2-2.4 \times length. Dorsal length of flagellomere I $1.5-1.8 \times$ apical width. Forefemoral notch markedly expanded on anterior face, bottom compressed into glabrous crest (Figs. 284a-c). Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Sterna shiny, sternum II (except basally) and following with fine punctures that are many diameters apart; apical margin of sterna III and IV concave. Length $6.0-7.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 283g, h.

Figure 284. Tachysphex plicosus (A. Costa): a - basal portion of male forefemur showing notch, outer side $(\times 101)$; b - basal portion of male forefemur showing notch, inner side $(\times 101)$; c - male forefemoral notch at a higher magnification ($\times 268$) .

Nesting behavior.- Pulawski (1974b) observed nesting behavior of plicosus in Bulgaria, and Evans (1974) described the larva. Nests are established in pre-existing cavities in the soil, such as abandoned nests of other aculeate Hymenoptera. Prey consists mainly of nymphal tree crickets Oecanthus pellucens Scopoli, but also nymphal tettigoniids Phaneroptera nana Fieber.

Geographic distribution (Fig. 285).- Africa, Europe north to southern France and Romania, Turkey, Azerbaijan, India, Sri Lanka, and Thailand.

Records.- ALBANIA: Kopliku (Guiglia, 1943a). AZERBAIJAN: Zakataly (Pulawski, 1971). BENIN: Cove at Zou River (1 ơ, OÖLM), 15 km SE Savé (1 \& , OÖLM). BULGARIA: Vlado Trychkov 25
 7 \& , LEM). BURUNDI: Mosso de Ruyigi: Nuabitare (1 \&, MRAC). CAMEROON: Bamenda (1 \&, BMNH). CROATIA: Grižane near Crikvenica (Pulawski, 1971). CYPRUS: Yermasoyia (1 o). EGYPT (de Beaumont, 1940, or as indicated): Al Fayyum: Kom Osheim (1 \& , FSCA). Al Qahirah (= Cairo): Ezbet el Nakhl, Marg. Al-Uqsur (= Luxor): 15 km S Luxor ($1 \mathrm{ơ}^{\circ}$, CSE). FRANCE (from Bitsch et al., 2001, or as indicated): Alpes Maritimes: Cros-de-Cagnes (Pulawski, 1971). Bouches-du-Rhône: Marseille (Kohl, 1883a). Corse:

Ghiarghia, Zilia. Gard: Saint-André-deMajencoules. Var: Gonfaron. Vaucluse: Carpentras (Pulawski, 1971). GAMBIA: near Abuko Nature Reserve ($1 \quad \circ$, ZMLU), Keneba ($1 \quad \circ$, BMNH). GHANA: 30 km N Kintampo (1 아), Kumasi (1 ㅇ, BMNH), Labadi (Arnold, 1951). GREECE: Dodecánisos: Kos Island (de Beaumont, 1947a). GUINEA: Dubréka ($1 \quad \stackrel{\circ}{\text {, PMA). INDIA: }}$ Maharashtra: Krishnaghiri Upavan National Park 12 air km NNW Bombay International Airport (1 \&) . Tamil Nadu: Karikal ($1 \stackrel{\circ}{ }$, FSAG). West Bengal: Barrackpore 20 km N Calcutta ($1 \stackrel{\circ}{ }$, OXUM, holotype of striolatus). ITALY: Abruzzi: Vasto Marina (Pagliano, 1980). Calabria: Vallata dell'Aspromonte ($1 \quad \stackrel{\circ}{ }$, NAPOLI, holotype of plicosus). EmiliaRomagna: Bologna (de Beaumont, 1954), Ronzano (Grandi, 1937). Friuli-Venezia Giulia: Trieste (de Beaumont, 1947a). Lazio: Pontecorvo (de Beaumont, 1954), Sasso Furbara (Pulawski, 1971). Piemonte: Cassano Spinola (Gayubo and Borsato, 1994). Sicilia: Monte Etna: Monte Sona, 1350 m (de Beaumont, 1959). Toscana: Molina di Quosa near Pisa (de Beaumont, 1954). Veneto: Lido di Venezia
 Chiromo (1 ㅇ, BMNH). MALI: Diafarabé (Arnold, 1951, as Tillembeya), Mourdiah (1 \&, BMNH). MOROCCO: Azrou in Moyen Atlas (2 or *), Fès ($1 \quad$ ㅇ) . NAMIBIA: Okahandja District: Okahandja (1 ㅇ, H.N. Empey collection, now AMG). NIGER: 90 km N Agadez at $17^{\circ} 37^{\prime} \mathrm{N} 7^{\circ} 40^{\prime} \mathrm{E}(1 \circ$, FSAG). ROMANIA: Gugesti (Pulawski, 1971). SENEGAL: Diémbéreng in Casamance Province (1 ㅇ, CSE), Zinguinchor (1 ㅇ, ZMAN). SIERRA LEONE: Freetown ($1 \stackrel{\circ}{\circ}$, AEI), Kambui Hills ($1 \stackrel{\circ}{ }$, AEI). SOUTH AFRICA: Eastern Cape Province: Aliwal North ($1 \stackrel{+}{ }$, PPRI), 18 km WNW Grahamstown: Hilton Farm (1 \uparrow, AMG), Lady Grey ($1 \stackrel{+}{ }, \mathrm{SAM}$), 6 km N Steytlerville ($1 \stackrel{\circ}{9} \uparrow \mathrm{USU}$), 37 km NW Willowmore in Grootrivierberg Range at $33^{\circ} 11.5^{\prime} \mathrm{S} 24^{\circ} 09.5^{\prime} \mathrm{E}\left(1 \stackrel{+}{4}\right.$, USU). Free State: Abdullam Farm near Clarens at $28^{\circ} 34^{\prime} \mathrm{S} 28^{\circ} 28^{\prime} \mathrm{E}(1 \quad \circ, \mathrm{PPRI})$. Gauteng: Johannesburg ($1 \circ$, AMG), Pretoria ($1 \circ, 1 \circ^{\circ}$, PPRI), Roodeplaat ($2 \circ$, PPRI). Northern Province: Guernsey Farm 15 km E Klaserie ($1 \stackrel{\circ}{ }$, PMA), Pafuri in Kruger National Park (1 \uparrow, PPRI). North-West Province: Potchefstroom at $26^{\circ} 42^{\prime} \mathrm{S} 27^{\circ} 06^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$, AMG). Western Cape Province: Little Karoo SE Groot River (2 o *, OÖLM), Tierberg Farm (2 \& , AMG). SPAIN (Gayubo, Gonzáles, Tormos, and Asís, 2002): Toledo: Las Vegas near Talavera de la Reina, Mocejón. SRI LANKA: Mannar District: 0.5 mi NE Kokmotte Bungalow in Wilpattu National Park (1 \uparrow), Kondachchi($1 \stackrel{\circ}{\circ}$,USNM). Trincomalee District: China Bay Ridge Bungalow (2 ㅇ, CAS, USNM). SUDAN: Talodi (1 ㅇ, BMNH), Wadi Medani (Pulawski, 1971). TANZANIA: Tanga Region: Amani in Usumbara Mts. ($1+2$, + ZMUC). THAILAND: Kanchanaburi: Lam Ta Pen River 5 km NW Lat Ya (1 \&) . TURKEY: Antalya: Demirtas (Hensen and van Ooijen, 1987), Termessos (1 ㅇ, CSE). Urfa: Urfa (Pulawski, 1971). ZAIRE: Equateur: Boketa (1 ㅇ, $1 \circ^{\circ}$, FSAG), Eala (1 ㅇ, FSAG), Gemena ($3 \uparrow 1 \sigma^{\circ}$, FSAG). ZIMBABWE: Bulawayo ($1+1 \sigma^{\circ}$ holotype of egregius, SAM), Lonely Mine (1 ㅇ, BMNH), Redbank ($1 \circ^{7}, \mathrm{SAM}$).

Tachysphex priesneri de Beaumont

Figures 286-288.
Tachysphex priesneri de Beaumont, 1940:176, ㅇ, 웅. Holotype: ㅇ, Egypt: Kharga oasis (Ministry of Agriculture of Egypt, Cairo), not examined.- Honoré, 1942:55 (in checklist of Egyptian Sphecidae); de Beaumont, 1947a:208 (in revision of Egyptian Tachysphex), 1956a:199 (Libya; variation); Pulawski, 1971:132 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:276 (listed).

Recognition.- Tachysphex priesneri, an all black species with a flat labrum, has erect setae
on the basal declivity of tergum I and a concave, unusually wide postocellar area (Figs. 286c, d): width 1.7-2.3 \times length in female, 2.4-2.6 in male. Long, conspicuous setae on the postocellar area (Figs. 286c, d), gena, thorax, and femoral venters (Fig. 287a) help in recognition, as does the pointed clypeal lip in the male (Fig. 286f).

Description.- Mandible: outer ridge somewhat swollen and expanded over notch. Postocellar area concave (Figs. 286c, d). Gena narrow as seen from above (Figs. 286a, b). Scutal punctures several to many diameters apart on disk (interspaces shiny), no more than one diameter apart near margins. Mesopleuron dull, rugose in most specimens, but with shallow, ill-defined punctures in those from Anefis, Mali. Propodeal dorsum irregularly ridged to rugose, side ridged to

Figure 286. Tachysphex priesneri de Beaumont: a - female head in dorsal view; b - male head in dorsal view; c - female head in frontal view; d - male head in frontal view; $\mathrm{e}-$ female clypeus and mandible; $\mathrm{f}-\mathrm{male}$ clypeus and mandible.
irregularly reticulate. Hindcoxal dorsum with inner margin carinate basally, carina not expanded. Hindwing jugal lobe larger than average for the genus. Sternum I in many specimens with illdefined median carina over its entire length.

Setae erect and slightly sinuous on postocellar area (Figs. 286 c , d), lower gena, scape, pedicel, thorax, femoral venters (Fig. 287a), and basal declivity of tergum I; oriented anterolaterad on propodeal dorsum, not concealing integument. Setal length expressed as a fraction of basal

Figure 287. Tachysphex priesneri de Beaumont: a - female midfemur; bvolsella with outlines showing variation; $\mathrm{c}-$ penis valve. mandibular width: $0.7-0.8$ on postocellar area, 0.9 on each side of oral fossa next to occipital carina, up to 0.7 on midfemoral venter and tergum I.

Head, thorax, legs, and gaster black except mandible reddish mesally in some specimens. Frontal setae silvery in both sexes. Wing membrane almost hyaline, costal vein of forewing brown, subcostal vein dark brown to black. Terga I-III (I-IV in some males) silvery fasciate apically, fasciae interrupted mesally.

ㅇ.- Clypeus (Fig. 286e): middle section flat, bevel ill defined or absent; lip free margin arcuate, not incised laterally. Width of postocellar area 1.7-2.3 \times length. Dorsal length of flagellomere I $2.6-3.0 \times$ apical width. Forefemoral venter: punctures several diameters apart, interspaces shiny in basal half. Dorsal foretibial surface with one to three spines; outer surface with two preapical spines. Forebasitarsus with 7-9 rake spines. Trochanteral venters shiny, impunctate. Venter of hindtarsomere V , in some specimens, with spine near midlength. Apical depression of tergum V impunctate. Length $8.5-12.0 \mathrm{~mm}$.
$0^{\boldsymbol{7}}$.- Mandible: trimmal carina without tooth or cleft (Fig. 286f). Clypeus (Fig. 286f): middle section flat, bevel ill defined or absent; lip free margin obtusely to acutely pointed (concave on each side of median point in some specimens), corner ill defined or absent; distance between corners 0.8 \times distance between corner and orbit. Width of postocellar area 2.4-2.6 \times length. Dorsal length of flagellomere I 1.6-1.9× apical width. Forefemoral notch shiny, with evanescent, sparse microsetae. Outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Sternal punctures up to several diameters apart apicomesally. Length $5.0-9.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 287b, c.

Geographic distribution (Fig. 288).- Mali to Pakistan, north to Tripolitania and Sinai.
RECORDS.- ALGERIA: southern Algeria: no specific locality (de Beaumont, 1940). EGYPT: Al Jizah (= Ghiza): Wadi um Assaad near Abu Rawash (de Beaumont, 1940). Al Qahirah (= Cairo): Katamia

 ISRAEL: Moshaav Hazeva at $30^{\circ} 46^{\prime} 33^{\prime \prime} \mathrm{N} 35^{\circ} 16^{\prime} 32^{\prime \prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right.$, CSE). LIBYA: Fezzan: Mendib 85 km SE El Fogaha (1 \&), Mourzouk (de Beaumont, 1956a). Tripolitania: Hon oasis (3 o), Zella oasis (de Beaumont,

Figure 288. Collecting localities of Tachysphex priesneri.

Tachysphex prosopigastroides Bischoff

Figures 289-292.
Tachysphex prosopigastroides Bischoff, 1913b:65, ํ. Holotype: ㅇ, Zimbabwe: Bulawayo (ZMHU), exam-ined.-Arnold, 1923:163 (in revision of southern African Tachysphex), 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:276 (listed); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).
Tachysphex subfuscatus R. Turner, 1917a:323, ㄷ. Holotype: ㄷ, Malawi: Mlanje (BMNH), examined. New synonym.- Arnold, 1923:176 (original description copied), 1930:4 (in checklist of Afrotropical Sphecidae); Pulawski, 1975:313 (diagnostic characters); Bohart and Menke, 1976:277 (listed).
Tachysphex strigatus R. Turner, 1917a:324, ㅇ. Lectotype: \uparrow, Zambia: between Chipata and Lundazi (BMNH), designated by Pulawski, 1975:313, examined. Synonymized with Tachysphex subfuscatus by Pulawski, 1975:313.- Arnold, 1923:174 (original description copied), 1930:4 (in checklist of Afrotropical Sphecidae).
Tachysphex sipapomae Arnold, 1923:164, $\overbrace{}^{*}$. Lectotype: \circlearrowleft^{\star}, Zimbabwe: Sawmills (SAM), here designated, examined. Synonymized with Tachysphex prosopigastroides by Arnold, 1924:70.

ReCognition.- Tachysphex prosopigastroides resembles schmiedeknechti in having a coarsely punctatorugose scutum and mesopleuron; erect, sinuous setae on the head, thorax, and femora; and female flagellomeres IV-X flattened laterally, with a well-defined ventral edge. (Figs. 290a-c) Unlike schmiedeknechti, the rays of the inner hindtibial spur are usual, closely spaced; and the free margin of the clypeal lip has a median notch and three pairs of obtuse teeth in the female (Fig. 289a) and a median, obtuse projection in the male (Fig. 289b). In schmiedeknechti, the inner hindtibial spur consists of the unusually thickened, sparsely spaced rays (Fig. 343b) and the free margin of the clypeal lobe is arcuate in both sexes (Figs. 342a, b).

Justification of new synonymy.- The holotypes of prosopigastroides and subfuscatus are certainly conspecific. These two names are therefore synonyms.

Description.- Supraantennal swelling higher than average for the genus, roundly triangular in profile (Fig. 289c). Scutum and mesopleuron coarsely punctatorugose. Propodeal dorsum and posterior surface ridged to irregularly rugose, side ridged; posterior surface, in dorsal third or so, with wide median impression. Hindcoxal dorsum with inner margin carinate basally, carina convex. Apical depression of sternum I bisected by longitudinal, obtuse carina.

Figure 289. Tachysphex prosopigastroides Bischoff: a - female clypeus and mandible ($\times 33$); b - male clypeus and mandible ($\times 60$); c - supraantennal swelling of female in lateral view ($\times 102$); d - pygidial plate of female in dorsal view $(\times 72)$; e - same in lateral oblique view $(\times 90) ; \mathrm{f}-$ base of male forefemur $(\times 90)$.

Setae sinuous and suberect to erect on postocellar area, lower gena, thorax, fore- and midfemoral venter; suberect on hindfemoral venter; not concealing integument; on propodeal dorsum oriented anterad near foremargin, oriented posterad near hindmargin; longest setae (e.g., those on lower gena and propodeal dorsum) equal to $0.7-0.8$ of basal mandibular width.

Head and thorax black, mandible reddish mesally. Frontal setae silvery in female, golden in

Figure 290. Tachysphex prosopigastroides Bischoff: a - apical female flagellomeres in lateral view ($\times 90$); b - same in dorsal view ($\times 90$); c - female flagellomere IX in dorsal view ($\times 300$); d - surface of female flagellomere IX at high magnification $(\times 1800)$.
male. Wing membrane slightly infumate, markedly so in some females; forewing costal and subcostal veins brown. Color of legs and gaster: see below. Terga I-III (I-IV in many males) silvery fasciate apically.

ㅇ.- Clypeus flat, bevel not differentiated, punctures of medioventral area varying from less than one to several diameters apart; lip with median notch and two lateral emarginations on each side (Fig. 289a), i.e., with three pairs of obtuse teeth (teeth partly confluent in some specimens). Width of postocellar area 1.2-1.3 \times length. Dorsal length of flagellomere I 2.2-2.4 \times apical width; flagellomeres IV-X flattened laterally (dorsal length of flagellomere V 1.2-1.3 \times maximum width), with well-defined ventral edge, and inner and outer surfaces differently sculptured (Figs. 290a-d). Forefemoral venter shiny, with minute punctures that are several diameters apart. Dorsal foretibial surface with two spines; outer surface with two spines. Forebasitarsus with 6-8 rake spines; outer apical spine of mid- and hindtarsomeres IV reaching claw base. Venters of hindtarsomeres V each with two or three spines along midline or a pair of spines basally and two spines along midline. Apical depression of tergum V unsculptured, asetose. Pygidial plate slightly constricted apically (Figs. 289d, e). Length $9.6-10.3 \mathrm{~mm}$. Gaster all black (Zambian females) or segments I-III red. Legs black, apical tarsomeres reddish.
0^{7}.- Mandible: trimmal carina with tooth that varies from well-defined to evanescent, with or without cleft. Clypeus flat, bevel not differentiated (Fig. 289b); lip free margin with obtuse, medi-
an projection and well-defined corner, concave between projection and corner; distance between corners about $0.9 \times$ distance between corner and orbit. Width of postocellar area $1.1-1.3 \times$ length. Dorsal length of flagellomere I $2.0-2.1 \times$ apical width. Forefemoral notch glabrous, its proximal margin pointed and apical margin ill defined (Fig. 289f). Outer margin of forebasitarsus with five or six rake spines; outer apical spine of foretarsomere II about as long as tarsomeres III and IV combined. Apical depressions of terga impunctate or nearly so. Punctures of tergum VII 1-2 to several diameters apart basally, but less than one diameter apart apically. Sterna III-VI largely glabrous. Length 7.3-10.0 mm. Volsella and penis valve: Fig. 291. Gaster red except tip black or brown. Legs all red or fore- and midfemora black (except apically) and hindfemur black basally.

Geographic distribution (Fig. 292).Northern Namibia to Malawi and northern South Africa.

Records.- BOTSWANA: 25 mi W Gweta at $20^{\circ} 17^{\prime} \mathrm{S} 24^{\circ} 54^{\prime} \mathrm{E}$ ($1 \mathrm{~d}^{\circ}, \mathrm{BMNH}$), Semowane River at $20^{\circ} 25^{\prime} \mathrm{S} 26^{\circ} 23^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{BMNH}\right.$), Serowe ($1 \mathrm{o}^{\circ}$). MALAWI: Kotakota (1 ㅇ, BMNH), Lilongwe District (1 $\%$), Mlanje ($1 \quad$ o , BMNH, holotype of subfuscatus), Mombera District ($1+$, SAM). NAMIBIA: Grootfontein District: Alexander 989 [Farm], SE $1918 \mathrm{Cd}\left[=19^{\circ} 45^{\prime}-20^{\circ} 00^{\prime} \mathrm{S} \quad 18^{\circ} 15^{\prime}-18^{\circ} 30^{\prime} \mathrm{E}\right]$ ($1 \sigma^{\star}$, NMN). Rundu District: Andara ($1 \sigma^{7}$, NMN). SOUTH AFRICA: Gauteng: Johannesburg: Mondeor Hills ($1 \stackrel{\circ}{ }$, AMG), Randburg ($2 \circ 1$, ${ }^{\circ}$, AMG). Mpumalanga: Crocodile Bridge in Kruger

Figure 291. Tachysphex prosopigastroides Bischoff: volsella and penis valve.

Figure 292. Collecting localities of Tachysphex prosopigastroides. National Park (3 σ^{\prime}, PPRI), Komatipoort (1 o , PPRI). Northern Cape Province: Niekerkshoop in Griqualand ($1 \uparrow, 1 \circ^{\circ}$, SAM). Northern Province: Afguns ($1 \mathrm{o}^{\text {º }}, \mathrm{AMG}$), 2 mi N Messina ($1 \mathrm{o}^{\circ}$), "N.E. Zoutp. dist." [probably NE Zoutpansberg near Louis Trichard] (1 ㅇ, 2 o $^{\text {º }}$, TMP). ZAMBIA: Eastern Province: 60 km SW Chipata ($1 \mathrm{o}^{\circ}$), between Chipata and Lundazi

 and Cheetah Park 24 km W Harare ($1 \mathrm{o}^{\star}$), Matobo: World's View ($1 \circ$, SAM), Mt. Selinda ($1 \circ+$, ANSP), Nyamandhlovu ($1+$, SAM), 11 km NE Nyamandhlovu ($1 \rightarrow 4 \circ^{\circ}$), Redbank at Kami River ($1 \delta^{\circ} ; 1 \delta^{\circ}$, NHMZ;
 TMP; $1 \circ^{\circ}$, ZMLU), St. Benedict 30 km NE Macheke ($1+1 \circ^{\circ}$, JG), Turk Mine ($1 \circ$, SAM), Victoria Falls (2 $+2 \delta^{\circ} ; 1 \delta^{\circ}$, NHMZ).

Tachysphex pseudofasciatus Pulawski, sp. nov.

Figures 293, 294.
As Tachysphex fasciatus, present correction: de Beaumont, 1940:178 (in revision of Egyptian Tachysphex); de Beaumont, 1947a:207 (in revision of Egyptian Tachysphex; $0^{7}=$ Tachysphex speciosissimus); Pulawski, 1971:118 (in revision of Palearctic Tachysphex).

Recognition.- Tachysphex pseudofasciatus has the postocellar area broad (Figs. 293a, b): width $1.5-1.7 \times$ length in female, $1.8 \times$ in the male, and the propodeal side not ridged. Also, the setae are erect but no longer than midocellar diameter on the postocellar area (Figs. 293a, b), appressed on the scutum and the midfemoral venter; and the entire propodeal side is setose. The gaster is black except for the contrastingly yellowish brown apical depressions of terga, and the tibiae are red.

The female can be recognized by an obtusely pointed clypeal lip (Fig. 293c). As in ramses and unlike the other species, the inner mandibular margin has no tooth or cleft (Fig. 293c); in pseudofasciatus, however, the labrum is flat and hidden under the clypeus, whereas conspicuously convex and protruding from beneath the clypeus in ramses.

The male can be recognized, in addition to the above characters, by the structure of its clypeus whose bevel has a lateral tubercle on each side and whose lip is somewhat prominent mesally, with the free margin slightly concave on each side of the midpoint (Fig. 293d).

Description.- Scutal punctures well defined, on disk about one to several diameters apart; interspaces unsculptured. Mesopleural punctures evanescent, many diameters apart in African specimens, in those from Israel relatively well defined, one diameter apart near center; interspaces microsculptured, dull. Propodeal dorsum evenly microareolate or partly with irregular microridges; side evenly microsculptured. Hindcoxal dorsum with inner margin carinate basally.

Setae erect on postocellar area, about as long as midocellar diameter (Figs. 293a, b), appressed on scutum; suberect on each side of oral fossa next to occipital carina, about as long as midocellar diameter; appressed or nearly so on midfemoral venter; diverging anterad from midline on propodeal dorsum. Propodeal side setose throughout.

Head and thorax black, mandible yellowish red mesally. Frontal setae silvery in both sexes. Wing membrane almost hyaline; costal vein of forewing yellowish brown, subcostal vein brown. Femora red except black basally in African specimens, but fore- and midfemora all black (red at very apex) and hindfemur black in basal half or so in those from Israel; tibiae and tarsi red. Gaster black, apical depressions of terga contrastingly yellowish brown. Terga I-IV silvery fasciate apically.

ㅇ.- Clypeus (Fig. 293c): bevel shorter than basomedian area; lip free margin obtusely pointed, not incised laterally. Width of postocellar area about 1.5-1.7 \times length (Fig. 293a). Dorsal length of flagellomere I $1.5-1.6 \times$ apical width. Dorsal foretibial surface with two spines; outer surface with one or two spines. Forebasitarsus with six to nine rake spines (of which at least three are apical). Tergum V with minute punctures that are many diameters apart, apical depression impunctate, glabrous. Pygidial plate with fine punctures that are many diameters apart (several punctures close to each other near margin); interspaces unsculptured. Length $7.1-8.1 \mathrm{~mm}$.
δ^{7}. - Mandible: trimmal carina evenly curved, without trace of tooth or cleft. Clypeus (Fig. 293d): bevel about as long as basomedian area, with obtuse tubercle on each side next to clypeal foremargin; distance between tubercles $1.3 \times$ distance between corner and orbit; lip indistinctly delimited from bevel, with free margin arcuate, obtusely pointed mesally, with obtuse corner; distance between corners equal to $1.1 \times$ distance between corner and orbit. Width of postocellar area $1.8 \times$ length (Fig. 293b). Dorsal length of flagellomere I $1.4 \times$ apical width. Forefemoral notch

Figure 293. Tachysphex pseudofasciatus Pulawski, sp. nov.: a - female head in frontal view; b-male head in frontal view; c - female clypeus and mandible; d - male clypeus and mandible; $\mathrm{e}-$ volsella; f - penis valve.
microscopically setose. Outer margin of forebasitarsus with six rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Length 7.5 mm . Volsella and penis valve: Figs. 293e, f.

Geographic distribution (Fig. 294).— Algeria, Tunisia, Egypt, Israel.
Records.- Holotype: ${ }_{+}$, EGYPT: Al Qahirah (= Cairo): Gebel Asfar, 14 Apr 1935, ex A. Alfieri collection (USNM). Paratypes: ISRAEL: Hazeva Field School in Arava Valley, M.E. Irwin, 7 April 1995
(1 \&, CSE), 8 April 1995 (1 \&). TUNISIA: 15 km W Nefta at $33^{\circ} 50^{\prime} \mathrm{N} 7^{\circ} 43^{\prime} \mathrm{E}$, 11 May 2001, Rosa ($1 \mathrm{o}^{\top}$). Also recorded from Biskra, Algeria, by de Beaumont (1947a).

Tachysphex psilonotus Pulawski, sp. nov.

 Figures 294, 295.Derivation of name.- Psilonotus is derived from two Greek words: psilos, bald; and noton or notos, back, ridge; with reference to the partly glabrous propodeal dorsum of this species.

Recognition.- Tachysphex psilonotus is known from a few localities between Grahamstown and Cape Town, South Africa. It has a convex labrum that protrudes from beneath the clypeus, a galea almost as long as the scape, a propodeal dorsum that is asetose at

Figure 294. Collecting localities of Tachysphex pseudofasciatus and psilonotus. least apicomesally, and an all black gaster. This combination is shared with claripes, diabolicus, and lacertosus. In psilonotus, however, the forewing subcostal vein is dark brown to brown (reddish in lacertosus and some claripes), the galea sparsely punctate (closely micropunctate except anteriorly in lacertosus), setae of the episcrobal area erect or nearly so and at least as long as midocellar diameter (nearly appressed in lacertosus), terga I-III each with a silvery fascia (terga not fasciate in diabolicus), and in the female the outer foretibial surface is asetose or sparsely setose (foretibia uniformly, densely setose in lacertosus). The male is easily distinguished from the other three species by its arcuate clypeal lip, with the corner ill defined or absent, and a nondentate trimmal carina (Fig. 295b). The female, morphologically identical to claripes (which ranges from Namibia and Zimbabwe to South Africa), can be identified only by association with the topotypical males.

SEX ASSOCIATION.- I regard as conspecific the females and males collected by M.E. Irwin, E.I. Schlinger, and F.D. Parker in 1999 (some of them in the same locality), because no male of claripes was collected during their expedition.

DESCRIPTION.- Labrum convex and protruding from beneath clypeus (but less so than in panzeri or pentheri), its free margin only slightly arcuate mesally. Galea sparsely punctate (punctures several diameters apart), as long as 0.9 of scape. Scutal punctures minute, averaging one diameter apart or less. Mesopleuron dull, uniformly microsculptured. Propodeal dorsum evenly microareolate; side finely ridged, but ridges partly reduced in most specimens, and all reduced in smallest male. Hindcoxal dorsum with inner margin carinate basally.

Setae appressed on postocellar area, scutum, propodeal dorsum, and femora; most genal setae appressed, but erect on each side of oral fossa next to occipital carina (setal length about one midocellar diameter); oriented posterad on propodeal dorsum except for large glabrous apicomedian area (all dorsum glabrous in some specimens).

Head, thorax, and gaster black, mandible reddish mesally. Frontal setae silvery in female, golden in male. Wing membrane slightly infumate; forewing costal vein dark brown and subcostal vein black in specimens from Wellington, but reddish brown and brown, respectively, in single male from Tulbagh. Leg coloration: see below. Terga I-III silvery fasciate apically.

ㅇ.- Clypeus (Fig. 295a): bevel longer than basomedian area; lip free margin arcuate, without

Figure 295. Tachysphex psilonotus Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d - penis valve.
median notch, incised or sinuous laterally. Width of postocellar area $0.7-0.8 \times$ length. Dorsal length of flagellomere I 2.4-2.5 \times apical width. Dorsal foretibial surface with two spines; outer surface with two spines, asetose or sparsely setose; midtibia with asetose dorsal zone. Forebasitarsus with seven or eight rake spines. Tergum V densely micropunctate and setose, including apical depression. Length 9.2-13.4 mm. Legs varying from mostly red to mostly black. In lightest specimens, red are: forefemoral apex, distal half of midfemur, hindfemur (except basally), tibiae, and tarsi. In darkest specimen (one female): femora and tibiae black except inner foretibial surface and midtibial venter reddish; tarsi brown.
0^{7}.- Mandible: trimmal carina without tooth or cleft. Clypeus (Fig. 295b): bevel shorter than basomedian area; lip free margin obtusely pointed, with corner ill defined or absent; distance between corners 1.0-1.1 \times distance between corner and orbit. Width of postocellar area $0.7-0.9 \times$ length. Dorsal length of flagellomere I 1.4-1.8 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus mostly with four or five rake spines, but only three spines present on right tarsomere (next to its apex) in single male from Tulbagh; outer apical spine of foretarsomere II mostly longer than tarsomere III, but shorter in a male from Gooedehoop Farm. Apex of sternum VIII tridentate but middle tooth in some specimens rounded, low, ill defined. Length $8.0-10.4 \mathrm{~mm}$. Volsella and penis valve: Figs. 295c, d. Femora black except red apically, tibiae and tarsi red.

Geographic distribution (Fig. 294).- Eastern Cape and Western Cape provinces of South Africa.

Records.- Holotype: ${ }^{\text {ơ }}$, SOUTH AFRICA: Western Cape Province: Wellington: Rooshoek, Dec 1973, P.M.F. Verhoeff (RMNH). Paratypes (ISP = M.E. Irwin, E.I Schlinger, and F.D. Parker): SOUTH AFRICA: Eastern Cape Province: Grootrivierberg Range 37 km NW Willowmore, 19-24 Nov 1999, ISP
 km WNW Grahamstown, F.W. Gess, 18 Dec 1970 ($1 \mathrm{o}^{*}$) and 19 Dec 1970 ($1 \delta^{\circ}$, AMG); 6 km N Steytlerville, 16-23 Nov 1999, ISP (3 ㅇ, 3 ơ; 6 早, 3 ơ, USU); 43 km NE Willowmore: Plessierivier, $18-22$ Nov 1999, ISP ($1 \mathrm{o}^{7}$, USU); 11 km SW Willowmore, 20-24 Nov 1999, ISP (1 \circ). Western Cape Province: same data as
 ty, Dec 1959, A. Mirjam Verhoeff (1 ơ, RMNH); Barrydale, 16 Dec 2002, Marek Halada (2 ở, OÖLM); 2, 40 km E Clanwilliam: Sevilla, 27-28 Nov 1999, F.D. Parker (1 q); Greyton, 22 Nov 2002, Marek Halada (2 ơ, OÖLM); Jonkershoek near Stellenbosch, 25 Jan 1971, V. Whitehead (10°, AEI); 5 km S Lambert's Bay,

Tachysphex ptah Pulawski

Figures 296, 297.
Tachysphex ptah Pulawski, 1964:84, ${ }^{\circ}$, ơ ${ }^{\text {º }}$. Holotype: $\boldsymbol{o}^{\circledR}$, Egypt: Abu Rawash NW Cairo (CAS), examined.Pulawski, 1971:287 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:10 (Israel); Bohart and Menke, 1976:276 (listed).

Recognition.- Tachysphex ptah, known from Egypt, Israel, and the Arabian Peninsula, is one of the many species in which the labrum is markedly convex and protruding beyond the clypeal margin. In addition, the propodeal side is not ridged, the postocellar area is markedly longer than wide, the setae are appressed on the postocellar area and straight (not sinuous) on the gena and thorax, oriented obliquely toward midline on the propodeal dorsum in the apical half or so, and terga I-III are silvery fasciate apically (but not tergum IV). In the female, tergum V is finely punctate and setose throughout, including the apical depression, and in the male the clypeal lip has a lateral corner, the outer apical spine of foretarsomere II is longer than tarsomere III, and the dorsal volsellar process is elongate (Fig. 296c).

A number of other species share this character combination, but the female of ptah differs in having the galea aciculate, with a few ill-defined microscopic punctures (rather than densely, finely micropunctate). Also, the mandibular notch is the usual size (unusually large in buyssoni), the setae shorter than one midocellar diameter on the gena (longer in cheops and in the northern populations of calidus), the tibiae are red (at least mid- and hindtibiae black in georgii), and tergum IV is not fasciate (fasciate in many calidus and many panzeri). Also similar is Tachysphex mycerinus, which has a distinctive pygidial plate (see that species, p. 432).

The male of ptah can be distinguished from similar species by its narrow, elongate forefemoral notch, with erect microscopic setae. Also distinctive are the galea (aciculate, with a few microscopic, ill-defined punctures) and the hindfemoral venter (inner margin well defined in distal half).

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea dull, microreticulate and with a few ill-defined punctures, longer than wide in profile, as long as 1.2-1.3 of scape. Scutal punctures ill defined, about one diameter apart. Mesopleuron dull, evenly microrugose. Propodeal dorsum and side evenly microsculptured. Hindcoxal dorsum with inner margin carinate basally.

Setae appressed on postocellar area and scutum; suberect, almost as long as midocellar diameter, on each side of oral fossa next to occipital carina; forming a complicated pattern on propodeal dorsum: lateral setae oriented posterolaterad, adlateral setae oriented posteromesad and meeting apically, admedian setae oriented posteromesad in apical half or so and oriented anteromesad in basal third or so except those next to anterior margin inclined posterad.

Figure 296. Tachysphex ptah Pulawski: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.

Head and thorax black, mandible yellowish red except apically (black basally in many males). Frontal setae silvery in both sexes. Wing membrane slightly yellowish to nearly hyaline; costal and subcostal veins of forewing yellowish brown or subcostal vein contrastingly brown. Femora in most specimens black basally and red apically (in varying proportions), tibiae and tarsi red, but in specimens from Israel femora black except narrowly red apically and female tibiae largely black. Gastral segments I-III red in most specimens (remainder black), but gaster nearly all black in specimens from Israel except for some reddish areas basally. Terga I-III silvery fasciate apically.

ㅇ.- Clypeus (Fig. 296a): bevel as long as basomedian area or shorter; lip free margin arcuate, mesally straight or minimally, broadly concave, not incised laterally. Width of postocellar area $0.5-0.7 \times$ length. Dorsal length of flagellomere I $2.0-2.6 \times$ apical width. Dorsal foretibial surface with three spines; outer surface with one or two spines. Forebasitarsus with seven or eight rake spines. Apical spines of hindtarsomere IV almost reaching claw bases. Apical depression of tergum V microscopically punctate and setose. Pygidial plate with punctures that average several to many diameters apart; interspaces unsculptured or aciculate. Length $8.3-9.0 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 296b): bevel shorter than basomedian area, delimited laterally by short, obtuse carina emerging from lip corner; lip free margin evenly, slightly arcuate or shallowly, broadly concave mesally, with well-defined corner; distance between corners $0.9-1.3 \times$ distance between corner and orbit. Width of postocellar area
$0.8-0.9 \times$ length. Dorsal length of flagellomere I $1.8-2.2 \times$ apical width. Forefemoral notch narrow, glabrous. Outer margin of forebasitarsus with 3-5 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Hindfemoral venter with inner (= posterior) margin well defined in distal half. Length $5.2-7.7 \mathrm{~mm}$. Volsella and penis valve: Figs. 296c, d.

Geographic distribution (Fig. 297).Lower Egypt, Israel, Yemen.

Records.- EGYPT: Al Jizah (= Ghiza): Abu Rawash (2 ㅇ, $3 \sigma^{*}$, including holotype of ptah), Ghiza ($\left.1 \quad \circ, 4 \delta^{*}\right)$. ISRAEL: Bat Yam (1 ㅇ, $2 \delta^{\circ}$). YEMEN: Aden (Pulawski, 1971).

Tachysphex pulcher Pulawski

Figures 298, 299.

Figure 297. Collecting localities of Tachysphex ptah and punctatiformis.

Tachysphex pulcher Pulawski, 1967a:394, 우, \boldsymbol{o}^{*}. Holotype: 우, Turkmenistan: Akhcha-Kuyma near NebitDagh (ZIN), reexamined in 2006.- Pulawski, 1971:280 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:10 (Israel); Bohart and Menke, 1976:276 (listed); Kazenas, 1978b:112, 124 (in key to Sphecidae of Kazakhstan and Central Asia); Hensen and van Ooijen, 1987:16 (Turkey); Kazenas, 2001:30 (in checklist of Sphecidae of Kazakhstan and Central Asia), 2002:74 (Kazakhstan).

RECOGNITION.- Tachysphex pulcher has the labrum convex (markedly protruding beyond the clypeal free margin), setae appressed on the postocellar area and sinuous on the lower gena, concealing the integument on the mesopleuron (at least in fresh specimens), and the propodeal side not ridged but setose throughout. This combination is shared with micans and the extralimital fuscispina Pulawski from Turkmenistan. Some, but not all, specimens have unusual, sparsely spaced rays on the inner hindtibial spur at least near midlength, as in micans (see Fig. 233d). Unlike micans, the longest setae of the lower gena in pulcher are only slightly longer than one midocellar diameter (rather than about two diameters), those on tergum I are straight and appressed (rather than slightly sinuous and not appressed); in the female, the free margin of the lateral lobe is concave (rather than straight or minimally concave); and in the male the hindfemoral venter has the inner (= posterior) margin well defined in distal half (rather than ill defined), and the dorsal volsellar process is low and wide (Fig. 298c), whereas narrow and elevated in micans. Unlike fuscispina (whose male in unknown), female tergum V of pulcher is punctate and setose throughout, and apical spines of tarsomeres IV are twice as long as the tarsomere's apical width, reaching the claw bases (rather than equal to the tarsomeres apical width).

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea with illdefined punctures, as long as 1.1-1.2 of scape in female, 1.3-1.4 in male. Supraantennal swelling in fresh specimens concealed by vestiture. Scutal punctures minute, about one diameter apart. Mesopleuron dull, uniformly microsculptured. Propodeal dorsum and side evenly microsculptured. Hindcoxal dorsum with inner margin obtusely carinate. Inner hindtibial spur varying, its rays either closely spaced (as in most Tachysphex) or sparsely spaced (as in micans, see Fig. 233d).

Setae sinuous on each side of oral fossa next to occipital carina, slightly longer than midocellar diameter; fully concealing integument on mesopleuron in fresh specimens; on propodeal dorsum

Figure 298. Tachysphex pulcher Pulawski: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d - penis valve.
mostly straight and oriented anterad, but variously oriented in some specimens and somewhat sinuous in a female from Yemen; propodeal side setose throughout; setae of hindfemoral outer surface conspicuous, concealing integument at least apicoventrally.

Head and thorax black, mandible (except dark apical third) and ventral half or third of clypeal middle section yellowish red. Frontal setae silvery in both sexes. Wing membrane almost hyaline; costal vein of forewing yellowish brown or reddish brown, subcostal vein brown. Femora black except red apically or female hindfemur largely red (black basally). Tibiae red or darkened (slightly so in female, largely in male). Tarsi red. Gaster red, three apical segments dark in some females and most males. Terga I-V (I-IV in some males) silvery fasciate apically.

ㅇ.- Clypeus (Fig. 298a): bevel shorter to longer than basomedian area; lip free margin arcuate, emarginate mesally, neither incised nor sinuous laterally. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I 2.9-3.4 \times apical width. Forecoxa with small apicomedian process. Dorsal foretibial surface with three spines; outer surface with two or three spines. Forebasitarsus with 7-9 rake spines. Apical spines of hindtarsomere IV reaching claw bases. Apical depression of tergum V punctate and setose throughout. Pygidial plate aciculate, with minute points that are many diameters apart, integument slightly rugose in some specimens. Length $6.5-11.5 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 298b): bevel as long as basomedian area or shorter; lip free margin arcuate, shallowly emarginate mesally, with welldefined corner and oblique carina emerging from each lip corner; distance between corners 1.0-1.2 \times distance between corner and orbit. Width of postocellar area $0.9-1.1 \times$ length. Dorsal length of
flagellomere I 2.3-2.8× apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with 5-7 rake spines. Outer apical spine of foretarsomere II longer than tarsomere III. Hindfemoral venter with inner (= posterior) margin well defined in distal half. Length 5.3-8.6 mm . Volsella and penis valve: Figs. 298c, d.

Geographic distribution (Fig. 299).- Azerbaijan to Sinai Peninsula and Yemen, east to Kazakhstan and Tajikistan.

Figure 299. Collecting localities of Tachysphex pulcher.
Records (localities not followed by the number of specimens examined or reference to literature are taken from Pulawski, 1971).- ARMENIA: Arax Valley. AZERBAIJAN: Baylov and Bibi-Eidat near Baku, Dissar near Ordubad in Nakhichevan' Autonomous Republic (1 ㅇ, paratype of pulcher). EGYPT: Sina (= Sinai): $30-35 \mathrm{~km}$ E St. Catherine monastery on Nuweiba road ($1 \mathrm{~d}^{\circ}$). IRAN: Khuzestan: Haft Tapeh 300 km N Abadan ($1 \mathrm{o}^{\mathrm{o}}$). Teheran: 30 km S Teheran (2 9). ISRAEL: 8 km NNE Ashkelon ($1 \mathrm{o}^{\boldsymbol{\pi}}$, CSE), Bat Yam 3 km S Yaffa, Beersheba (2 \& $9 \mathrm{o}^{\circ}$), En Haseva 35 km S Dead Sea, Raanana 20 km NNE Tel Aviv, 5 km SSE Sede Boker ($1 \mathrm{ơ}^{\circ}, \mathrm{CSE}$), Wadi En Aqrabbim 50 km SE Beersheva ($1 \mathrm{o}^{\circ}$, CSE). KAZAKHSTAN ($\mathrm{K}=$ Kazenas, 2002, $\mathrm{P}=$ Pulawski, 1971): Aktöbe: Koilibay in Malye Barsuki sands (P). Almaty: 15 km S Aksuek 250 km NW Almaty at about $44.5^{\circ} \mathrm{N} 74.5^{\circ} \mathrm{E}(\mathrm{K}), 65 \mathrm{~km}$ W Bakanas (K), Kapchagay 75 km N Almaty ($2 \circ \circ, 1 \delta^{\circ}$). Qostanay: Zhalanash (K). Qyzylorda: 30 km SW Aral'sk (K), 10 km NNW Kamyshlybash (K), 28 km SW Kazalinsk (1 甲 $+3 \mathrm{o}^{\mathrm{*}}$), 20 km S Yany-Kurgan (K). South Kazakhstan: 5 km

 KMG). SYRIA: Barze 10 km N Damascus ($1 \circ, 2 \delta^{\circ}$), 20 km E Damascus. TAJIKISTAN: Dushanbe. TURKEY: Ağri: Doğubayazit (Hensen and van Ooijen, 1987). Ankara: Tuz Golu. Bingöl: 15 km S Genç (Hensen and van Ooijen, 1987). Konya: Konya ($1 \circ+1 \overbrace{}^{\circ}$). TURKMENISTAN: Akhcha-Kuyma near NebitDagh, Krasnovodsk (1 \&, paratype of pulcher), Nadezhdin, Uzun-Ada on E side of Gulf of Krasnovodsk.

Tachysphex punctatiformis Arnold

Figures 297, 300.
Tachysphex punctatiformis Arnold, 1923:151, \circ, \boldsymbol{o}° (authorship attributed to Brauns). Lectotype: \circ, South Africa: Eastern Cape Province: Willowmore (SAM), here designated, examined.- Bohart and Menke, 1976:276 (listed); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).

ReCognition.- Tachysphex punctatiformis has an all black gaster (silvery tergal fasciae either absent or rudimentary and present only laterally), black femora and tibiae, setae erect and sinuous on the head and thorax and inclined posterad on the propodeal dorsum, male foretarsus with a conspicuous rake, and male sterna II-VI with impunctate apical depressions. Also, the clypeal lip is not receded laterally in the female (Fig. 300a) and not pointed in the male (Fig. 300b), whereas respectively receded or pointed in mesembrius. In addition, the labrum is flat, the galea no longer than wide in profile, the cubital and anal ends of hindwing crossvein cu-a are equidistant from the wing base, and the tarsi are unspecialized (length of tarsomeres II more than twice apical width, length of tarsomeres IV more than apical width, and apical tarsomeres without ventral or lateral spines).

The above character combination is shared with crassipes, and many specimens can be distinguished only by slightly different proportions of their postocellar area: in punctatiformis, the width of postocellar area is $1.1-1.6 \times$ length in the female and $1.1-1.3$ in the male, whereas in crassipes $0.8-0.9$ and $0.7-0.8$, respectively. In many punctatiformis, in addition, the mesopleural punctures are absent or evanescent and the setae are sinuous and erect on the scape lateroventrally, suberect on the basal declivity of tergum I, and in some females also on the hindfemoral venter. In crassipes, the mesopleural punctures are well defined, and the scapal, hindfemoral, and tergal setae are all straight, appressed or nearly so. The geographic ranges of the two species are mutually exclusive: punctatiformis is known from central and western South Africa and southern Namibia, whereas crassipes occurs in Zimbabwe and northeastern South Africa (former Transvaal).

Figure 300. Tachysphex punctatiformis Arnold: a - female clypeus and mandible with outline showing variation of clypeal free margin; b - male clypeus and mandible; c - volsella with outline showing variation of dorsal process; d - penis valve.

Also similar to punctatiformis is the female of glaber from the Abd el Kuri Island, in which, however, the free margin of the clypeal lobe is neither emarginate mesally nor incised laterally. In punctatiformis, the clypeal lip has at least a rudimentary lateral incision, but in most specimens the incision is well defined and there is also a median notch.

Species delineation.- The females that I assign to punctatiformis vary considerably in the mesopleural punctation and in the length of tergal and hindfemoral setae. The extreme forms appear to be distinct species at first, but a closer analysis suggests continuous variation (see Variation below for details).

Status of the species.- Tachysphex punctatiformis and crassipes may be geographic forms of one species, as they are similar morphologically and inhabit mutually exclusive but almost adjacent areas: Namibia and western and central South Africa (punctatiformis) and Botswana, Zimbabwe, and northeastern South Africa (crassipes). The gap between these ranges may result from inadequate collecting. I treat them as discrete species because I could not demonstrate intergradation.

Description.- Scutal punctures well defined, averaging several diameters apart on disk in female, about one to several diameters apart in male; interspaces shiny, unsculptured or nearly so. Mesopleuron microsculptured (conspicuously so in most specimens); punctures absent to deep, conspicuous (ranging from about one diameter apart to many diameters apart). Episternal sulcus complete in some specimens. Propodeal dorsum mostly ridged, but ridges inconspicuous or evanescent in some males; side with well-defined ridges, but practically unridged in single male from Kamiesberg, South Africa. Hindcoxal dorsum with inner margin carinate at least basally.

Setae sinuous and erect or nearly so on postocellar area, gena, thorax, and midfemoral venter (straight or nearly so on midfemoral venter in several males), inclined posterad on propodeal dorsum. In many specimens, setae are also erect and sinuous on scape lateroventrally, suberect on basal declivity of tergum I, and in female suberect on hindfemoral venter (at least basally) Setal length expressed as a fraction of basal mandibular width: $0.5-0.7$ on postocellar area, $0.5-0.8$ on scutum anteriorly, up to 0.5 on midfemoral venter (0.2 in males with straight setae).

Head, thorax, legs, and gaster black except mandible reddish mesally and apical tarsomeres brown or red. Frontal setae silvery in both sexes. Wing membrane slightly infumate, costal and subcostal veins of forewing dark brown. Terga either without silvery fasciae or rudimentary fasciae present on terga I-III laterally.

ㅇ.- Clypeus (Fig. 300a): bevel ill defined but longer mesally than basomedian area; lip free margin arcuate but otherwise varying. Width of postocellar area markedly varying, 1.1-1.6 \times length. Dorsal length of flagellomere I $2.3-2.4 \times$ apical width. Apicomedian forecoxal process inconspicuous in most specimens but well defined in two females from Willowmore, South Africa. Midtrochanteral venter: punctures large, several diameters apart in most specimens, but fine, averaging 2-3 diameters apart in one female from Willowmore and one from Vanrhynsdorp, South Africa. Forefemoral venter and posteroventral surface, in most specimens, with large punctures that are several to many diameters apart (interspaces unsculptured to conspicuously microsculptured). Dorsal foretibial surface with two or three spines; outer surface with three spines, micropunctures many diameters apart. Forebasitarsus with 7-9 rake spines. Apical depression of tergum V largely impunctate and asetose. Pygidial plate with punctures that average many diameters apart on disk, about 1-2 diameters apart near margin. Length $9.5-12.3 \mathrm{~mm}$. Volsella and penis valve: Figs. 300c, d.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 300b): bevel shorter than basomedian area or ill defined; lip free margin arcuate, with well-defined corner; distance between corners $0.5-0.8 \times$ distance between corner and orbit. Width of postocellar area $1.1-1.3 \times$
length. Dorsal length of flagellomere I 2.0 $2.2 \times$ apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with five or six rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Sterna II-VI with impunctate apical depressions (at least partly so), largely impunctate in specimens from Mariental District, Namibia. Apical margin of sternum VIII tridentate in one specimen from Willowmore, but middle tooth evanescent in others. Length $8.5-11.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 300c, d.

Variation.- Tachysphex punctatiformis varies considerably in the size of the mesopleural punctures and the length of scapal, tergal, and hindfemoral setae. In most cases, individuals with well-defined mesopleural punctures also have long setae on tergum I and the hindfemoral venter, and vice versa. A female from Willowmore, however, combines relatively small mesopleural punctures with long hindfemoral setae; another female from Willowmore and two females from Dassiefontein, South Africa, have coarse mesopleural punctures but the tergal and femoral setae are appressed. Details on variation are presented below:

Scapal setae. Setae are either erect on the lateroventral scapal margin and up to two midocellar diameters long, or straight and appressed.

Mesopleural punctures. The mesopleuron has well-developed punctures in most females, but punctures are small, inconspicuous in two females from Dassiefontein, one from Springbok, one from Vanrhynsdorp, and one from Willowmore; punctures are barely recognizable (practically absent) in one female from Clanwilliam, one from George, one from Goegap Nature Reserve, one from Richtersveld National Park, and one from Willowmore, all South Africa.

Female clypeus. The clypeal lip, in most specimens, is shallowly notched mesally and has two prominent, lateral incisions on each side, but the median notch is shallow and only one lateral incision is present in a female from Melton Wold, one from Richtersveld, and one from Springbok; and the median notch is absent and the lateral incisions are rudimentary in single female from Burgersdorp area, all South Africa (Fig. 300a, outline).

Female hindfemoral setae. Most females have conspicuous erect setae on the hindfemoral venter (longest setae up to $0.6 \times$ hindfemoral maximum width), but setae are somewhat shortened in the smallest specimen from Willowmore ($0.4 \times$ femoral width), nearly totally reduced in another one from the same locality ($0.2 \times$ femoral width) and the females from Springbok ($0.1 \times$ femoral width). The females from Dassiefontein, George, and Richtersveld have no erect setae.

Female tergum I: setae. The anterior declivity of tergum I is covered with suberect, conspicuous setae in most specimens, including the holotype (setal length up to $0.6 \times$ basal mandibular width), but the setae are shorter in the smallest female from Willowmore (up to 0.3 mandibular width), and all are appressed in the females from Goegap Nature Reserve, one from George, one from Richtersveld National Park, and one from Willowmore.

Floral record.- The specimen collected between Aus and Rosh Pinah were visiting pink flowers of Galenia sp. (Aizoaceae), as reported by the collectors, F.W. and S.K. Gess.

Collecting Period.- 5 May through October.
Geographic distribution (Fig. 297).- Namibia to western and central South Africa.
Records.- NAMIBIA: Gobabis District: Aminuis (9 , SAM). Lüderitz District: Aus to Rosh Pinah at $26^{\circ} 50.1^{\prime} \mathrm{S} 16^{\circ} 17.6^{\prime} \mathrm{E}\left(1\right.$ of, AMG). Mariental District: Onze Rust 192 [Farm] ($10^{\circ}, \mathrm{AMG}$), Vaalbank
 Burgersdorp and Nooitgedacht (1 \&, SAM), Steynsburg (1 \& SAM), Venterstad Region (1 \&), Willowmore
 Malanskraal at $26^{\circ} 41^{\prime} \mathrm{S} 28^{\circ} 25^{\prime} \mathrm{E}\left(1+\circ\right.$, AMG). Northern Cape Province: Anenous at $29^{\circ} 15^{\prime} \mathrm{S} 17^{\circ} 30^{\prime} \mathrm{E}(1+$ of, AMG), Bowesdorp in Namaqualand (20°, SAM), W Calvinia (10°, OÖLM), Dassiefontein Farm 14 road km
 $29^{\circ} 37^{\prime} \mathrm{S} 17^{\circ} 59^{\prime} \mathrm{E}\left(1 \sigma^{\circ}, \mathrm{AMG}\right)$ and $29^{\circ} 37^{\prime} \mathrm{S} 18^{\circ} 00^{\prime} \mathrm{E}\left(1 \delta^{\circ} ; 2 \delta^{\circ}, \mathrm{AMG}\right)$, Kamiesberg at $30^{\circ} 10^{\prime} \mathrm{S} 18^{\circ} 11^{\prime} \mathrm{E}\left(1 \sigma^{\circ}\right.$,

PPRI), Melton Wold (5 0°, SAM), Richtersveld National Park: Koeroegabvlakte at $28^{\circ} 11^{\prime} \mathrm{S} 17^{\circ} 03^{\prime} \mathrm{E}(1$ of, AMG), 90 km ENE Springbok at $29^{\circ} 20.1^{\prime} \mathrm{S} 18^{\circ} 44.3^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right)$. Western Cape Province: 4 mi S Clanwilliam (1 ㅇ, SAM), Clanwilliam Dam at $32^{\circ} 18^{\prime}$ S $18^{\circ} 57^{\prime} \mathrm{E}\left(1 \delta^{\circ}\right.$, AMG), George ($1 \circ+$ SAM), Het Kruis (10°, SAM), Knersvlakte 48 km N Vanrhynsdorp at $31^{\circ} 14^{\prime} \mathrm{S} 18^{\circ} 32^{\prime} \mathrm{E}$ (3 c°, AMG), Ladismith (1 \& \uparrow, AMG), Lamamerskraal in Prince Albert District (1 ค, SAM), Langkloof NE Montagu ($1 \mathrm{o}^{\circ}$), ca 10 km NNW Montagu at $33^{\circ} 42.2^{\prime} \mathrm{S}$
 Gardens ($2 \delta^{\star}$).

Tachysphex punctatus (F. Smith)

Figures 301, 302.
Larrada punctata F. Smith, 1856:282, 9 , actually ở $^{\circ}$. Holotype: \boldsymbol{o}^{7}, South Africa: Western Cape Province: Cape of Good Hope (BMNH), examined.—As Larra punctata: Kohl, 1885:247 (new combination, listed); Dalla Torre, 1897:672 (in catalog of world Hymenoptera).- As Tachysphex punctatus: R. Turner, 1917a:323 (new combination, diagnostic characters, as punctata), 1917d:292 (new combination, diagnostic characters, description of 9); Arnold, 1923:148 (in revision of southern African species), 1930:2 (listed); Bohart and Menke, 1976:276 (listed); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).

ReCognition.- Tachysphex punctatus has a labrum moderately convex and moderately protruding beyond the clypeal free margin (less so than in panzeri or pentheri), elongate galea (length equal to about 0.6 of scape), propodeal dorsum glabrous apicomesally, and the fore- and midfemoral venters shiny and unsculptured except for a few, sparse punctures (male forefemur unsculptured only between the notch and apex, or only on posteroventral surface). In addition, the wing membrane is conspicuously infumate, the postocellar area is broad (width $1.2-1.3 \times$ length in female, $1.1-1.5 \times$ length in male), and the terga have no silvery fasciae. Tachysphex marshalli and quadricolor have a similar labrum, galea, postocellar area (width $0.9 \times$ length in some specimens), propodeal setation, femoral sculpture, and nonfasciate terga, but in punctatus the legs are all black (except the tarsal apex), the clypeal lip of the female is only slightly arcuate (Fig. 301a), the dorsal length of male flagellomere I equals 1.3-1.4×apical width, male sterna are covered with appressed setae, and the gaster is all black in most specimens. In the other two species, at least the foretibiae and tarsi are red (also the gaster is red in quadricolor, at least basally), the clypeal lip of the female is arcuate (Figs. 221a and 398a), the dorsal length of male flagellomere I is $2.4-2.8 \times$ apical width, and male sterna IV-VI are covered with inclined setae.

Description.- Labrum convex (but less so than in panzeri or pentheri), protruding beyond clypeal free margin. Galea minutely, densely punctate except anteriorly (punctures about one diameter apart), about as long as 0.6 of scape. Scutum: discal punctures averaging $1-2$ diameters apart, but several diameters apart in some specimens; interspaces shiny. Mesopleuron dull, shallowly punctatorugose or with punctures that are about one diameter apart beneath scrobe. Propodeal dorsum evenly microareolate; side dull, ridged (minutely so in some specimens), inconspicuously punctate. Hindcoxal dorsum with inner margin not carinate.

Setae erect or nearly so on postocellar area but no longer than midocellar diameter; about one midocellar diameter long on each side of oral fossa next to occipital carina; appressed on scutum; appressed and oriented posterad on propodeal dorsum (apicomedian area glabrous).

Head, thorax, legs, and gaster black, but mandible reddish mesally, apical tarsomeres brown or reddish, and terga I-V, in some females, with ill-defined preapical reddish zone. Frontal setae silvery in both sexes. Wing membrane conspicuously infumate; forewing costal vein dark brown, subcostal vein black. Terga without silvery, apical fasciae.

ㅇ.- Clypeus (Fig. 301a): bevel markedly longer than basomedian area; lip slightly arcuate, at most with shallow median notch, sinuous laterally. Width of postocellar area $1.2-1.3 \times$ length.

Figure 301. Tachysphex punctatus (F. Smith): a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d-penis valve.

Dorsal length of flagellomere I 2.4-2.5 \times apical width. Fore- and midfemoral venters unsculptured except for a few, sparse punctures. Dorsal foretibial surface with two or three spines; outer surface with narrow, asetose zone, with two or three preapical spines. Forebasitarsus with eight or nine rake spines. Apical depression of tergum V varying from punctate and setose to partly impunctate and glabrous. Pygidial plate with punctures varying: averaging several diameters apart mesally and less than one diameter near margin in most specimens, but all punctures less than one diameter apart in some individuals; interspaces microsculptured at least basally. Length $9.8-11.5 \mathrm{~mm}$.
0^{7}. - Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 301b): bevel markedly longer than basomedian area; lip free margin arcuate, slightly concave near corner (which is well defined), distance between corners $0.9-1.0 \times$ distance between corner and orbit. Width of postocellar area $1.1-1.5 \times$ length. Dorsal length of flagellomere I 1.3-1.4× apical width. Forefemur: notch unsculptured, glabrous; venter unsculptured between notch and apex except for a few minute punctures (only posteroventral surface unsculptured in some specimens). Midfemoral venter unsculptured except for a few, sparse punctures. Outer margin of forebasitarsus with 4-6 rake spines; outer apical spine of foretarsomere II as long as tarsomere III or longer. Length $7.0-8.3 \mathrm{~mm}$. Volsella and penis valve: Figs. 301c, d.

Floral records.- The specimens collected 12 km E Springbokwater, Namibia, were visiting flowers of Zygophyllum simplex L. (Zygophyllaceae), as recorded by F.W. and S.K. Gess, the collectors.

Geographic distribution (Fig. 302)- Southern Namibia and Eastern, Northern, and Western Cape Provinces of South Africa.

RECORDS.- NAMIBIA: Bethanien District: Churutabis [Farm] (1 ค, NMN), Vogelstrausskluft 87 [Farm] (1 of, NMN). Damaraland: 12 km E Springbokwater at $20^{\circ} 15^{\prime} \mathrm{S} 13^{\circ} 44^{\prime} \mathrm{E}(1 \mathrm{o}$; $1 \quad \circ$, AMG), Uis to Hentiesbaai at $21^{\circ} 27^{\prime} \mathrm{S} 14^{\circ} 45^{\prime} \mathrm{E}(2$ o , AMG). Karasburg District: Karasburg (19 , AMG), 30 km E Karasburg ($\mathrm{O}^{\text {® }}$, AMG). Lüderitz District:
 Solitaire at $23^{\circ} 52^{\prime} \mathrm{S} 16^{\circ} 00^{\prime} \mathrm{E}(1+$, AMG). SOUTH AFRICA: Eastern Cape Province: Grahamstown: Carlisle Bridge (1 o, AMG), 18 km WNW Grahamstown: Hilton Farm (1 $\%$), Middelburg Division (2 ${ }^{\circ}$), Steynsburg ($1 \circ$, SAM), 28 km S Steytlerville: Wolwekraal Farm (1 \& , 2 o $^{\text {º }}$, USU), Waterford (2 \circ, AMG), Willowmore ($1 \circ ; 2$ ㅇ, AMG; 12 ㅇ, 5 ơ, TMP). Northern Cape Province: $^{\prime}$
 Park (1 o, SAM), Tanqua-Karoo National Park at Renoster River ($1 \quad \circ$, SAM). Western Cape Province: Beaufort West (1 \&, BMNH; 1 ơ $^{\circ}$, SAM),

Figure 302. Collecting localities of Tachysphex punctatus and pusulosus. Cape of Good Hope ($1 \sigma^{\circ}$, BMNH, holotype of punctatus), Dikbome Farm near Merweville (1 ㅇ, SAM), Kliprand 60 km WNW Loeriesfontein ($1 \mathrm{o}^{\boldsymbol{*}} ; 1 \mathrm{o}^{\boldsymbol{*}}$, OÖLM), Knersflakte: Kalkgat (1 ㅇ, OHL), Laingsburg at $33^{\circ} 12^{\prime} \mathrm{S} 20^{\circ} 51^{\prime} \mathrm{E}(1+\circ)$, 30 km ENE Laingsburg at $33^{\circ} 08^{\prime} \mathrm{S} 21^{\circ} 08^{\prime} \mathrm{E}(1+9)$, 50 km W Loeriesfontein (o°, OÖLM), Matjiesfontein ($1 \mathrm{o}^{\circ}$), Murraysburg District ($1 \circ$, SAM), Olifants River between Klawer and Clanwilliam ($2 \delta^{\circ}$, SAM), Oudtshoorn: Onverwacht at $33^{\circ} 38^{\prime} \mathrm{S} 22^{\circ} 14^{\prime} \mathrm{E}\left(1 \sigma^{\circ}, \mathrm{AMG}\right), 18 \mathrm{mi}$ SE Touwsrivier ($1 \mathrm{o}^{\star}, \mathrm{KU}$).

Tachysphex punctiger Pulawski, sp. nov.

Figures 303, 304.
Derivation of name.- Punctiger, a Latin masculine noun derived from punctum, a puncture, and the suffix -ger, a bearer; with reference to the conspicuously punctate integument of this species.

ReCOGNITION.- Tachysphex punctiger is immediately recognized by its punctate propodeal dorsum (punctures well defined) with shiny, unsculptured interspaces (Fig. 303c). Tachysphex gagates and occasional males of pentheri with a nonemarginate forefemur are similar, but unlike these species the gaster of punctiger is all black (rather than all or partly red), with well-defined tergal punctures and setae erect on tergum I.

Description.- Labrum slightly convex (minimally so in smallest males), protruding beyond clypeal free margin. Galea longer than wide in profile, as long as 0.8 of scape. Mesothoracic punctures well defined (interspaces unsculptured, shiny), averaging about 2-3 diameters apart on scutal disk, varying from one to three diameters apart at center of mesopleuron, and about 1-2 diameters apart on mesothoracic venter. Propodeal dorsum and side with well-defined punctures (also posterior surface along lateral margin), interspaces unsculptured, shiny (Fig. 303c). Hindcoxal dorsum with inner margin carinate basally. Tergal punctures well defined, conspicuous on apical terga in male.

Setae less than one midocellar diameter long on each side of oral fossa; erect and sinuous on postocellar area (up to 0.7 of basal mandibular width), scutum (about 0.6 of basal mandibular width anteriorly), propodeal dorsum, and basal half of tergum I (up to 0.7 of basal mandibular width).

Head and thorax black, mandible largely reddish (black basally, dark apically). Frontal setae

Figure 303. Tachysphex punctiger Pulawski, sp. nov.: a - female clypeus and mandible; b-male clypeus and mandible with outline showing variation of free margin; c - propodeal dorsum showing sculpture; $d-$ volsella; $e-$ penis valve.
silvery in both sexes. Wing membrane almost hyaline; forewing costal vein yellowish, subcostal vein light brown. Femora black (red apically), tibiae and tarsi red. Gaster black. Terga I-III or I-IV silvery fasciate apically.

ㅇ.- Clypeus (Fig. 303a): bevel about as long as basomedian area; lip free margin arcuate, not incised laterally. Width of postocellar area $1.4 \times$ length. Dorsal length of flagellomere I 1.8-2.0× apical width. Midtrochanteral venter shiny, with minute punctures that are several diameters apart. Fore- and midfemoral venters unsculptured, shiny, except for a few scattered punctures. Dorsal foretibial surface with two spines; outer surface with two spines. Forebasitarsus with six rake spines on one leg and seven on other in single specimen examined. Apical depression of tergum V unsculptured, glabrous. Pygidial plate with scattered punctures, interspaces almost unsculptured. Length 7.8 mm .
σ^{7}.- Mandible: trimmal carina with obtuse tooth, without cleft. Clypeus (Fig. 303b): bevel about as long mesally as basomedian area; lip free margin arcuate, forming practically single curved line with rest of clypeal margin (corner ill defined or absent). Width of postocellar area 1.1-1.2 \times length. Dorsal length of flagellomere I $1.5-1.7 \times$ apical width. Forefemoral notch glabrous, laterally compressed (i. e., with obtuse, longitudinal crest). Outer margin of forebasitarsus with four rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Sternum VIII: apical margin evenly emarginate or with small median projection. Length $5.3-6.1 \mathrm{~mm}$. Volsella and penis valve: Figs. 303d, e.

Geographic distribution (Fig. 304).- Western Namibia and western South Africa.

Records.- Holotype: $\boldsymbol{o}^{\boldsymbol{\gamma}}$, Namibia: Swakopmund District: 63 km NE Swakopmund, 9 Dec 1996, WJP (CAS). Paratypes: NAMIBIA: Karasburg District: Farm Altdorn 330 km NE Ai Ais at $27^{\circ} 48^{\prime} 16^{\prime \prime} \mathrm{S} 17^{\circ} 40^{\prime} 02^{\prime \prime} \mathrm{E}, 19$ Nov 1996, M.E. Irvin, E.I. Schlinger, and D.K. Yeates ($1 \delta^{\circ}$, CSE). Lüderitz District: Aus, Dec 1929, R.E. Turner (1 \uparrow, 1 ơ, BMNH); Namuskluft 88 [Farm], 7-15 Oct 1970, collector unknown (1 of, NMN). Swakopmund District: Hentiesbaai, 18 Feb 1996, WJP (${ }^{\text {o }}$); 63 km NE Swakopmund, WJP, 5 Dec 1996 (1 δ°) and 9 Dec 1996 ($1 \delta^{\circ}$). SOUTH AFRICA: Northern Cape Province: Olifantshoek, 26 Nov 1990, R. Miller and L. Stange (1 \&); VanWyksfontein 8 km W Norvalspont, 1-9 Dec 1988, FSG ($1 \mathrm{o}^{\star}$, AMG). Western Cape Province: 60 km N Cape Town, 9 Nov 1999, M. Halada (1 ㅇ, OÖLM).

Tachysphex pusulosus de Beaumont

Figures 302, 305.

Figure 304. Collecting localities of Tachysphex punctiger and ramses.

Tachysphex pusulosus de Beaumont, 1955:184, ㅇ. Holotype: ㅇ, Libya: Tripolitania: Corradini (BMNH), examined in 1974.- de Beaumont, 1956a:199 (Libya); Pulawski, 1971:136 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:8 (Israel); Bohart and Menke, 1976:276 (listed).

Recognition.- Tachysphex pusulosus (Morocco to southern Turkey) is characterized by an unusually expanded supraantennal swelling (Figs. 305c-f). It also has a nearly flat, partly exposed labrum, wide postocellar area (width $1.6 \times$ length), punctatorugose mesopleuron, black tibiae, nonfasciate tergum IV, and in the female the clypeal lip has at most one lateral incision and the tarsi are nonabbreviated (length of midtarsomere II about $2.5 \times$ apical width). The supraantennal swelling is also expanded in bipustulosus and to a lesser degree in mashona and ovambo, which occur south of the equator. All three have the labrum concealed under the clypeus, a markedly narrower postocellar area (width 1.1-1.3 \times length in female, $1.0-1.2 \times$ in male), mesopleuron punctate, tergum IV silvery fasciate, tibiae red in many specimens, and in the female the clypeal lip with at last two lateral incisions and the tarsi abbreviated (length of midtarsomere II 1.6-1.8 \times apical width).

Description.- Labrum flat, partly exposed (Figs. 305a, b). Galea longer than wide in profile, as long as 0.8 of scape. Supraantennal swelling unusually, conspicuously expanded (Figs. 305c-f); dorsal section of antennal socket rim also conspicuously expanded (markedly higher than ventral section), separated from supraantennal swelling by constriction in female, not separated in male. Scutal punctures well defined, on disk up to 2-3 diameters apart in female, about one diameter apart in male. Axilla somewhat swollen, abruptly sloping down laterally. Mesopleuron punctatorugose. Punctures of mesothoracic venter, anterad of each coxa, several diameters apart in female, about 1-2 diameters apart in male. Propodeal dorsum irregularly rugose; side ridged in female, irregularly so in male. Sternum I, in female, with short, median carina on apical depression.

Setae appressed on postocellar area and scutum; suberect on each side of oral fossa next to occipital carina, shorter than midocellar diameter; oriented obliquely anterad on propodeal dorsum. Sternum I in female largely glabrous.

Body black except mandible reddish mesally and tarsal apex brown. Frontal setae silvery in

Figure 305. Tachysphex pusulosus de Beaumont: a - female clypeus and mandible; b - male clypeus and mandible; c - female head in lateral view; d - male head in lateral view; e - supraantennal swelling of female; f - supraantennal swelling of male; g - volsella; h - penis valve.
both sexes. Wing membrane slightly infumate; costal vein of forewing light brown, subcostal vein brown. Terga I-III each with ill-defined apical, silvery fascia.

ㅇ.- Clypeus (Fig. 305a): bevel markedly longer than basomedian area, delimited by obtuse carina that emerges from lip corner; lip free margin arcuate, incised or not incised laterally. Width
of postocellar area $1.5-1.6 \times$ length. Dorsal length of flagellomere I $2.0-2.5 \times$ apical width. Trochanters I-III with venter shiny, unsculptured except for a few, sparse punctures. Fore- and midfemoral posteroventral surfaces shiny, unsculptured and asetose in basal half or so (except in specimen from Khan Hadrur); hindfemoral venter asetose. Dorsal foretibial surface with three spines; outer surface unsculptured, shiny, with two spines. Forebasitarsus with nine rake spines. Tergum V: punctures several to many diameters apart, apical depression impunctate, glabrous. Pygidial plate shiny, unsculptured, except for several, sparse punctures (a few punctures less than one diameter apart). Length $6.0-8.0 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 305b): bevel longer than basomedian area; lip free margin arcuate, with obtuse but well-defined corner; distance between corners $1.6 \times$ distance between corner and orbit. Width of postocellar area $1.6 \times$ length. Dorsal length of flagellomere I $1.6 \times$ apical width. Forefemoral notch: bottom microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Sternum VIII slightly tridentate apically in single specimen available for this study. Length 6.0 mm . Volsella and penis valve: Figs. 305g, h.

Geographic distribution (Fig. 302).- Morocco, Libya, Israel, Jordan, Syria, south Turkey. Records.- ISRAEL: Khan Hadrur in Judean Desert, now Ma’ale Ha-Adumim (Pulawski, 1971). JORDAN: 20 km from Madaba toward Main Hammamet ($1 \circ ; 1$, \uparrow, SCHL). LIBYA: Tripolitania: Corradini (de Beaumont, 1955). MOROCCO: Agadir (de Beaumont, 1955). SYRIA: Douma (1 q). TURKEY: Urfa: Birecik ($1 \mathrm{o}^{7}$).

Tachysphex quadricolor (Gerstaecker)

Figures 306-310.
Lyrops quadricolor Gerstaecker in Peters, 1858:510, \odot. Holotype: $\circ+$, Mozambique: no specific locality (ZMHU), examined.-As Tachytes quadricolor: Dalla Torre, 1897:693 (new combination, in catalog of world Hymenoptera).-As Tachysphex quadricolor: Stadelmann, 1897:255 (study of type, new combination); R. Turner, 1917d:43 (new combination); Arnold, 1923:175 (listed, original description translated into English), 1930:4 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:276 (listed); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).
Lyrops quadricolor Gerstaecker, 1862:477, ㅇ. Objective synonym of Lyrops quadricolor Gerstaecker, 1858.
 tion (BMNH), here designated, examined. New synonym.- Arnold, 1923:173 (original description copied), 1930:4 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:273 (listed).
Tachysphex depilosellus var. fallax Arnold, 1924:71, 우, $\boldsymbol{\delta}^{\circ}$. Lectotype: ㅇ, South Africa: Eastern Cape Province: Willowmore (SAM), here designated, examined. New synonym.- Arnold, 1930:4 (in checklist of Afrotropical Sphecidae).- As Tachysphex depilosellus fallax: Bohart and Menke, 1976:273 (new status, listed).

RECOGNITION.- Tachysphex quadricolor has the fore- and midfemoral venters shiny, unsculptured except for a few, sparse, large punctures (Figs. 308c, d) and a moderately broad postocellar area (width $1.0-1.3 \times$ length in female, $0.9-1.1 \times$ in male). In addition, the mesopleuron is uniformly microsculptured, the propodeal dorsum of most specimens is glabrous apicomesally, the labrum is convex, protruding beyond the clypeal free margin in the female and most males, the galea is elongate (length equal to about 0.7 of scape), and the male foretarsus has a well-developed rake. Tachysphex marshalli and punctatus are similar. Unlike marshalli, the gaster of quadricolor is either all red or red basally and black apically (rather than all black or black basally and red apically); the mesopleural setae are light, and in southern African populations appressed or nearly so beneath the scrobe (rather than dark, erect); and the female forebasitarsus is all micropunctate and not concave. Also, the wings of quadricolor vary from uniformly black with violet shimmer (Figs.

306, 309a) to bicolored: yellowish with infumate apical band (Figs. 307, 309b), whereas they are all black with violet shimmer in marshalli. Unlike punctatus, the gaster and legs of quadricolor are all or largely red (rather than all or predominantly black), the clypeal lip of the female is markedly arcuate (compare Figs. 308a and 301a), the dorsal length of male flagellomere I is $2.2-2.6$ \times apical width (rather than 1.3-1.4), and sterna IV-VI are covered with inclined (rather than appressed) setae (Fig. 308e).

The labrum is all flat in the smallest males of quadricolor, and such individuals can be recognized by the combination of a narrow clypeal lip (corners closer to each other than to orbit, Fig. 308b), sparsely punctate foreand midfemoral venters (Fig. 308d), and all or largely red gaster and legs. The inclined (and not appressed) setae of sterna IV-VI help in recognition (Fig. 308e).

Justification of new syn-onymy.- T. depilosellus var. fallax, one of several color forms of quadricolor, does not warrant a

Figure 306. Tachysphex quadricolor (Gerstaecker): female from Namibia in lateral view.

Figure 307. Tachysphex quadricolor (Gerstaecker): female from Tanzania in lateral view. nomenclatural status of its own.

Type locality.- Turner (1917a) gave Pakasa, Northern Rhodesia (now Zambia), as the type locality of Tachysphex depilosellus, but I could not find it in the available maps and gazetteers. He also mentioned Pakasa in the original descriptions of Paranysson helioryctoides Turner, 1912, Paranysson oscari Turner, 1914, and Tachytes silverlocki Turner, 1917 and "Pakasa, Zambesi River" in the original description of Gastrosericus lamellatus Turner, 1912. The collector, Oscar C. Silverlock, was recommended by the British Museum in January 1910 to the British South African Company as an entomologist for the Northern Rhodesia Expedition (Donald Baker's letter of 11 December 1999). He went there to investigate the tsetse fly "and other noxious insects" and drowned in the Zambezi River when his boat was capsized by a hippopotamus on 22 March 1911 (F.D. Morice. The Transactions of the Entomological Society of London for 1911. Proceed-ings:cxxI-cxxii). Donald Baker (his letter of 7 March 2003) has seen specimens collected by Silverlock and labeled ' 70 miles W of Kariba Gorge' (now the bottom of the Kariba Lake) and 'N. Rhodesia, Algoa, 3 May 1910'. The latter was a fort and trading post at the confluence of

Fourth Series, Volume 58, Supplement I

Figure 308. Tachysphex quadricolor (Gerstaecker): a - female clypeus and mandible ($\times 27$); b - male clypeus and mandible ($\times 39$); c - female forefemur showing sparse punctation of the posteroventral surface $(\times 29)$; $d-$ male forefemur showing sparse punctation of the posteroventral surface $(\times 44)$; e apical portion of male gaster in lateral view showing suberect sternal setae $(\times 60)$.

Lunsemfwa and Lukusashi rivers ($14^{\circ} 39^{\prime} \mathrm{S} 30^{\circ} 00^{\prime} \mathrm{E}$) at the turn of the $\mathrm{XIX}^{\text {th }}$ and $\mathrm{XX}^{\text {th }}$ centuries, then occupied as a farm, and abandoned in the early 1920s.

Description.- Labrum varying: convex and slightly protruding beyond clypeal free margin in most specimens, but flat, barely protruding in smallest males. Galea minutely, sparsely punctate, as long as 0.7 of scape. Scutal punctures less than one diameter apart. Mesopleuron dull, evenly microsculptured. Propodeal dorsum evenly microareolate, side ridged in female and many males, but uniformly microareolate in some males. Fore- and midfemoral venters with large punctures that are several to many diameters apart (Figs. 308c, d). Hindcoxal dorsum with inner margin carinate at least basally.

Setae appressed on postocellar area and scutum; nearly appressed on each side of oral fossa next to occipital carina; appressed or nearly so on mesopleuron beneath scrobe except suberect in many Ethiopian specimens; on propodeal dorsum oriented mostly posterad, but oriented toward midline near base (apicomedian area glabrous except dorsum setose throughout in most Ethiopian individuals).

Head black, mandible reddish except dark apically. Frontal setae silvery in female, golden in male. Coloration of antenna, thorax, wings, and coxae: see Variation below. Femora all red or black basally. Tibiae and tarsi red. Gaster all red in most specimens, but partly black in some (black are: female tergum IV all or partly, and in the male: terga IV-VII in specimens from Zimbabwe and one from Rundu area, Namibia; segments III-VII in single male from Graafwater, South Africa; sternum II apically, sternum III, tergum III apically, and segments IV-VII in a specimen from Willowmore, South Africa). Terga I-III apically with rudimentary silvery fasciae.

ㅇ.- Clypeus (Fig. 308a): bevel markedly longer than basomedian area; lip conspicuously arcuate, sinuous or incised laterally. Width of postocellar area 1.0-1.3 \times length. Dorsal length of flagellomere I $2.5-2.8 \times$ apical width. Midtrochanteral venter shiny, with only a few, sparse punctures. Dorsal foretibial surface with two spines; outer surface with two spines, exceptionally three. Forebasitarsus with seven or eight rake spines. Tergum V finely punctate throughout, including apical depression. Pygidial plate conspicuously microsculptured between punctures, punctures averaging many diameters apart. Length $10.4-14.0 \mathrm{~mm}$.
$\delta^{\boldsymbol{\pi}}$.- Mandible: trimmal carina with tooth, at most with rudimentary cleft. Clypeus (Fig. 308b): middle section markedly convex; bevel about as long as basomedian area; lip free margin arcuate or sinuate, with well-defined corner; distance between corners $0.7 \times$ distance between corner and orbit. Width of postocellar area $0.9-1.1 \times$ length. Dorsal length of flagellomere I 2.2-2.6 \times apical width. Forefemoral notch microsculptured, asetose. Outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Sterna IV-VI with dense, inclined setae that are about one midocellar diameter long (Fig. 308e), more than that in Ethiopian, Kenyan, and Tanzanian populations. Length $6.8-14.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 309c, d.

Variation.- Specimens from various areas differ markedly in color, as described below. In southern Africa, they become progressively darker toward the north.

Clypeus: all black in many specimens from Zambia, Namibia, some from Zimbabwe, and those from Willowmore, South Africa; with the bevel yellowish red in other specimens from those countries; and all red in specimens from Eritrea, Ethiopia, Kenya, Tanzania.

Antenna: all black in many specimens, but scape all reddish in most those from South Africa and one from Botswana; also pedicel and flagellomere I reddish in females and some males. Scape through flagellomere II are red in the holotype of quadricolor and in Eritrean and some Ethiopian specimens.

Thorax: all black (most specimens) or partly red (Ethiopian and Tanzanian specimens, Kenyan
males, some females from the former Transvaal, South Africa). In the females from Transvaal, the red can include most of the pronotal dorsum and scutum anteriorly. In the Ethiopian, Kenyan, and Tanzanian specimens, red are the pronotum, anterior part of scutum (only narrow posterior portion black in some specimens), scutellum (except black axilla), metanotum, mesopleuron at least anteriorly (only mesothoracic venter black mesally in some specimens); the propodeum is all black or the dorsum is red laterally.

Wings: conspicuously, uniformly infumate, with violet shimmer (Figs. 306, 309a), in specimens from Zambia and in females from Zimbabwe, Namibia, and Willowmore, South Africa, with forewing costal vein dark brown and subcostal vein black. The females from Botswana and one from Namibia have the wings conspicuously infumate, the costal vein brown and the subcostal vein dark brown. Specimens from Mozambique and former Transvaal and also males from Angola, Namibia, and Zimbabwe have the wings yellow in the basal two thirds, infumate in the apical third (but weakly so in some males from Namibia), and both costal and subcostal veins reddish brown. Eritrean, Ethiopian, Kenyan, and Tanzanian specimens are similar, but the difference in color between the basal and the apical wing portions is even greater (Figs. 307, 309b). Finally, the wings are uniformly yellow in most specimens from the Eastern Cape, Northern Cape, and Western Cape provinces of South Africa (but uniformly infumate in a male from Willowmore and two from Lambert's Bay area).

Coxae and trochanters: black in most specimens, but red in Ethiopian, Kenyan, and Tanzanian populations.

Geographic distribution (Fig. 310).- Eritrea and Ethiopia to Angola and South Africa.
RECORDS.- ANGOLA: Bruco (2 o $^{ }$, BMNH). BOTSWANA: 18 mi NE Kalkfontein (1 ㅇ, BMNH), Nathane ($1 \circ$, AEI). ERITREA: Keren ($1 \delta^{\circ}$, GENOVA, determined as Lyrops quadricolor by P. Magretti).
 ($1 \delta^{\circ}$). KENYA: Coast Province: ca 10 km N Taita Discovery Centre ($2 \delta^{\circ}$). MOZAMBIQUE: Inhaca Island ($1 \delta^{\circ}$, AMG), Maputo ($1 \sigma^{\star}, \mathrm{BMNH}$), no specific locality ($1 \stackrel{\uparrow}{\circ}$, ZMHU, holotype of quadricolor). NAMIBIA:

Figure 309. Tachysphex quadricolor (Gerstaecker): a - forewing of female from Zimbabwe; b - forewing of female from Ethiopia; c - volsella with outlines showing variation of dorsal process; d - penis valve.

Karasburg District: Farm Altdorn 330 km NE Ai Ais at $27^{\circ} 48^{\prime} 16^{\prime \prime} \mathrm{S} 17^{\circ} 40^{\prime} 02^{\prime \prime} \mathrm{E}\left(10^{\circ} ; 1 \mathrm{o}^{\circ}, \mathrm{CSE}\right)$. Karibib District: Khan River 23 km N Karibib (2 9 , 2 or $^{\text {f }}$. Okahandja District: Okahandja (1 \& , AMG), Waldau River 17 km W Okahandja (2 \&, 2 ơ'; $_{1}$ of, $\left.1 \mathrm{o}^{7}, \mathrm{NMN}\right)$. Otjiwarongo District: 18 km NE Kalkfeld (1 o°), 25 km NE Kalkfeld (1 f), 20 km NE Otjiwarongo ($1{ }^{\boldsymbol{*}}$, MS). Rundu District: Rundu ($1 \circ ; 1$ \&, MS), 100 km SW Rundu ($1 \circ, 1$ ơ, JG). SOUTH AFRICA: Eastern Cape Province: Steynsburg ($1 \delta^{\circ}$, SAM), Willowmore ($1+1 \delta^{\circ}$, SAM, lectotype and paralectotype of fallax; 2 of, TMP). Kwazulu-Natal: Manguzi River near Maputa (1 ㅇ, AMG). Mpumalanga: Pretoriuskop in Kruger National Park ($1 \quad$, PMA), Skukuza in Kruger National Park ($1 \quad+$, PMA). Northern Province: Beacon Ranch 20 km NW Gravelotte ($1 \stackrel{\circ}{ }$, AMG), Guernsey Farm 15 km E Klaserie ($2 \mathrm{o}^{\circ} ; 1 \mathrm{o}, 2$ ot $^{\circ}$, PMA), Phalaborwa ($1 \delta^{7}$, FSCA). North-West Province: Vryburg ($1 \mathrm{~d}^{\circ}$, SAM). Western Cape

Figure 310. Collecting localities of Tachysphex quadricolor.

Province: Graafwater (1 ㅇ, FSCA), 5 km S Lambert's Bay (2 ơ 7, OÖLM), Murraysburg District (1 ơ 7, SAM). Location unknown: Kruger National Park: no specific locality ($1 \sigma^{*}$, AMG). TANZANIA: Tanga Region: 73 km NW Korogwe ($1 \sigma^{*}$), 2 km NE Mkomazi ($1+4$ o *). ZAMBIA: 30 km W Livingstone (1 우, OÖLM), Pakasa (2 ; , BMNH, lectotype and paralectotype of depilosellus), locality of unknown location. ZIMBAB-
 Victoria Falls ($1 \circ 9,9$ o *).

Tachysphex ramses Pulawski

Figures 304, 311, 312.
Tachysphex ramses Pulawski, 1971:297, ${ }^{\circ}$, \boldsymbol{o}^{\top}. Holotype: $\stackrel{+}{ }$, Egypt: Manshiet Radwan near Ghiza (USNM), examined.- Bohart and Menke, 1976:276 (listed).

Recognition.- Tachysphex ramses, known only from two localities in Lower Egypt, has a markedly convex labrum, but unlike other such species its frons is markedly prominent (Figs. 311c-f). Subsidiary characters include: foretarsomere II expanded apicolaterally (Figs. 311g, h), with the apical rake spines originating on the tarsomere's ventral surface rather than on the lateral margin; in the female, the clypeal free margin nearly straight between the lobe and orbit (Fig. 311a), inner mandibular margin without tooth (Fig. 311a), flagellomeres III-X reddish brown, and posteroventral hindfemoral surface and outer hindtibial surface with dense setae that conceal the integument; in the male, outer apical spine of foretarsomere II almost twice as long as tarsomere III and volsella without dorsal process (Fig. 312).

Description.- Frons conspicuously prominent (Figs. 311c-f). Labrum convex, markedly protruding from beneath clypeus. Galea microreticulate and punctate, longer than wide in profile, as long as 0.9 of scape. Scutal punctures somewhat ill defined, less than one diameter apart. Mesopleuron uniformly microsculptured (integument largely concealed by vestiture). Propodeal dorsum evenly microareolate; side not ridged. Foretarsomere II (also foretarsomere I in female) expanded apicolaterally (Figs. 311g, h), with apical rake spines originating on tarsomere's ventral surface. Hindcoxal dorsum with inner margin not carinate.

Setae appressed on postocellar area and scutum; in female fully concealing integument on mesothorax, propodeal dorsum, hindfemoral outer surface (except dorsally and basally), and

Fourth Series, Volume 58, Supplement I

Figure 311. Tachysphex ramses Pulawski: a - female clypeus and mandible; b - male clypeus and mandible; c - female
 foretarsomere II; h - male foretarsomere II.
hindtibial dorsum; about as long as midocellar diameter on each side of oral fossa next to occipital carina; on propodeal dorsum forming a complicated pattern: lateral setae diverging posterad, adlateral setae converging posterad and meeting posteromesally, admedian setae converging anterad near base and converging posterad in apical half or so; propodeal side all setose.

Head and thorax black, clypeal bevel and mandible (except apically) yellowish red, labrum reddish, female scape reddish and flagellomeres III-X reddish brown. Frontal setae silvery in both sexes. Wing membrane hyaline; all veins pale yellow. Femora red in female, black (except apically) in male; tibiae and tarsi red. Gaster red except male segments IV-VI black and tergum VII darkened (incorrectly described in Pulawski, 1971). Terga I-V in female, I-IV in male, silvery fasciate apically (male terga V and VI each with rudimentary fascia).

ㅇ.- Clypeus (Fig. 311a): bevel markedly shorter than basomedian area; lip free margin arcuate, not emarginate mesally, neither incised nor sinuous laterally. Width of postocellar area about $1.1 \times$ length. Dorsal length of flagellomere I $2.5-2.8 \times$ apical width. Foretibial outer surface with three spines. Forebasitarsus with seven rake spines. Apical spines of hindtarsomere IV reaching claw bases. Apical depression of tergum V finely punctate and setose. Pygidial plate microreticulate, dull, with a few, sparse punctures several or many diameters apart. Length 9.5 mm .
ơ.- Mandible: trimmal carina with low tooth, without cleft. Clypeus (Fig. 311b): bevel markedly shorter than basomedian area; lip free margin arcuate, with obtuse corner; distance between corners $1.3 \times$ distance between corner and orbit; oblique carina emerging from lip corner rudimentary, not extending onto bevel; free margin of clypeal lateral section almost straight. Width of postocellar area $1.4 \times$ length. Dorsal length of flagellomere I $2.0 \times$ apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with four rake spines on one leg and five on other in single specimen examined. Outer apical spine of foretarsomere II almost twice as long as tarsomere III. Length 6.0 mm . Volsella and penis valve: Fig. 312.

Figure 312. Tachysphex ramses Pulawski: volsella and penis valve.

Geographic distribution (Fig. 304).— Lower Egypt.
Records.- EGYPT: AI Jizah (= Ghiza): Manshiet Radwan (1 ค, $1 \delta^{\circ}$, USNM, holotype and paratype of ramses). Location unknown: Beni Yussef (Pulawski, 1971).

Tachysphex rapax Pulawski, sp. nov.

Figures 313, 314.
Derivation of name.- Rapax, Latin for grasping, greedy; a name resembling harpax, an allusion to the similarity of these two species.

Recognition.- Like scopa, the female of rapax has conspicuous, sinuous setae on the lower gena, postocellar area, scutum anteriorly, mesopleuron, propodeum, and fore- and midfemora, and conspicuously modified tarsi. In particular, tarsomeres IV have the dorsoapical emargination rounded proximally (as in Fig. 179a), tarsomeres V and claws are unusually long (as in Figs. 179b, c), and tarsomeres V have at least one preapical spine on venter, at least one spine on each lateral margin, and the apicoventral margin produced into a lobe (as in Fig. 179c). The female of rapax differs
in having a black gaster (gastral apex reddish), unridged propodeal side, and wider clypeal lobe (corners closer to adjacent orbit than to each other). In scopa, the gaster is all red, the propodeal side is ridged, and the clypeal lobe is narrow (corners closer to each other than to adjacent orbit).

The male of rapax also has conspicuous, sinuous setae on the lower gena, postocellar area, scutum anteriorly, mesopleuron, propodeum, and on the fore- and midfemora, and is further characterized by an unridged propodeal side, sterna evenly, densely setose, forebasitarsus without rake, and hindwing cu-a vertical. It has a postocellar area about as long as wide or wider (width $1.1-1.3 \times$ length), propodeal dorsum microscopically rugose to ridged (Fig. 313c), gaster black, and venter of apical tarsomeres with one or several small spines. Tachysphex gagates is similar, but differs in having a postocellar area longer than wide (width 0.7-0.8 \times length), propodeal dorsum unsculptured or aciculate, except for sparse, microscopic punctures, gaster red, midfemoral venter with appressed setae, and venter of apical tarsomeres without spines.

Relationships to Tachysphex harpax.- Except for its partly sinuous and erect setae, rapax closely resembles harpax but the two do not appear to intergrade. Therefore, I treat them as separate species.

DESCRIPTION.- Setae emerging from free margin of labrum unusually stout (as in Fig. 178c). Galea in profile slightly longer than wide, about as long as 0.6 of scape. Scutal punctures varying on disk from 1-2 up to several diameters apart, interspaces microsculptured, dull. Mesopleural punctures ill defined, averaging more than one diameter apart; interspaces microsculptured, dull. Propodeal dorsum varying from finely rugose to ridged (ridges well defined, diverging posterad in

Figure 313. Tachysphex rapax Pulawski, sp. nov.: a - female clypeus and mandible; b-male clypeus and mandible; c - propodeal dorsum showing sculpture; d - volsella; $\mathrm{e}-$ penis valve.
basal half and transverse near apex, Fig. 313c); side uniformly microsculptured, with minute, sparse punctures. Hindcoxal dorsum with inner margin carinate basally.

Setae (numbers in parentheses represent setal length expressed as fractions of basal mandibular width): sinuous and erect on each side of oral fossa ($0.5-0.6$) and on postocellar area (0.5); sinuous and suberect on scutum anteriorly (0.5), on mesopleuron, forecoxa, forefemur, and midfemoral venter (up to 0.6); oriented posterad on propodeal dorsum.

Head and thorax black, mandible reddish except basally and apically. Frontal setae silvery in female, with golden tinge in upper half in male. Wing membrane almost hyaline; costal vein of forewing light brown, subcostal vein brown. Femora black in female except red apically (hindfemur nearly all red in one Kenyan female); male femora red to black (except apically). Tibiae and tarsi red. Gaster black except female pygidial plate red (all or apically); also sternum VI in some specimens; tergum VII reddish in many males. Terga I-IV silvery fasciate apically.

ㅇ.- Free margin of labrum shallowly emarginate mesally. Clypeus (Fig. 313a): bevel about as long as basomedian area; lip free margin arcuate, slightly emarginate mesally, laterally simple or with ill-defined incision. Width of postocellar area $0.8-1.0 \times$ length. Dorsal length of flagellomere I $1.7-1.8 \times$ apical width. Scutellum somewhat flattened. Dorsal foretibial surface with a few suberect, inconspicuous bristles; outer surface with thin, erect bristles. Forebasitarsus with 17 or 18 rake spines. Length of fore- and midtarsomeres II about 1.8 and $2.2 \times$ apical width, respectively; that of midtarsomere III $1.0-1.2 \times$ apical width; and of fore-, mid-, and hindtarsomeres IV about $0.8,0.8$, and $0.9-1.0 \times$ apical width, respectively. Dorsoapical emargination of tarsomeres IV rounded proximally (as in Fig. 179a). Apical tarsomeres markedly elongate, with at least one preapical spine on venter (mostly with cluster of such spines); apicoventral margin produced into lobe (as in Fig. 179c); each lateral margin with row of erect setae, with one or two spines near midlength. Claws markedly elongate, outer claw in each pair slightly shorter and thinner than inner claw (opposite on foretarsus). Apical depression of tergum V impunctate and asetose (except mesally). Pygidial plate with several punctures that average many diameters apart; interspaces practically unsculptured. Length $6.8-8.7 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 313b): bevel as long as basomedian area or shorter, delimited anterolaterally by short, obtuse, longitudinal carina that emerges from each lip corner; lip free margin broadly, obtusely produced mesally, with welldefined corner; distance between corners $0.8-0.9 \times$ distance between corner and orbit. Width of postocellar area $1.1-1.3 \times$ length. Dorsal length of flagellomere I 1.5-1.7 \times apical width. Forefemoral notch with bottom microscopically setose. Length of midtarsomeres III and IV 1.5 and $0.8 \times$ apical width, respectively. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Venters of tarsomeres V each with one or up to several preapical, minute spines. Sternum VIII tridentate apically or with broad median projection. Length $6.0-7.2 \mathrm{~mm}$. Volsella and penis valve: Figs. 313d, e.

Geographic distribution (Fig. 314).Kenya, Tanzania.

Figure 314. Collecting localities of Tachysphex rapax and rotundus.

Records.- Holotype: 우, KENYA: Eastern Province: 94 km E Thika, 6 July 1999, WJP and J.S. Schweikert (CAS). Paratypes: KENYA: Coast Province: Taita Discovery Centre, Edwin Selempo, 15 Sept
 June 2000, M.H. Bourbin, V.F. Lee, and WJP ($1 \mathrm{~d}^{\circ}$). TANZANIA: Tanga Region: 73 km NW Korogwe,

 Prentice (1 甲 $)$.

Tachysphex rhacodes Pulawski, sp. nov.

Figures 315-317.
Derivation of name.- Rhacodes, Greek for wrinkled; with reference to the ridged scutum of this species.

ReCognition.- Tachysphex rhacodes has a distinctive scutum that is dull, minutely, densely punctate, and longitudinally ridged in at least the posterior half (Figs. 315e, 316c); the ridges are evanescent anteriorly but well defined next to the scutal hindmargin. The scutum is also longitudinally ridged in plicosus and most tryssus, but only next to the scutal hindmargin (the ridges are no longer, or at most slightly longer, than the midocellar diameter). Subsidiary recognition features of rhacodes are: supraantennal swelling in the vast majority of specimens uniformly, minutely punctate, like the rest of the frons (Fig. 316a); mesopleuron in many specimens rugose; scutal setae appressed; and body black.

Description.- Galea unsculptured or with a few, sparse punctures, longer than wide in profile, as long as 0.8 of scape. Frons dull, minutely punctate (punctures inconspicuous, markedly smaller than on postocellar area); supraantennal swelling in most specimens punctate like remaining frons (Fig. 316a), but punctures sparser in single male from Serenje area, Zambia. Scutum dull, uniformly microscopically punctate (punctures nearly contiguous), with longitudinal ridges in at least posterior half (Figs. 315e, 316c); ridges evanescent anteriorly, but well defined adjacent to scutal hindmargin. Mesopleuron rugose in most populations (Fig. 316b), but punctate, with nearly linear interspaces and only a few, rudimentary rugae in females and many males from 73 km N Korogwe, Tanzania. Propodeal dorsum coarsely rugose to irregularly, longitudinally ridged; side ridged. Hindcoxal dorsum with inner margin carinate, carina roundly expanded basally in most specimens, not expanded in single male from Zimbabwe.

Setae subappressed to suberect on postocellar area and on each side of oral fossa next to occipital carina, shorter than midocellar diameter; appressed on scutum; oriented anterad on propodeal dorsum (except basomedially); suberect on midfemoral venter.

Head, thorax, gaster, and legs black except apical tarsomeres brown in male. Frontal setae silvery except pale golden in many males. Wing membrane nearly hyaline to slightly infumate; forewing costal and subcostal veins brown. Terga I-IV or I-V fasciate apically; fasciae silvery except golden in several males.

+ .- Clypeus (Fig. 315c): bevel shorter than basomedian area; lip free margin arcuate, emarginate mesally, with two incisions or sinuosities on each side (i.e., with three pairs of teeth). Width of postocellar area 1.1-1.2 \times length (Fig. 315a). Dorsal length of flagellomere I 1.4-1.6 \times apical width. Dorsal foretibial surface with one or two thin setae; outer surface with at most a few suberect bristles. Forebasitarsus with $8-12$ rake spines. Length of midtarsomere II $1.8 \times$ apical width in most populations, but $2.3 \times$ width in specimens from 73 km N Korogwe, Tanzania. Tarsomeres IV slightly wider than long (Fig. 316d) except slightly longer than wide in specimens from Korogwe. Tergum V densely micropunctate, including apical depression. Pygidial plate aciculate, sparsely punctate. Length $6.0-8.7 \mathrm{~mm}$.

Figure 315. Tachysphex rhacodes Pulawski, sp. nov.: a - female head in frontal view; b - male head in frontal view; c - female clypeus and mandible; d - male clypeus and mandible; e - scutum; f - volsella; g - penis valve.
δ^{\top}.- Mandible: trimmal carina with conspicuous tooth, at most with rudimentary cleft. Clypeus (Fig. 315d): bevel absent or ill defined and markedly shorter than basomedian area; lip free margin varying from slightly projecting mesally to slightly emarginate mesally, with well-defined corner; distance between corners $0.5-0.8 \times$ distance between corner and orbit. Width of postocellar

Figure 316. Tachysphex rhacodes Pulawski, sp. nov.: a - female frons in lateral oblique view ($\times 42$); b - female mesopleuron seen obliquely from behind $(\times 72)$; c - female scutum seen obliquely from behind $(\times 72)$; d - female midtarsomeres III-V $(\times 60)$.
area about 1.1-1.4 \times length (Fig. 315b). Dorsal length of flagellomere I $1.5 \times$ apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Length of midtarsomere II $1.5-1.7 \times$ apical width in most populations ($2.0-2.2 \times$ in specimens from 73 km N Korogwe, Tanzania), that of midtarsomere III 1.0-1.3 \times apical width. Length of hindtarsomere II $1.6-1.8$ apical width. Sternum VIII tridentate apically. Length $6.5-7.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 315f, g.

Nesting behavior.- Tachysphex rhacodes occurs in a variety of habitats, ranging from deserts (e.g., eastern Ethiopia) to forests (eastern Zambia). I found a nesting colony in a forest adjacent to Wildlife Camp, 7 km SW Mfuwe, Zambia, across the river from South Luangwa National Park, on 7 March 1998. The forest floor was flat, partly wet, with footprints of elephants, hippopotami, impala antelopes, and baboons. The colony itself was in a dry, sandy-loam, vegetated area, exposed to the sun. I noticed a female at 11:37 a.m. as she started digging a nest. She used her forelegs for excavating the ground, as is typical for the genus. As she proceeded, a mound of exca-
vated soil accumulated on three sides of the entrance. The female reappeared on the surface every 3-7 seconds (head toward the hole), projecting the soil from under her body. Occasionally she went back to the mound, leveling it slightly. She performed an orientation flight at 11:53 and went hunting, leaving the nest entrance open. She flew back at $12: 17$ with an acridid prey and went directly inside the nest, leaving the prey at the entrance. She dragged it inside a while later. I collected her as she came out a short time afterward. I started excavating the nest (the gallery started at a shallow angle) and soon discovered the prey (8.5 mm long) and three other acridid prey (easily recognizable by their larger size, $9.5-11.0 \mathrm{~mm}$). The prey were incompletely paralyzed, and the latest one could even stand in the normal position. I do not know if all four prey came from the same cell. The female may have added the smaller nymph to a cell that she had begun provisioning either the same morning or the previous day. However, the excavating activity (i.e., opening of the previously closed nest) that I noticed suggests that the latest prey was put in a new cell, that the three larger prey were stored in a fully provisioned cell, and that I lost the wasp egg as I dug out the nest. Two prey are Catantopinae and two are Acridinae (det. D.C. Rentz), all of them second or third instar nymphs.

Geographic distribution (Fig. 317).Ethiopia to Zimbabwe and Namibia.

Records.- Holotype: ㅇ, ZAMBIA: Eastern Province: Wildlife Camp at Luangwa River 7 km SW Mfuwe, 7-9 Mar 1998, WJP (CAS). Paratypes: ETHIOPIA: Harerge: 44 km ENE Jijiga, 26 Aug 1997, V. Ahrens, WJP, Emiru Seyoum ($1 \mathrm{o}^{\circ}$). KENYA: Eastern Province: 5 mi SW South Horr on S side of Nyiru Range, 22-28 Jan 1973,

Figure 317. Collecting localities of Tachysphex rhacodes and rufopictus. J.P. Donahue (1 ơ, LACM); 94 km E Thika, 10-11 Dec 2002, WJP ($2{ }^{\text {of }}$). Rift Valley Province: Marich Pass Field Studies Centre, 13 - 14 June 2000, M.H. Bourbin, V.F. Lee, and WJP (10°). NAMIBIA: Grootfontein District: 10 km NE Grootfontein, 27-31 Mar 1997, M. and O. Niehuis (3 ở $^{\prime}$, OHL). Tsumeb District: 10 km SE Tsumeb, 8 Mar 1990, MS (10°, MS), WJP (2 ㅇ, 2 ® $^{\circ}$). TANZANIA: Kilimanjaro Region: Mkomazi Game Reserve: Kikolo Plot, 25 Nov-5 Dec 1995, S. van Noort ($1{ }^{\circ}$, SAM). Morogoro Region: 48 km W Morogoro, 18 June 2001, M.H. Bourbin and W.J. Pulawski ($2 \delta^{\circ}$). Tanga Region: 73 km NW Korogwe, M.H. Bourbin and WJP, 27 June 2001 (1 1) , Omary S.

 82 road km NE Serenje, 22 Mar 1998, WJP (đ $^{\text {® }}$). Southern Province: 5 km E Choma, 11 Mar 1995, WJP ($1 \delta^{\text {º }}$). ZIMBABWE: 15 km NW Chinhoyi, 11 Apr 1985, J. Gusenleitner ($1 \mathrm{o}^{\text {º }}$).

Tachysphex rhodesianus Bischoff

Figures 318-320.
Tachysphex panzeri rhodesianus Bischoff, 1913b:64, $ठ^{*}$. Holotype: σ^{*}, Zimbabwe: Bulawayo (ZMHU), exam-ined.- As Tachysphex panzeri race rhodesianus: Arnold, 1923:170 (new status, revision, description of ㅇ), 1930:4 (in checklist of Afrotropical Sphecidae).-As Tachysphex rhodesianus: Arnold, 1947:147 (new status); Bohart and Menke, 1976:276 (listed).

RECOGNITION.- Tachysphex rhodesianus has a convex labrum (protruding beyond the clypeal free margin), elongate galea (length equal to about 0.9 of scape), propodeal dorsum with a glabrous apicomedian area, and the adjacent setae oriented posterad. In addition, the clypeal lip is incised laterally in the female and with a well-developed corner in the male, the wing membrane is yellowish (brownish in distal third), the costal and subcostal veins are reddish, and setae are suberect on male sterna III-VI.

Tachysphex rhodesianus is similar to brinckerae, but has the gaster all red or at least the gastral base and apex red (gastral apex black in brinckerae), the thoracic setae are golden and in many specimens also the gastral setae (rather then silvery), tergum IV of many specimens has an apical fascia (only terga I-III fasciate in brinckerae), the female is larger (length $15.0-17.0 \mathrm{~mm}$ rather than 12.6-13.6), and the male forebasitarsus has 4-6 rake spines (at most one preapical spine in brinckerae) and the clypeal lobe is wide (distance between lip corners markedly closer to the adjacent orbits than to each other, while about equidistant in brinckerae). In many although not all rhodesianus the interspaces between punctures, on the clypeal bevel, are confluent into fine, longitudinal ridges (no such ridges in other Tachysphex).

Similar unassigned specimens.- Closely resembling rhodesianus are two males from 26 mi SW Nairobi, Kenya (CAS), and six males from Pangani River Camp, Tanzania (CAS). They have a glabrous apicomedian area on the propodeal dorsum, golden cephalic and thoracic setae (thoracic setae largely silvery in one specimen), yellow wings with brown apical portion, suberect setae on sterna III-VI, and a similar volsella. They differ in having an unridged propodeal side (with vestigial ridges in Kenyan specimens), black gastral segments IV-VIII, and a minimally narrower clypeal lobe (distance between lip corners equal to $1.2-1.3 \times$ distance between a corner an orbit, rather than 1.4-1.6×).

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea closely punctate along posterior margin, sparsely so along anterior margin, as long as 0.9 of scape in female, 1.0 in male. Clypeal bevel, in many specimens, with interspaces between punctures confluent, forming small, longitudinal ridges. Scutal punctures ill defined, no more than one diameter apart. Mesopleuron dull, without well-defined punctures. Propodeal dorsum evenly microareolate; side mostly with well-defined ridges, but ridges evanescent in many males (including holotype). Hindcoxal dorsum with inner margin carinate (except apically), carina not expanded.

Setae appressed on head and thorax except suberect on each side of oral fossa next to occipital carina (slightly longer there than midocellar diameter); basomedian setae of propodeal dorsum oriented anterad, apicomedian area glabrous, with adjacent setae oriented posterad.

Head and thorax black, mandible (except apically) and pronotal lobe reddish. Setae all golden on head and thorax (in both sexes), gastral setae varying from golden to silvery. Wing membrane yellowish except brownish in distal third or so; in forewing both costal and subcostal vein reddish brown (nearly identical in color). Femora, tibiae, and tarsi all red or femora black basodorsally. Gaster red in most females and many males, but segments IV and V black in some females, and in some males either terga V-VII brown or black, or tergum I black basally, or middle terga and most sterna largely black. Terga I-IV with golden or silvery, apical fasciae (only terga I-III fasciate in a female from Matetsi, Zimbabwe).

ㅇ.- Clypeus (Fig. 318a): bevel shorter than basomedian area; lip free margin arcuate, emarginate mesally, incised laterally. Width of postocellar area $0.6 \times$ length. Dorsal length of flagellomere I $2.8 \times$ apical width. Dorsal foretibial surface with two or three spines; outer surface with two spines. Forebasitarsus with eight or nine rake spines. Tergum V densely punctate, including apical depression. Pygidial plate with numerous punctures, especially along margins, but largely impunctate mesally; interspaces microareolate. Length $15.0-17.0 \mathrm{~mm}$.

 $(\times 18)$; $\mathrm{c}-$ gastral segments II-VII of male showing erect sternal setae $(\times 18)$.
σ^{7}.- Mandible: trimmal carina with prominent, slightly asymmetrical tooth (distal side shorter and steeper than proximal side), at most with rudimentary cleft (Fig. 318b). Clypeus (Fig. 318b): bevel ill defined; lip free margin slightly arcuate, with well-defined, slightly prominent corner; distance between corners $1.4-1.6 \times$ distance between corner and orbit. Width of postocellar area $0.4-0.5 \times$ length. Dorsal length of flagellomere I $2.25-2.5 \times$ apical width. Forefemoral notch relatively small, with microscopic, appressed setae. Outer margin of forebasitarsus with 4-6 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Hindfemoral venter with inner (= posterior) margin well defined in distal half, sharp in most specimens. Sterna III-VI with suberect setae (Fig. 318c), about as long as midocellar diameter on sternum III, becoming slightly longer on following sterna. Sternum VIII tridentate apically or with rounded, median lobe. Length $10.0-13.2 \mathrm{~mm}$. Volsella and penis valve: Fig. 319.

Figure 319. Tachysphex rhodesianus Bischoff: volsella and penis valve.

Collecting period.- 25 March through 23 May.

Geographic distribution (Fig. 320).Southern Zambia, Malawi, Zimbabwe, northeastern South Africa.

Records.- MALAWI: between Florence Bay and Karonga ($2 \sigma^{\star}$, BMNH), southern Rukuru River valley ($1 \delta^{\text {(}}$). SOUTH AFRICA: Northern Province: Louis Trichardt (10°). ZAMBIA: Central Province: 2 km E Mumbwa (1 o^{t}). Lusaka Province: Rufunsa ($1 \sigma^{\circ}$, BMNH). ZIMBABWE: Beitbridge (10°, AMG), Bulawayo ($80^{\circ}, \mathrm{SAM} ; 2$ o $^{\circ}$, TMP; 1 ơ, ZMHU, holotype of rhodesianus), Bulawayo: Hillside (10^{\star}, TMP), Kami Ruins (4 ㅇ, $11 o^{*} ; 1$ of, 3 ơ, $^{\text {, }}$ NHMZ), Lion and Cheetah Park 24 km W Harare (3 o), 15 km NW Makuti (= Manyanga) (1 ค) , Matetsi (4 ㅇ, 1 of $^{\circ}$, SAM), 11 km NE Nyamandhlovu (2 o°), Sawmills (1 ค, SAM, Arnold's allotype of rhodesianus).

Figure 320. Collecting localities of Tachysphex rhodesianus, ruber, and rugosipleuris.

Tachysphex rotundus Pulawski, sp. nov.

Figures 314, 321.
Derivation of name.- Rotundus, Latin for round; with reference to the roundly arcuate clypeal lip.

Recognition.- Tachysphex rotundus shares the following combination with several other species: labrum convex, protruding beyond the clypeal free margin; galea elongate (length equal to about 0.6 of scape); propodeal side ridged; upper metapleural pit oblong; cephalic and thoracic setae straight (appressed on the postocellar area and mesopleuron), diverging anterolaterad from the midline on the propodeal dorsum; and male sterna V and VI each with a subbasal, erect fringe of agglutinated setae (fringes visible only when gastral segments are fully extended).

The female of rotundus has foretarsomeres I-III slightly broadened apicolaterally (as in aethiopicus, melanius, miniatulus, ruber, and usakos). Therefore, the rake spines originate from the ventral side (as in Fig. 9c) rather than from the lateral edge. It has a basally red gaster (gaster all black in melanius), and the black or dark brown rake spines differentiate it from the remaining four species (proximal basitarsal spines light in some specimens). Also, the clypeal lip is barely emarginate mesally in most specimens (emarginate in aethiopicus and usakos); the clypeal bevel is narrow (unlike miniatulus, the dense clypeal punctation reaches the lip base laterally); and the pygidial plate in most specimens is dull, uniformly microsculptured between punctures, at least basally (shiny, unsculptured between punctures in aethiopicus, ruber, and usakos).

The male of rotundus, in addition to the above characters, shares with some pentheri a ridged propodeal side and a nonemarginate forefemur, a unique such combination. In rotundus, however, the clypeal lobe is broader (lip corners closer to the corresponding orbit than to each other), the lip corner is ill defined, the bevel is absent or reduced to a narrow strip adjacent to the lip base, the trimmal carina has a low, obtuse tooth (Fig. 321b), the hindfemoral venter has the inner (= posterior) margin obtuse, and the apical prong of sternum VIII is not incised. In pentheri, the clypeal lobe is narrower (corners in most specimens closer to each other than to the corresponding orbit), the lip corner is well defined, the bevel is about as long as the basomedian area, the trimmal carina has a well-defined tooth (Fig. 275b), and each of the apical prongs of sternum VIII, in most specimens,
is incised on inner margin (Fig. 275c). Also, the shape of the volsella is distinctive in rotundus (Fig. 321c).

Ridges of the propodeal side, in most females and males, are somewhat coarser than in the related species.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea aciculate, with a few evanescent punctures, as long as 0.7 of scape. Scutal punctures minute, inconspicuous, averaging about one diameter apart. Mesopleuron dull, evenly, minutely punctate (punctures about one diameter apart). Propodeal dorsum evenly microareolate; side ridged; upper metapleural pit oblong. Hindcoxal dorsum with inner margin carinate.

Setae appressed on postocellar area, scutum, propodeal dorsum, and femora; nearly appressed and shorter than midocellar diameter on each side of oral fossa next to occipital carina; most setae on propodeal dorsum oriented laterad or posterolaterad, but diverging anterolaterad from midline.

Head and thorax black, but mandible mesally and labrum reddish, also clypeal bevel reddish in some males. Frontal setae silvery in both sexes. Wing membrane slightly infumate to nearly hyaline; forewing costal vein reddish brown, subcostal vein brown. Femora black except apically, tibiae and tarsi reddish. Gastral segments I and II or I-III red, remainder black. Terga I-IV in female, I-IV or I-V in male, silvery fasciate apically. Tarsal spines black or dark brown in female, including rake (proximal basitarsal spines light in some specimens).

ㅇ.- Clypeus (Fig. 321a): bevel about as long mesally as basomedian area or shorter; lip slightly arcuate, insignificantly emarginate mesally in most specimens, shallowly, broadly sinuous laterally. Width of postocellar area $1.1 \times$ length. Dorsal length of flagellomere I $2.5-2.7 \times$ apical width. Dorsal foretibial surface with one or two spines; outer surface with one or two spines.

Figure 321. Tachysphex rotundus Pulawski, sp. nov.: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.

Forebasitarsus with seven or eight rake spines. Foretarsomeres I-III slightly expanded apicolaterally over bases of rake spines (Figs. 9c, e). Tergum V finely punctate, including apical depression. Pygidial plate microsculptured, dull, with fine, sparse punctures, at least basally. Length 9.0-9.8 mm .
σ^{7}.- Mandible: trimmal carina with low, obtuse tooth, without cleft. Clypeus (Fig. 321b): bevel absent or reduced to narrow strip adjacent to lip base; lip free margin slightly arcuate to nearly straight, with obtusely angulate, somewhat ill-defined corner; distance between corners about $1.5-1.6 \times$ distance between corner and orbit. Width of postocellar area $1.2-1.5 \times$ length. Dorsal length of flagellomere I 1.5-1.8 \times apical width. Forefemoral notch absent. Outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Sterna V and VI each with subbasal fringe of agglutinated setae (fringes visible only when gastral segments are fully extended). Sternum VIII deeply emarginate, almost as in pentheri (see Fig. 275c). Length $5.6-8.2 \mathrm{~mm}$. Volsella and penis valve: Figs. 321c, d.

Geographic distribution (Fig. 314).— Zaire, Angola, Namibia, Botswana, Zimbabwe, South Africa.

Records.- Holotype: © ${ }^{\text {º }}$, NAMIBIA: Rehoboth District: 23 km N Rehoboth, 17 Feb 1990, WJP (CAS). Paratypes: ANGOLA: River Curoca 7 mi NE Porto Alexandre, 25-26 Feb 1972, [British Museum] Southern African Expedition (1 δ^{\star}, BMNH). BOTSWANA: Gugama, Dec 1979, V. Wilmot (1 \& , PMA); Lake Ngami 12 mi NE Sehithwa, 16-17 Apr 1972, [British Museum] Southern African Expedition (1 \& , BMNH); Moremi Reserve, 18-20 Apr 1972, [British Museum] Southern African Expedition (5 ㅇ, BMNH). NAMIBIA: Gobabis District: 8 mi W Gobabis, 11 Apr 1972, [British Museum] Southern African Expedition (1 q , BMNH). Grootfontein District: 40 km NE Grootfontein, 16 Jan 1993, MS (1 q); 90 km NE Grootfontein, 16 Jan 1993, MS (1 ơ, MS); Kombat, [British Museum] Southern African Expedition (1 ㅇ, BMNH). Karasburg District: Groenrivier 265 [Farm], SE 2718 Bd [= between $27^{\circ} 15^{\prime}$ and $27^{\circ} 30^{\prime}$ S and $18^{\circ} 45^{\prime}$ and $19^{\circ} 00^{\prime} \mathrm{E}$], 25 Apr 1972, collector unknown (1 \&, NMN). Mariental District: 41 km SW Gibeon, 10 Mar 1999, FSG (1 ơ, AMG); Onze Rust 192 [Farm], 17-18 May 1973, C. Jacot-Guillarmod (2 o, AMG); Vaalbank 319 [Farm], 20-22 May 1973, C. Jacot-Guillarmod (1 \uparrow, 1 ơ; 3 ค 9 , 1 ơ, AMG). Okahandja District: 70 km N Okahandja, 16 Mar 1990, WJP (1 o $^{\circledR}$). Rehoboth District: same data as holotype ($1 \mathrm{o}^{\text {r }}$). Rundu District: Rundu, J. Gusenleitner, 20 Jan 1993 (1 \&), 17 and 18 Jan 1993 (2 \uparrow, JG); 100 km SW Rundu, J. Gusenleitner, 25 Jan 1993 ($1 \circ+; 1$ ㅇ, JG), 28 Jan 1993 (1 甲) ; Takuasa, SE 1720 Cd [= between $17^{\circ} 45^{\prime}$ and $18^{\circ} 00^{\prime} \mathrm{S}$ and $20^{\circ} 15^{\prime}$ and $20^{\circ} 30^{\prime} \mathrm{E}$], 14-19 Aug 1971, collector unknown (1 早, NMN). Windhoek District: Knamhoek Farm [a misspelling for Kromhoek?] at 2315Db [= between $23^{\circ} 30^{\prime}$ and $23^{\circ} 45^{\prime} \mathrm{S}$ and $15^{\circ} 45^{\prime}$ and $16^{\circ} 00^{\prime} \mathrm{E}$], 15 Feb 1974, L. Lyneborg ($1 \circ+1 \delta^{\circ}$, ZMUC), Solitaire at $23^{\circ} 52^{\prime}$ S $16^{\circ} 00^{\prime}$ E, 30 Apr 2002, FSG ($1 \stackrel{\circ}{\circ}$, AMG). SOUTH AFRICA: Eastern Cape Province: 9 km E Willowmore, 28 Jan 1996, WJP ($1 \mathrm{o}^{\circ}$). Northern Cape Province: 25 km E Hondeklipbaai, 17 Oct 1999, M. Halada ($1 \mathrm{o}^{\circ}$, OÖLM); Nossob in Kalahari Gemsbok National Park, 27 Mar 1990, MS ($1 \delta^{\circ}$, MS), WJP ($1 \delta^{\star}$); 90 km ENE Springbok at 29${ }^{\circ} 20.1^{\prime} \mathrm{S} 18^{\circ} 44.3^{\prime}$ E, 10 Sept 2001, WJP (2 o $^{\circ}$). North-West Province: 135 km E Van Zylsrus, 26 Mar 1990, WJP (1 \& $)$). Western Cape Province: Cape Town: Milnerton, Jan 1926, R.E. Turner (1 ơ, BMNH); 60 km N Cape Town, 9 Nov 1999, M. Halada
 River, Dec 1949, [South African] Mus[eum] Exp[edition] (3 \% SAM); 20 km N Citrusdal, 27 Oct 1999, M. Halada (o°, OÖLM); Pearly Beach, Dec 1958, S[outh] A[frican] M[useum Staff] (2 \circ, SAM); Wellington: Rooshoek, P.M.F. Verhoeff, 17-30 Nov 1973 ($1 \delta^{\circ} ; 1 \sigma^{\circ}$, RMNH) and Dec 1973 ($1 \circ+$, RMNH): Witzenberg Valley in Ceres District, 21-23 Dec 1920, R.E. Turner (1 \& , BMNH). ZAIRE: Bas-Zaïre: Mayidi at $5^{\circ} 11^{\prime} \mathrm{S} 15^{\circ} 09^{\prime} \mathrm{E}, 1942$, P. van Eyen (1 \& , MRAC). ZIMBABWE: 11 km NE Nyamandhlovu, WJP, 24 Feb
 USNM); Victoria Falls, 19-23 June 1998, K.M. Guichard (1 \& , KMG).

Tachysphex ruber Pulawski, sp. nov.

Figures 320, 322.
Derivation of name.- Ruber, Latin for red; an allusion to the predominantly red body of this species.

Recognition.- Tachysphex ruber is one of several species in which a convex labrum (markedly protruding beyond the clypeal free margin) and elongate galea (about as long as the scape) are combined with a ridged propodeal side (ridges present only anteriorly in some specimens), oblong upper metapleural pit, setae straight on the head and thorax (appressed on postocellar area), and the propodeal dorsum all setose, with setae diverging anterolaterad from the midline. In the male, sterna IV-VI each has a subbasal fringe of short, agglutinated setae.

The female of ruber has slightly expanded apicolaterally foretarsomeres I-III (as in Fig. 9c), hence bases of apical rake spines originate from the ventral surface rather than the lateral margin, and the apex of the pygidial plate is curving ventrad (as in Fig. 80d). The expanded foretarsomeres are also found in females of aethiopicus, melanius, miniatulus, rotundus, and usakos, and the pygidial plate is curving apically in camptopygus, but the combination of the two features is unique to ruber. An all red gaster and dense mesopleural vestiture (fully concealing integument) are subsidiary recognition characters.

The male of ruber resembles aethiopicus and usakos in having a broad clypeal lobe, with corners further apart than each is from the orbit (Fig. 322b). Unlike these two species, the forefemoral notch of ruber is microscopically setose (rather than glabrous). Unlike aethiopicus, the clypeal bevel is unsculptured between punctures (rather than microsculptured) and, unlike usakos, each of sterna IV-VI has a subbasal, low fringe of agglutinated setae (fringes visible only when the gastral segments are fully extended). In most specimens, the free margin of the clypeal lobe is broadly, shallowly emarginate (slightly arcuate to straight in aethiopicus and usakos), and the gastral tip is red (only sternum VIII in some specimens), whereas black in the other two species.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea aciculate, sparsely punctate, as long as $0.7-0.8$ of scape. Scutal punctures somewhat ill defined, less than one diameter apart. Mesopleural punctures ill defined, less than one diameter apart except about one diameter apart posteriorly. Propodeal dorsum evenly microareolate; side ridged, but ridges evanescent except anteriorly in some males; upper metapleural pit oblong. Hindcoxal dorsum with inner margin carinate basally or not carinate.

Setae appressed on postocellar area; about one midocellar diameter long on each side of oral fossa next to occipital carina; appressed on scutum (no longer than one midocellar diameter); fully concealing integument on female mesopleuron; on propodeal dorsum diverging anterolaterad from midline.

Head and thorax black except the following yellowish red: mandible (apex black), labrum, clypeal bevel and lip, scapal venter, and pronotal lobe. Frontal setae silvery in both sexes. Wings hyaline; forewing costal vein yellowish, subcostal vein brown. Femora, tibiae, and tarsi red. Gaster red in female, in male red basally, with segments IV-VI or III-VII somewhat darkened to black, and segment VII mostly red or reddish (only sternum VIII red in some specimens). Terga I-IV in female, I-V in male, silvery fasciate apically.

+ .- Clypeus (Fig. 322a): bevel slightly shorter to slightly longer than basomedian area; lip free margin nearly straight, neither emarginate mesally nor incised laterally. Width of postocellar area $1.1 \times$ length. Dorsal length of flagellomere I $2.2-2.5 \times$ apical width. Dorsal foretibial surface with two spines; outer surface with two spines. Forebasitarsus with seven rake spines. Lateral margin of foretarsomeres I-III slightly expanded, apical rake spines originating from ventral surface.

Figure 322. Tachysphex ruber Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible.
Tergum V uniformly micropunctate, including apical depression. Pygidial plate with a few, sparse punctures, interspaces shiny, unsculptured or nearly so. Length $6.5-7.8 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 322b): bevel slightly shorter to slightly longer than basomedian area; lip free margin straight or minimally concave, with well-defined corner; distance between corners 1.2-1.3 \times distance between corner and orbit. Width of postocellar area $1.2 \times$ length. Dorsal length of flagellomere I $1.5-1.6 \times$ apical width. Forefemoral notch microsculptured, microsetose. Outer margin of forebasitarsus with three or four rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Sterna IV-VI each with subbasal fringe of agglutinated setae that are visible only when segments are fully extended (setae shorter than in pentheri, see Figs. 276a-f). Sternum VIII shallowly emarginate apically. Length 5.7-6.6 mm . Volsella and penis valve as in aethiopicus (see Fig. 10).

Geographic distribution (Fig. 320).- Namibia, Botswana, northwestern South Africa.
Records.- Holotype: ㅇ, NAMIBIA: Rehoboth District: 15 km N Kalkrand, 13 Feb 1990, WJP (CAS). Paratypes: BOTSWANA: 1.5 km E Cheleka in Kalahari Gemsbok National Park, 27 Mar 1990, WJP (1 σ^{\top}). NAMIBIA: Karibib District: 15 km W Karibib, 26 Feb 1990, MS ($1+$, MS), WJP ($1 \delta^{\star}$); 17 km W
 Keetmanshoop District: 2 km from road C17 on road 511 to Mata Mata, 8 Mar 2000, FSG (1 + , AMG). Lüderitz District: Klein-Aus Vista, 2 Mar 2000, FSG ($1+$, AMG). Maltahöhe District: Aandster Farm at 2515Bd [$=$ between $25^{\circ} 15^{\prime}$ and $25^{\circ} 30^{\prime} \mathrm{S}$ and $15^{\circ} 45^{\prime}$ and $16^{\circ} 00^{\prime} \mathrm{E}$], 17 Feb 1974, L. Lyneborg (10°, ZMUC). Rehoboth District: 15 km N Kalkrand, 13 Feb 1990, WJP (2 or *); 9 km S Rehoboth, 14 Feb 1990, MS (1 $\frac{1}{}$, MS); 49 km S Rehoboth, 9 Feb 1990, WJP ($1 \mathrm{c}^{\mathrm{*}}$). SOUTH AFRICA: Northern Cape Province: Nossob in Kalahari Gemsbok National Park, 27 Mar 1990, MS (1 ơ, MS); Nossob River bed 20 km S Nossob Rest Camp, 8 Mar 1990, FSG (1 $\circ ; 2$ ㅇ, AMG).

Tachysphex rufopictus Arnold, new status

Figures 317, 323.
Tachysphex braunsi var. rufopictus Arnold, 1929:385, o. Holotype: ơ, South Africa: Eastern Cape Province: Lady Gray (SAM), examined.-Arnold, 1930:3 (in checklist of Afrotropical Sphecidae).-As Tachysphex braunsi rufopictus: Bohart and Menke, 1976:272 (new status, listed).
Tachysphex brachycerus Arnold, 1940:121, ㅇ. Holotype: ㅇ, South Africa: Eastern Cape Province: Willowmore (TMP), examined. New synonym.- Bohart and Menke, 1976:272 (listed).

Recognition.- Tachysphex rufopictus has the fore- and midfemora shiny, impunctate and glabrous posteroventrally (at least partly so) except for a few, sparse, setigerous punctures, the propodeal dorsum evenly microareolate, the propodeal side unridged (at least mesally), and the
gaster red basally and black apically. In addition, the labrum is practically flat, nonemarginate, the hindwing vein cu-a vertical, the setae are appressed on the postocellar area and scutum and slightly inclined posterad on the propodeal dorsum; in the female the length of tarsomeres II is twice the apical width and the apicoventral margin of tarsomeres V is arcuate; and the male foretarsus has no rake.

The female differs from other such species in having an unusually narrow clypeal lip (Fig. 323a), in combination with black femora and nonfasciate terga.

The male of rufopictus has a distinctive clypeus, with an elongate middle section and a roundly pointed lip with at most a rudimentary corner (Fig. 323b), the lip's free margin forming a single curved line with that of the lateral section. Also, the tibiae and tarsi are red. Unlike braunsi, rufopictus has the punctures of sterna IV-VI markedly larger and sparser than those of sternum II basally, and the gaster of most specimens is red basally (in braunsi, the gaster is all black and punctures of sterna IV-VI are only inconspicuously larger and sparser than those of sternum II). The male of waltoni has a similar clypeus, but the femora are finely punctured throughout, the setae are inclined obliquely anterad on the propodeal dorsum anteromesally, and somewhat erect (not fully appressed) on sterna III-VI.

FIGURE 323. Tachysphex rufopictus Arnold: a - female clypeus and mandible (clypeal setae, partly missing in the model specimen, the holotype, have been reconstructed in this drawing); b - male clypeus and mandible with outline showing variation of clypeal free margin; c - venter of female hindtarsomere V ; d - volsella with outline showing variation of dorsal process; e - penis valve with outline showing variation.

Justification of new synonymy. - The holotype female of brachycerus agrees with the males of rufopictus in the propodeal and femoral sculpture, setation, color of the gaster, and absence of tergal fasciae, a unique such combination. I conclude that they are opposite sexes of one species, and I regard the two names as synonyms.

Description.- Labrum minimally convex at very apex, obtusely pointed mesally (almost arcuate in one male), not or only slightly protruding from beneath clypeus. Galea longer than wide in profile, equal to about 0.9 of scape, with several large punctures. Female scutum with fine but well-defined punctures that average about two diameters apart on disk, and also with somewhat larger punctures that average many diameters apart (interspaces shiny); male scutum with uniform punctures that average slightly more than one diameter apart on disk (interspaces somewhat dull). Mesopleuron anterad of episternal sulcus and above scrobal sulcus dull, microsculptured, with minute punctures that are about one diameter apart; beneath scrobe with well-defined, medium-size punctures that are several diameters apart (interspaces microsculptured). Episternal sulcus mostly complete, but effaced anteroventrally in two males examined. Propodeal dorsum evenly microareolate; side finely punctate, varying from all unridged to ridged along anterior, dorsal, and posterior margins. Hindcoxal dorsum with inner margin carinate basally. Sternum I apically with longitudinal carina that bisects apical depression.

Setae suberect, about as long as midocellar diameter on each side of oral fossa next to occipital carina; appressed on postocellar area and scutum; inclined posterad on propodeal dorsum.

Head and thorax black, mandible dark red mesally. Frontal setae silvery in female, golden in male. Wing membrane yellowish; forewing costal vein light brown, subcostal vein dark brown. Femora black (apex red in male), tibiae and tarsi varying from all red to all black in female, all red in male. Gastral segments I and II mostly red (also segment III in some males), remainder black, but red reduced in single female from Steytlerville area, and gaster all black in some males. Terga without silvery, apical fasciae, or male terga I-III with rudimentary fasciae.

ㅇ.- Clypeus (Fig. 323a): bevel markedly longer than basomedian area; lip reduced laterally, hence unusually narrow (distance between corners equal to 0.8 of distance between corner and orbit), its free margin arcuate. Width of postocellar area 1.1-1.3 \times length. Dorsal length of flagellomere I $1.6 \times$ apical width; flagellomeres III-X with somewhat ill-defined sensory areas; length of flagellomere VIII 1.5-1.6× width. Midtrochanteral venter shiny, with a few, sparse punctures. Foreand midfemoral venters and posteroventral surfaces aciculate, shiny, with a few large, sparse punctures. Dorsal foretibial surface with three thin setae or bristles; outer surface with three or four bristles, interspaces glabrous. Mid- and hindtibial dorsum asetose. Forebasitarsus with ten rake spines. Length of fore-, mid-, and hindtarsomeres II 1.4, 2.0, and $2.4 \times$ apical width, respectively, slightly less than average for the genus. Apicoventral margin of hindtarsomere V arcuate (Fig. 323c). Apical depression of tergum V unsculptured, glabrous. Pygidial plate with a few, sparse punctures, interspaces unsculptured; apex roundly truncate (not emarginate). Length $9.2-10.0 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with conspicuous, obtuse tooth, without cleft. Clypeus (Fig. 323b): bevel ill defined, about as long as basomedian area; lip free margin obtusely pointed mesally, without corner or with rudimentary corner, forming single curved line with rest of clypeal margin. Width of postocellar area $0.8-1.0 \times$ length. Dorsal length of flagellomere I 1.4-1.6 \times apical width. Forefemoral notch microscopically setose. Posteroventral surface of fore- and midfemora aciculate, impunctate and glabrous, except for a few large, sparse punctures. Outer margin of forebasitarsus with varying number of rake spines: either without preapical spines, or with one or two such spines in apical quarter or third, or with three preapical spines located at about one third and two quarters of the basitarsus length, respectively, and one next to apex; outer apical spine of foretarsomere II shorter than tarsomere III. Venters of tarsomeres V each with one small spine that may
be missing on some legs. Punctures markedly larger and sparser on sterna IV-VI than on sternum II basally. Sterna II and III, in male from Doringbos, with erect setae that are about as long as midocellar diameter; sterna IV-VI, in the male from Ouberg Pass, with some suberect setae (in addition to usual longer setae that border apical depression). Sternum VIII: mesal portion of apical margin varying from evenly concave to tridentate. Length $7.8-9.8 \mathrm{~mm}$. Volsella and penis valve: Figs. 323d, e.

Floral records.- The male from Clifton Farm was collected "on minute flowers of Bergia glomerata L. f. (Elatinaceae)", as recorded by the collectors, F.W. and S.K. Gess.

Collecting period.- 20 November through 20 January.
Geographic distribution (Fig. 317).- Central-southern South Africa.
Records.- SOUTH AFRICA: Eastern Cape Province: Clifton Farm 18 km NW Grahamstown ($1 \delta^{\circ}$, AMG), Elandsheuwels Farm 40 km W Steytlerville ($2 \sigma^{\circ}$, USU), Goodehoop Farm 16 km W Steytlerville ($1 \delta^{\circ} ; 1 \delta^{\circ}$, USU), 17 mi NW Grahamstown ($1 \mathrm{ơ}^{\circ}, \mathrm{AMNH}$), 18 km WNW Grahamstown: Hilton Farm (1 q, $2 \delta^{\circ} ; 4 \delta^{\circ}$, AMG), Lady Grey ($3 \delta^{\circ}$, SAM, including holotype of rufopictus), 3 km N Steytlerville ($1 \circ+$, USU), 28 km S Steytlerville: Wolwekraal Farm ($1 \mathrm{o}^{\boldsymbol{*}} ; 2 \mathrm{o}^{\boldsymbol{7}}$, USU), Strowan Farm 5 air km W Grahamstown (1 f ; 1 \&, AMG), Table Farm 10 km NW Grahamstown (1 \&, AMG), Willowmore ($1 \mathrm{ơ}^{\circ}$, AMG; 1 ค, TMP, holotype of brachycerus), 9 km E Willowmore ($1 \mathrm{o}^{\circ}$). Western Cape Province: Doringbos at $31^{\circ} 58^{\prime} 19^{\prime \prime} \mathrm{S}$ $19^{\circ} 13^{\prime} 33^{\prime \prime} \mathrm{E}\left(10^{\circ}, \mathrm{CSE}\right)$, Langberg ($10^{\circ} ; 10^{\circ}, \mathrm{OÖL} \mathrm{LM}$), Ouberg Pass 27 road km NE Montagu at $33^{\circ} 40^{\prime} \mathrm{S}$ $20^{\circ} 16^{\prime} \mathrm{E}\left(1 \mathrm{c}^{\circ}\right)$.

Tachysphex rugosipleuris Pulawski, sp. nov.

Figures 320, 324.
Derivation of name.- Rugosipleuris, a Neolatin adjective derived from the Latin word rugosus, wrinkled, and the Greek word pleuron, a rib; with reference to the rugose mesopleuron of this species.

Recognition.- The female of rugosipleuris has tarsomeres IV wider than long, with the dorsoapical margin very broadly emarginate (almost straight), apicoventral margins of tarsomeres III and IV mesally projecting or at least convex, tarsomeres V angulate basoventrally, each with a central cluster of small spines on the venter and the apicoventral margin produced into a lobe, and on each leg one claw smaller than the other. Unlike other such species, the mesopleuron of rugosipleuris is rugose rather than punctate.

The male can be recognized by the following combination: gaster black; mesopleuron rugose; middle clypeal section flat, without bevel (Fig. 324b); lip corners well defined, closer to adjacent orbit that to each other; setae all straight, on postocellar area erect, about as long as midocellar diameter; hindcoxal dorsum carinate basally, carina not expanded; apical tarsomeres with a preapical cluster of small spines on venter, and hindtarsomere V somewhat expanded laterally (expansion best seen in the dorsolateral view).

Description.- Scutal punctures well defined, about one diameter apart in most females (a few discal puncture up to two diameters apart in some), in males many discal punctures up to two or three diameters apart. Mesopleuron rugose. Propodeal dorsum rugose, but only slightly so (and partly microsculptured) in one male; side ridged, but ridges largely evanescent in the same male. Hindcoxal dorsum with inner margin carinate basally.

Setae erect on postocellar area, about as long as midocellar diameter; suberect, about as long as midocellar diameter on each side of oral fossa next to occipital carina; suberect, shorter than midocellar diameter on scutum; oriented posterad on propodeal dorsum.

Head and thorax black, mandible reddish subapically. Frontal setae silvery in female, silvery with golden tinge beneath midocellus in male. Wing membrane slightly infumate; costal vein of

Figure 324. Tachysphex rugosipleuris Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d - penis valve.
forewing light brown, subcostal vein dark brown. Femora, gaster, and female tibiae black; male tibiae black except the following reddish: foretibial inner surface, hindtibial inner surface in many specimens, and midtibial venter and apex in some. Terga I-III silvery fasciate apically.

ㅇ.- Labrum emarginate. Clypeus (Fig. 324a): bevel somewhat ill defined, longer mesally to shorter than basomedian area; lip free margin arcuate, shallowly emarginate mesally, with two lateral incisions on each side. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I $1.8 \times$ apical width. Scutum and scutellum slightly flattened. Forefemoral posteroventral surface microsculptured, with punctures that are many diameters apart. Dorsal foretibial surface with no spines or bristles; outer surface with punctures and setae sparser than remaining surface, with 1-3 long, suberect setae but no spines. Forebasitarsus with 7-9 rake spines (spines unusually short in females from Cameroon, no longer than basitarsus width). Tarsomeres III with apicoventral margin arcuate. Tarsomeres IV wider than long, with dorsoapical margin very broadly emarginate (almost straight), apicoventral margin obtusely prominent. Outer margin of foretarsomere IV about 0.5 length of inner margin. Tarsomeres V angulate basoventrally, with central cluster of small spines on venter; lateral margin with row of small spines subbasally; apicoventral margin produced into lobe. Outer claw in each pair shorter and thinner than inner claw (opposite on foretarsus). Apical depression of tergum V unsculptured, glabrous. Pygidial plate with well-defined punctures, mostly several diameters apart (some punctures less than one diameter apart); interspaces aciculate. Length $7.8-8.1 \mathrm{~mm}$.
0°.- Mandible: trimmal carina obtusely angulate, without real tooth, with small cleft. Clypeus (Fig. 324b): bevel absent; lip free margin slightly sinuate, with well-defined corner; distance
between corners 1.3-1.4 \times distance between corner and orbit. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I 1.4-1.6 \times apical width. Forefemoral notch with bottom densely, microscopically setose. Outer margin of forebasitarsus without preapical spines. Outer apical spine of foretarsomere II markedly shorter than tarsomere III. Venters of tarsomeres V each with preapical group of small spines; lateral margin of hindtarsomere V somewhat expanded (expansion best seen in dorsolateral view). Length 5.2-7.7 mm. Volsella and penis valve: Figs. 324c, d.

Geographic distribution (Fig. 320).- Senegal to Cameroon.
Records.- Holotype: ơ, SENEGAL: 10 km S Bignona, 12 July 1991, WJP (CAS). Paratypes: BURKINA FASO: Kompienga 20 km S Pama, 3-24 Sept 1988, Sanborne, Génier, and Tou (1 ㅇ; 1 ㅇ, LEM). CAMEROON: 15 km W Campement des Eléphants and 67 km S Garoua, 13-19 July 2003, WJP (2 ㅇ, 1 ơ $^{\circ}$). IVORY COAST: Bouaké: Foro-Foro, 10-12 May 1971, D. Duviard (1 \circ, UCD). SENEGAL: same data as holotype ($7 \delta^{\circledR}$), Ziguinchor, 12 July 1991, AM ($1 \delta^{\star}$, MSNT).

Tachysphex sabulosus Pulawski, sp. nov.

Figures 325, 326.
Derivation of name.-Sabulosus, Latin for sandy; with reference to the sandy habitats where the specimens were collected.

ReCognition.- Tachysphex sabulosus has the labrum convex and protruding beyond the clypeus free margin, the galea longer than wide in profile (length equal to the scape), and the propodeal dorsum glabrous mesally in the apical half. In addition, the gaster is bicolored (red basally, black apically), the terga are not fasciate apically, the tibiae are red, and the wing membrane is slightly infumate, almost hyaline.

The female differs from similar species in having an evenly arcuate clypeal free margin (Fig. 325 a), without median emargination or lateral incision and with a nonprominent corner, and terga IV and V with fine but well-defined punctures.

The male can be recognized, in addition to the above features, by the presence of a well-defined corner of the clypeal lip (Fig. 325b), scutum shiny, with well-defined punctures, many of which are more than one diameter apart, presence of six spines on the forebasitarsus outer margin, and of conspicuous, subappressed setae on sterna III-VI.

DESCRIPTION.-Labrum convex, markedly protruding from beneath clypeus. Galea microsculptured, dull, with a few, scattered punctures, as long as scape in female, as 1.1 of scape in male. Scutal punctures well defined, interspaces shiny; many punctures on disk more than one diameter apart. Mesopleural punctures shallow, ill defined; interspaces dull. Propodeal dorsum irregularly ridged longitudinally in female, microscopically rugose in male; side ridged (finely so in male). Hindcoxal dorsum carinate basally.

Setae appressed on postocellar area and scutum; suberect on each side of oral fossa next to occipital carina but shorter than midocellar diameter; oriented posterad on propodeal dorsum except for glabrous apicomedian area that extends anterad to at least dorsum's midlength.

Head and thorax black, mandible reddish except black apex. Frontal setae in female silvery adjacent to antennae, with golden tinge in upper part, golden in male. Wing membrane slightly infumate to almost hyaline; costal vein of forewing yellowish, subcostal vein light brown. Femora black basally and red apically in female (about one quarter red on forefemoral posterior surface, about one third red on midfemoral posterior surface, hindfemur black only basally), largely red in male (fore- and midfemoral dorsum red in basal half or more); tibiae and tarsi red. Gastral segments I and II red (also base of tergum III in male), remainder black. Terga without silvery, apical fasciae.

ㅇ.- Clypeus (Fig. 325a): bevel about as long as basomedian area; lip free margin evenly arcuate, not emarginate mesally nor sinuous or incised laterally. Width of postocellar area $0.5-0.6 \times$

Figure 325. Tachysphex sabulosus Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d-penis valve.
length. Dorsal length of flagellomere I 2.3-2.5 \times apical width. Dorsal foretibial surface with two spines; outer surface with one or two spines. Forebasitarsus with six rake spines. Apical spines of hindtarsomere IV reaching claw base in female from Zimbabwe. Apical depression of tergum V punctate and setose throughout. Pygidial plate with punctures that average many diameters apart mesally, but about one diameter apart near margin; interspaces unsculptured. Length 10.2 mm .
0°.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 325b): bevel about as long as basomedian area, delimited anterolaterally by oblique carina that emerges from each lip corner; lip free margin evenly arcuate, with well-defined corner; distance between corners $1.3 \times$ distance between corner and orbit. Width

Figure 326. Collecting localities of Tachysphex sabulosus and sahelensis. of postocellar area $0.6 \times$ length. Dorsal length of flagellomere I $1.7 \times$ apical width, equal to 0.7 of
II. Forefemoral notch dull, asetose. Outer margin of forebasitarsus with six rake spines. Outer apical spine of foretarsomere II longer than tarsomere III. Setae of sterna III-VI abundant, subappressed. Sternum VIII shallowly emarginate apically, hindmargin almost straight between lateral prongs. Length 8.8 mm . Volsella and penis valve: Figs. 325c, d.

Geographic distribution (Fig. 326).- Northeastern South Africa, Zimbabwe.
RECORDS.- Holotype: ${ }^{\circ}$, ZIMBABWE: Bulawayo airport at $20^{\circ} 00^{\prime}$ S $28^{\circ} 38^{\prime}$ E, 3 April 1998, WJP (CAS). Paratypes: SOUTH AFRICA: Northern Province: Ellisras, 25 Mar 1978, H. Empey (1 甲, AMG). ZIMBABWE: 11 km NE Nyamandhlovu, 24 Feb 1995, WJP ($1 \mathrm{o}^{\circ}$).

Tachysphex saevus Arnold

Figures 327, 328.
Tachysphex saevus Arnold, 1924:52, 두. Holotype: \uparrow, South Africa: Northern Province: Pietersburg (SAM), examined.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:276 (listed).

Recognition.- The female of saevus has an all black gaster, red legs, and unusually short tarsi (e.g., length of foretarsomere II and of midtarsomere III about equal to apical width). Other species are similar, but saevus differs by the combination of: labrum obtusely pointed mesally (Fig. 327a); mesopleuron dull, markedly microsculptured, with punctures that are more than one diameter apart below the scrobe; ventral midfemoral margin evenly convex except contrastingly concave preapically (Fig. 327c); and the pygidial plate with large and small punctures, the latter averaging about one diameter apart along the midline (Fig. 327d).

The male of saevus has the forefemoral posteroventral surface sparsely punctate distad of notch (punctures minute, several to many diameters apart). It can be distinguished from similar species by the following combination: gaster black, legs red (or forefemur black basally), midtarsomere IV about as long as apically wide, labrum flat, and setae of the propodeal dorsum all slightly inclined posterad. Subsidiary distinctive characters are: clypeus obtusely pointed (Fig. 327b), apical spine of foretarsomere II markedly shorter than foretarsomere III, propodeal side not ridged, all sterna evenly setose, and wings yellow (brownish along apical margin). Some males of gessianus (those with red legs) are nearly identical externally, but differ in having denser forefemoral punctures (at most a few diameters apart) and infumate wings. The shape of the penis valve helps in recognition: the dentate, apical part is angulate basally in gessianus (Fig. 165d) but not in saevus (Fig. 327f).

Description.- Galea in profile about as long as wide. Scutal punctures fine, well defined, averaging 1-2 diameters apart on disk. Mesopleural punctures shallow, ill defined, more than one diameter apart at center; interspaces microsculptured, dull. Propodeal dorsum rugose, side evenly microsculptured or finely punctate. Hindwing: anal end of crossvein cu-a slightly further away from wing base than cubital end. Hindcoxal dorsum carinate basally. Sternum I carinate longitudinally, without apical depression.

Setae suberect but no longer than midocellar diameter on postocellar area, nearly appressed on scutum; erect on each side of oral fossa next to occipital carina, about as long as midocellar diameter; erect on episcrobal area; oriented posterad on propodeal dorsum.

Head, thorax, and gaster black, mandible reddish except basally and apically. Frontal setae silvery in female, pale golden in male. Wing membrane yellow, turning brownish in apical third or so; costal and subcostal veins of forewing reddish brown. Femora, tibiae, and tarsi red or male forefemur black basally. Female terga not fasciate or terga I-III with ill-defined fasciae, male terga I-III silvery fasciate apically (fasciae interrupted mesally).
‥- Labrum obtusely pointed mesally (Fig. 327a). Clypeus (Fig. 327a): bevel shorter than basomedian area; lip free margin slightly concave on each side of midpoint, which is prominent,

Figure 327. Tachysphex saevus Arnold: a - female clypeus and mandible; b - male clypeus and mandible; c - female midfemur; d - pygidial plate of female; e - volsella; f - penis valve.
and with two lateral incisions on each side. Width of postocellar area $1.3 \times$ length. Dorsal length of flagellomere I $1.6 \times$ apical width. Forefemoral posteroventral surface (except in basal third) with impunctate area that is widest near femur's apex. Foretibial outer surface with at least two spines, integument asetose. Ventral midfemoral margin evenly convex except contrastingly concave preapically (Fig. 327c). Tarsi short: length of fore- and midtarsomeres II 1.0-1.1 and $1.5-1.6 \times$ apical width, respectively; that of midtarsomere III about $1.0 \times$ apical width; length of fore-, mid-, and hindtarsomeres IV about $0.9,0.9$, and $1.1 \times$ apical width, respectively. Forebasitarsus with eight or nine rake spines. Apical depression of tergum V asetose apicomesally. Pygidial plate emarginate apically, with large punctures that may concentrate laterally and average more than one diameter apart, and also with small punctures (at least mesally) that are about one diameter apart (Fig. 327d). Length 9.4-11.5 mm.
0^{7}.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 327b): bevel shorter than basomedian area; lip free margin obtusely pointed, with well-defined corner; distance between corners $1.1 \times$ distance between corner and orbit. Width of postocellar area $1.3-1.5 \times$ length. Dorsal length of flagellomere I 1.3-1.4 \times apical width, ventral length equal to or slightly more than apical
width. Forefemoral posteroventral surface sparsely punctate distad of notch (punctures minute, several to many diameters apart), notch microscopically setose. Outer margin of forebasitarsus with $0-3$ preapical rake spines (one may be next to apical spine, the other two far from apex); outer apical spine of foretarsomere II shorter than tarsomere III. Length of midtarsomere II about 2.0 \times apical width, that of midtarsomere III $\times 1.2$ apical width, and that of midtarsomere IV about equal to apical width. Apical margin of sternum VIII tridentate, but middle tooth evanescent in some specimens. Length $7.8-10.3 \mathrm{~mm}$. Volsella and penis valve: Figs. 327e, f.

Collecting period.- 16 September through 1 November.

Geographic distribution (Fig. 328).Northeastern South Africa and Zimbabwe.

Records.- SOUTH AFRICA: Gauteng: Bronkhorstbaai ca 8-9 km S Bronkhorstspruit (1 q , AMG). Northern Province: Mogoto Nature Reserve near Zebediela (1 ơ, PPRI), Pietersburg ($1 \circ$, SAM,

Figure 328. Collecting localities of Tachysphex saevus and samburu. holotype of saevus). ZIMBABWE: Chimanimani
 Mts. ($\left.1 \stackrel{\circ}{+}, 1 \circ^{\star}, \mathrm{SAM}\right)$.

Tachysphex sahelensis Pulawski, sp. nov.

Figures 326, 329.
Derivation of name.- Sahelensis, a Neolatin masculine adjective derived from Sahel, the semidesert southern fringe of Sahara stretching from Senegal and Mauritania to Chad.

Recognition.- Tachysphex sahelensis is characterized by a convex labrum, protruding beyond the clypeal free margin (although less so than in panzeri or pentheri), the galea longer than wide in profile, and terga I-IV silvery fasciate apically. In the male (the female is unknown), the foretarsal rake is absent (no preapical spines on the outer margin of the forebasitarsus), and the outer apical spine of foretarsomere II is shorter than this tarsomere's width; in addition, the dorsal volsellar process is rounded apically (Fig. 329c). Several species are similar, but sahelensis has the flagellum thicker mesally than basally or apically, short flagellomere I (dorsal length $1.1-1.4 \times$ apical width rather than $1.9 \times$ or more), clypeal lobe wide (distance between corners greater than clypeal midlength rather than equal to or smaller), and the tooth of the trimmal carina asymmetrical (rather than symmetrical), the outer side forming a right to obtuse angle with the remaining part of the carina (Fig. 329a). Finally, the micropunctures of flagellomeres IV-X are contrastingly more regular dorsally than ventrally.

Similar unassigned specimen.- A male collected 70 km SE Ségou, Mali (CAS) resembles sahelensis in lacking the foretarsal rake and in having silvery fasciate terga I-III and an apically rounded dorsal volsellar process. It differs in having a symmetrical tooth on the inner mandibular margin, red gastral segments I and II, semicircular apical emargination of sternum VIII, and setae of the propodeal dorsum pointing mostly posterad.

Description (male only).- Labrum convex, protruding from beneath clypeus, although less so than in panzeri or pentheri. Galea longer that wide in profile, minutely, closely punctate, about

Figure 329. Tachysphex sahelensis Pulawski, sp. nov., male: a - clypeus and mandible; b-sternum VIII; c - volsella; d - penis valve.
as long as 1.3 of scape. Scutal punctures shallow, minute, about one diameter apart. Mesopleuron uniformly, microscopically areolate. Propodeal dorsum evenly microareolate, side evenly microsculptured except in most specimens finely ridged along dorsal margin.

Setae appressed on postocellar area and scutum; subappressed on each side of oral fossa next to occipital carina, no longer than one midocellar diameter; most setae of propodeal dorsum oriented anterad, but lateral setae oriented posterad an joining apicomesally.

Head, thorax, femora (except at very apex), and gaster black, mandible reddish at about two thirds of length. Frontal setae silvery. Wing membrane yellowish (insignificantly so in smallest specimens); costal vein of forewing light brown, subcostal vein brown. Tibiae reddish, partly dark; tarsi dark. Terga I-IV silvery fasciate apically.
o . - Unknown.
$0^{\text {T}}$.- Mandible (Fig. 329a): trimmal carina with tooth and cleft, distal side of tooth forming right to obtuse angle with remaining carina (which in most specimens is reduced, obtuse except sharp preapically). Clypeus (Fig. 329a): bevel shorter than basomedian area, delimited laterally by short, oblique, obtuse carina that emerges from lip corner; lip free margin arcuate, shallowly emarginate mesally in some specimens, with obtuse corner; distance between corners $1.5-1.6 \times$ distance between corner and orbit. Width of postocellar area 1.1-1.3 \times length. Dorsal length of flagellomere

I 1.1-1.4 \times apical width. Flagellum thicker mesally than either basally or apically, flagellomeres IV-X with micropunctures more regular and microsetae sparser dorsally than ventrally (the two types of sculpture sharply separated from each other). Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III and than width of tarsomere II. Sternum VIII shallowly emarginate, its apical margin almost straight between lateral prongs (Fig. 329b). Length $6.0-9.1 \mathrm{~mm}$. Volsella and penis valve: Figs. 329c, d.

Geographic distribution (Fig. 326).— Mali, Senegal.
Recordd.- Holotype: 1 ơ, SENEGAL: 4 km SW Thiès, 8 July 1991, WJP (CAS). Paratypes: SENEGAL: Dakar, 21 Sept 1986, F. B[orgato] (1 ㅇ, FB); same data as holotype (100°); same but 8 and 18 July 1991, AM (2 ơ, MSNT). MALI: Mourdiah, $13-25$ Aug 1986, M. Matthews (3 ơ, BMNH); 20 km SW
 1991, WJP (1 ${ }^{\text {o }}$).

Tachysphex samburu Pulawski, sp. nov.

Figures 328, 330, 331.
Derivation of name.- Samburu, one of the ethnic groups of Kenya, in whose territory this species was first collected.

Recognition.- Tachysphex samburu is one of many species in which the labrum is flat, not emarginate, the mesothoracic punctures are well defined and the interspaces shiny, the setae are erect on the postocellar area, oriented obliquely anterad on the propodeal dorsum, and suberect on the midfemoral venter, and the tarsi are unspecialized (length of midtarsomere II more than twice length, tarsomeres IV longer than wide apically, tarsomeres V without spines on the venter or lateral margins). Both sexes differ from similar species (except some speciosissimus, a northern hemisphere species) in having a rosette-like pattern on the scutum: the setae are oriented posterad along the midline in the anterior one third to two thirds, whereas the adjacent setae are oriented laterad (Figs. 330c, d). In addition, the gaster is red or reddish (only basally so in the male), with welldefined silvery, apical fasciae on terga I-V (I-VI in the male). Unlike speciosissimus (in which the mesopleuron is dull, finely rugose), the mesopleuron of samburu has well-defined punctures and shiny interspaces.

The male of samburu has a unique antenna, with flagellomere III longer than both flagellomeres II and IV, and flagellomere I unusually short, with the ventral length slightly smaller than apical width (Fig. 330e).

Description.- Mesothoracic punctures well defined, interspaces unsculptured, shiny; most scutal punctures several to many diameters apart; mesopleural punctures averaging about 2-3 diameters apart; punctures of mesothoracic venter, in male, several to many diameters apart (except close to each other along midline). Propodeal dorsum rugose; side ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae erect on postocellar area, about one midocellar diameter long; on each side of oral fossa next to occipital carina erect, up to almost two midocellar diameters long; on scutum nearly appressed except suberect anterolaterally, oriented posterad along midline in anterior third to about two thirds, with adjacent setae oriented laterad, thus forming a characteristic, rosette-like pattern (Figs. 330c, d); suberect on midfemoral venter, about one midocellar diameter long; oriented obliquely anterad on propodeal dorsum.

Head and thorax black, mandible reddish except basally and apically. Frontal setae silvery in both sexes. Wing membrane slightly infumate; costal vein of forewing yellowish brown, subcostal vein dark brown. Leg coloration: see below. Gaster all red in female, in male segments I and II or

Figure 330. Tachysphex samburu Pulawski, sp. nov.: a - female clypeus and mandible; b-male clypeus and mandible; $c-$ female scutum; d - portion of scutum showing setal pattern; $e-$ antennal base of male.

I-III red, remainder black. Terga I-V in female, I-VI in male, silvery fasciate apically.
ㅇ.- Clypeus (Fig. 330a): bevel longer than basomedian area; lip free margin evenly arcuate. Width of postocellar area 1.9-2.0 \times length. Dorsal length of flagellomere I 2.3-2.6 \times apical width; middle flagellomeres unusually long, e.g., dorsal length of III 3.5-3.7 \times apical width. Dorsal foretibial surface with either one or two minute spines or without spines or bristles; outer surface with two spines. Forebasitarsus with seven or eight rake spines. Venter of apical tarsomeres with one subbasal and one subapical spine. Apical depression of tergum V setose anteriorly, asetose near api-
cal margin. Pygidial plate with well-defined punctures that average many diameters apart (many lateral punctures less than one diameter apart in some specimens); interspaces microsculptured. Length $8.5-11.5 \mathrm{~mm}$. Femora black or mid- and hindfemora partly reddish; tibiae black except reddish basally to partly reddish; tarsi black with apex reddish.
0^{7}.- Mandible: trimmal carina with tooth, without cleft (Fig. 330b). Clypeus (Fig. 330b): bevel longer than basomedian area; lip free margin arcuate, with obtuse corner; distance between corners $1.5-1.8 \times$ distance between corner and orbit. Width of postocellar area 2.3-2.6 \times length. Ventral length of flagellomere I smaller than apical width, dorsal length $1.0-1.1 \times$ apical width and equal to 0.8 of II; dorsal length of flagellomere III 1.9-2.0 \times that of II and 1.2-1.3× that of IV (Fig. 330e). Forefemoral notch microscopically setose. Outer margin of forebasitarsus with 1-4 rake spines (i.e., without preapical spines in some specimens); outer apical spine of foretarsomere II slightly shorter to longer than tarsomere III. Sternal punctures well defined. Length $5.9-8.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 331. Forefemur mainly black (apex red), but apical half red in some specimens; mid- and hindfemora varying from black to red; tibiae red in most specimens, but largely

Figure 331. Tachysphex samburu Pulawski, sp. nov.: volsella and penis valve. black in some; tarsi red.

Geographic distribution (Fig. 328).- Kenya, Tanzania.
Records.- Holotype: ㅇ, KENYA: Eastern Province: near Ewaso Ng' iro River opposite Archer's Post at $0^{\circ} 38.1^{\prime} \mathrm{N} 37^{\circ} 40.4^{\prime} \mathrm{E}, 19-20$ Dec 2002, WJP (CAS). Paratypes: KENYA: Eastern Province: same locality as holotype, $2-8$ Dec 2002, M.A. Prentice (2 ㅇ, 25 ơ $^{\circ}$), WJP (2 ㅇ), 19-20 Dec 2002, M.A. Prentice
 2003 (1 ه̛).

Tachysphex saturnus Arnold

Figures 332-335.
Tachysphex saturnus Arnold, 1924:52, ㅇ. Holotype: ㅇ, South Africa: Eastern Cape Province: Algoa Bay (TMP), examined.-Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:276 (listed).
Tachysphex halictiformis Arnold, 1945:100, ㅇ, $\overbrace{}^{*}$. Lectotype: \circlearrowleft^{*}, Madagascar: Bekily (MNHN), here designated, examined. New synonym.- Leclercq, 1960:98 (Madagascar), 1961:111 (Madagascar); Bohart and Menke, 1976:274 (listed); Leclercq, 1990b:117 (Madagascar); Pulawski, 2003:798 (in checklist of Malagasy Sphecidae).

Lectotype selection.- Arnold described halictiformis from two females and two males, and designated a female from Ranomafana and a male from Bekily as types. Designating the female was contrary to Article 72.1.1 of the Code, because the specimen was not included in the original description. I have selected the male as the lectotype.

Recognition.- Tachysphex saturnus is an all black species with punctate mesopleuron (interspaces shiny), a flat labrum, and both ends of crossvein cu-a nearly equidistant from the wing base. The notaulus of most specimens is easily recognizable, at least as wide and deep as the admedian line (Fig. 334a).

The female is further characterized by two lateral incisions on each side of the clypeal lip (Fig. 332a), the outer margin of the forebasitarsus somewhat expanded subbasally (hence most of the outer margin is slightly concave), hindtarsomere IV as wide as long, and the apical tarsomeres without ventral spines but with a convex apical margin.

The male has a distinctive clypeus whose lip is separated from the bevel by a deep constriction and reduced laterally; and the lobe is delimited laterally by a small tubercle at its free margin (Figs. $332 \mathrm{~b}-\mathrm{d}$).

JUSTIFICATION OF NEW SYNONYMY.- I could not find any constant character that would separate saturnus (continental Africa) and halictiformis (Madagascar and Comoros). The most obvious difference appears to be in the male clypeal lip, which is a rectangular or arcuate projection in the continental African specimens (Fig. 332b), but it is obtusely pointed in most those from Madagascar (Fig. 332c). In some Malagasy specimens, however, the lip is also a rectangular projection, like in the continental form, and many intermediates occur. Other character show similar variation. The Malagasy and the continental African populations are clearly conspecific, and their names are synonyms.

Description.- Scutal and mesopleural punctures varying from large to minute and from about one to several diameters apart; interspaces unsculptured, shiny. Notaulus at least as conspicuous as admedian line in most specimens (Fig. 334a), evanescent in some from continental Africa. Axilla somewhat swollen adlaterally and abruptly sloping down laterally. Punctures of mesothoracic venter 1-3 to several diameters apart. Episternal sulcus complete or incomplete. Propodeal dorsum irregularly or longitudinally ridged, irregularly rugose in some specimens, with ridges diverging posterad in most Malagasy specimens; apical half in many specimens irregularly transversely ridged (Fig. 332e); side ridged. Hindcoxal dorsum with inner margin carinate basally, carina slightly expanded basally.

Setae (numbers in parentheses represent setal length expressed as a fraction of basal mandibular width): straight, erect on postocellar area ($0.3-0.4$) and on each side of oral fossa next to occipital carina (0.3), inclined on scutum (0.2 anteriorly), inclined anterolaterad on propodeal dorsum (0.4) except laterally, suberect on midfemoral venter (0.2 in female, less than one midocellar diameter in male).

Head, thorax gaster, and legs black, mandible reddish mesally, apical tarsomeres dark brown (tarsi all reddish in some males). Frontal setae silvery in both sexes. Wing membrane infumate (only slightly so in many males); forewing costal vein light brown to brown, subcostal vein dark brown. Terga I-IV silvery fasciate apically in both sexes.

ㅇ.- Labrum arcuate or (most specimens) broadly, shallowly emarginate. Clypeus (Fig. 332a): bevel slightly shorter than basomedian area in most specimens, as long as latter in some; lip free margin arcuate, with two lateral incisions on each side, shallowly emarginate mesally in some specimens. Width of postocellar area 1.3-1.4 \times length. Dorsal length of flagellomere I $1.5-1.8 \times$ apical width. Forefemoral venter minutely punctate, punctures several diameters apart. Dorsal foretibial surface with one spine or several suberect bristles; outer surface with one or two long bristles, without spines. Outer side of foretarsomere I with 8-11 rake spines, outer margin slightly expanded subbasally (thus slightly concave between expansion and apex). Length of hindtarsomere IV equal to apical width; dorsoapical emargination almost rectangular; apicoventral margin roundly concave (Figs. 333a, c). Hindtarsomere V slightly longer than in most Tachysphex (Figs. 333a, b), venter with apicomedian bristle, apicoventral margin convex, lateral margin without spines (Fig. 333d); inner claws of mid- and hindtarsi slightly larger than outer claws (opposite on foretarsus). Apical depression of tergum V either all glabrous or setose mesally. Pygidial plate mostly impunctate (with punctures concentrating near margins), interspaces practically unsculptured. Length $7.2-8.9 \mathrm{~mm}$.

Figure 332. Tachysphex saturnus Arnold: a - female clypeus and mandible ($\times 44$); b-clypeus of male from continental Africa ($\times 51$); c clypeus of male from Madagascar ($\times 60$); d - clypeus of male from Madagascar in lateral oblique view $(\times 120)$; e - propodeal dorsum of female from Madagascar in lateral oblique view $(\times 72)$.
σ^{*}. - Mandible: trimmal carina with tooth (tooth low, inconspicuous in some specimens), with or without cleft. Clypeus (Figs. 332b-d): constricted between lip and bevel; bevel markedly shorter than basomedian area; lip varying from obtusely pointed (many Malagasy specimens) to arcuate or rectangular projection that is narrower than lobe; corner of median lobe with small, round to

Fourth Series, Volume 58, Supplement I

Figure 333. Tachysphex saturnus Arnold, female: a -hindtarsomeres IV and V in dorsal view ($\times 90$); b-hindtarsomeres IV and V in lateral view ($\times 72$); c - hindtarsomere IV in dorsal view ($\times 187$); d - hindtarsomere V in ventral view $(\times 180)$.
nearly rectangular tooth that is slightly removed from free margin but that superficially looks like lip corner; distance between teeth about $0.8-0.9 \times$ distance between corner and orbit. Width of postocellar area $1.2-1.5 \times$ length. Dorsal length of flagellomere I 1.0-1.5 \times apical width, ventral length varying from less than to more than apical width; flagellomeres III-IX in some specimens with longitudinal groove that delimits two differently setose areas (as in Figs. 98c-f). Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than this tarsomere's apical width. Venter of tarsomeres V with one or two thin spines near apex (spines rudimentary in smallest specimens). Length $5.2-8.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 334b, c.

Variation.- The scutal hindcorner is markedly prominent in specimens from West Africa and those from Madagascar and the Comoro Islands (Fig. 334a), but nonprominent in southern African populations.

In the male, the dorsal length of flagellomere I is $1.0-1.2 \times$ apical width, equal to about 0.75 of II, with the ventral length being less than apical width in specimens from West Africa, Madagascar and the Comoro Islands. In southern African specimens, the dorsal length of flagellomere I is $1.4-1.5 \times$ apical width, and the ventral length varies from less than to more than apical width.

Geographic distribution (Fig. 335).- Ivory Coast to South Africa, Madagascar, and Comoro Islands.

RECORDS.- BOTSWANA: Xugama (1 ค, PMA). COMORO ISLANDS: Grand Comore: Itsandra

Figure 334. Tachysphex saturnus Arnold: a - female scutum; b - volsella with outlines showing variation of dorsal process; c - penis valve with outline showing variation.
(1 ơ', $^{\text {or }}$ KMG), Kourani ($2 \underset{\uparrow}{\circ}$, MRAC), Le Galawa Hotel ($1 \stackrel{\circ}{ } ; 1 \quad \circ, \mathrm{KMG}$). Mohéli: Miringoni (2 \circ,
 FSAG). IVORY COAST: Abidjan: Cocody (1
 2 or *, ZMAN). MADAGASCAR: no specific locality (1 + , BMNH). Antsiranana: Forêt d'Orangea 3.6 km SE Ramena ($\left.1 \begin{array}{l}\text { ơ }\end{array}\right)$, Reserve Spéciale d'Ankarana 2.6 km E Andrafiabe (1 \&) , Montagne d^{\prime} Ambre National Park at $12^{\circ} 30^{\prime} 52^{\prime \prime} \mathrm{S} 49^{\circ} 10^{\prime} 53^{\prime \prime} \mathrm{E}$ (12 ㅇ, $5 \sigma^{\circ}$) and $12^{\circ} 31^{\prime} 1^{\prime \prime} \mathrm{S} 49^{\circ} 10^{\prime} 5^{\prime \prime} \mathrm{E}\left(2\right.$ ㅇ, 1 o $\left.^{\circ}\right)$, Nosy-Bé Island: Dzamandzar ($1 \mathrm{o}^{*}, \mathrm{LB}$), 1 km W Sakalava Beach (2 σ^{*}), 3 km W Sakalava Beach ($1+$ $1 \delta^{*}$). Fianarantsoa: 40 road km W Ihosy ($1 \stackrel{\circ}{\circ}, 1 \delta^{*}$), Ivato ($1 \circ$, LB), Ranomafana (9 ㅇ, 2 ơ' $^{\circ} 2$ ㅇ, LB; $\left.1 \sigma^{\text {º }}, \mathrm{MNHN}\right)$. Mahajunga: Amborovy 8 km NE
 Toamasina: Ambaton-drazaka ($1 \delta^{*} ; 3$ ค, MRAC), Ampasimanolotra (as Brickaville): Ambila-Lemaitso

Figure 335. Collecting localities of Tachysphex saturnus. (1,+ LB), near entrance to Andasibe National Park at $18^{\circ} 55.6^{\prime} \mathrm{S} 48^{\circ} 24.5^{\prime} \mathrm{E}\left(3\right.$ 오, $\left.1 \mathrm{o}^{\star}\right)$, Fampanambo at $15^{\circ} 25^{\prime} \mathrm{S} 49^{\circ} 40^{\prime} \mathrm{E}$ (Leclercq, 1991), Forêt de Ambohidena
 2 ㅇ, LB; 1 ㅇ, MHNB; 17 ㅇ, 19 o *, MRAC), Mananara (1 ㅇ, MRAC), Maroantsetra ($1 \circ^{\star}$, MHNB), MoraranoChrome (2 ㅇ, MRAC), Soanierana-Ivongo ($1 \circ$, MHNB), Toamasina ($13 \circ$ ㅇ, MRAC). Toliara: Bekily (2 ơ $^{\circ}$, MHNH, including lectotype of halictiformis), Bereboka 60 km NE Morondava ($1 \stackrel{\circ}{ }$, BMNH), Berenty ($1 \mathrm{o}^{*}$). NAMIBIA: Rundu District: Rundu ($1 \stackrel{\circ}{\circ}$, MS). NIGERIA: Ile-Ife ($1 \stackrel{\circ}{\circ}$, AEI). SOUTH AFRICA: Eastern Cape Province: Algoa Bay ($1 \stackrel{\circ}{ }$, TMP, holotype of saturnus), 18 km WNW Grahamstown: Hilton Farm (1 AMG), Howison's Poort 6 km WSW Grahamstown (17 $\uparrow, 10 \sigma^{7}$, AMG), Kenton-on-Sea (1 σ^{7}, AMG). Gauteng: Edenvale ($1 \sigma^{*}$, AMG). Mpumalanga: Loskop Dam Nature Reserve (1 o $^{\pi}$, PPRI), Skukuza in Kruger National Park (1 \&, PMA). Northern Province: Guernsey Farm 15 km E Klaserie (1 ol $^{\boldsymbol{*}}, \mathrm{PMA}$), 10 km SW Naboomspruit (10^{*}, FSCA), Pafuri in Kruger National Park (1 ㅇ, PPRI), Rustenburg Nature Reserve ($2 \sigma^{\circ}$, PPRI), 5 mi W Warmbad (1 ㅇ, $1 \delta^{\text {o }}$, USNM). ZIMBABWE: Lion and Cheetah Park 24 km W Harare $\left(5 \circ, 1 \sigma^{*}\right)$, Redbank at Kami River ($1 \sigma^{*}$), Victoria Falls ($1 \circ+1 \sigma^{*}$).

Tachysphex scaber Pulawski, sp. nov.

Figures 336, 337.
Derivation of name.-Scaber, Latin for rough, scabby, mangy; with reference to the thoracic sculpture.

Recognition.- Like asinus and onager, scaber has the supraantennal swelling punctate and setose (rather than impunctate, glabrous), propodeal side ridged, legs largely red, and gaster at least partly red. In the female, flagellomeres III-X are flattened laterally, each with a characteristic sensory area (as in Figs. 38c-e), the pygidial plate is punctatorugose in most specimens (as in Figs. 39a, b) but closely punctate in some, and the length of midtarsomere II is less than twice its width. The species differs from the other two by its coarser scutal punctation (the punctures are slightly larger than those on the postocellar area and many times those on the postocellar impression). In the male, the clypeal lip is arcuate (obtusely pointed in onager), the forefemoral posteroventral surface is impunctate at least in apical third (forefemur densely punctate in asinus), and the sternal setae are appressed or nearly so except for the usual few erect setae at the base of each apical depression (in onager and most asinus, the setae are suberect on the apical depressions of sterna III-VI).

Description.-Labrum convex apically, slightly protruding beyond clypeal free margin. Galea shiny, with well-defined punctures that vary from about one to several diameters apart, as long as 0.8 of scape. Supraantennal swelling ill defined, punctate and setose. Scutal punctures well defined, conspicuous, most or all being less than one diameter apart. Mesopleural punctures conspicuous, well defined, averaging about one diameter or less apart. Episternal sulcus complete or nearly so. Propodeal dorsum markedly, irregularly rugose; side ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae suberect on each side of oral fossa next to occipital carina, about $1.5 \times$ midocellar diameter long; appressed on postocellar area and scutum; oriented posterad on propodeal dorsum.

Head and thorax black, mandible reddish preapically. Frontal and clypeal setae with golden tinge in female, golden in male. Wing membrane yellow, somewhat darkened in apical two fifths or so; costal and subcostal veins of forewing reddish brown. Coloration of femora and gaster: see below. Tibiae and tarsi red. Terga I-III or I-IV fasciate apically, fasciae silvery or golden (ill defined in some specimens).

ㅇ.- Clypeus (Fig. 336a): bevel about as long as basomedian area; lip free margin arcuate, with two lateral incisions on each side. Width of postocellar area 1.1-1.2 \times length. Dorsal length of flagellomere I 1.5-1.6 \times apical width, flagellomeres VII-IX about as wide as long; flagellomeres III-X flattened laterally, with characteristic sensory areas (as in Figs. 38c-e). Forefemoral venter, at least in apical half, unsculptured except for large, sparse punctures, unsculptured zone extending onto posterior surface near apex. Midfemoral posterior surface unsculptured or nearly so near apex. Dorsal foretibial surface with two spines or a few suberect, inconspicuous bristles; outer surface with 1-3 setae, narrowly asetose. Tarsi short: length of fore- and midtarsomeres II 1.1-1.2 and 1.6 \times apical width, respectively; that of midtarsomere III $1.0-1.1 \times$ apical width; of fore-, mid-, and hindtarsomeres IV $0.9-1.0,0.9$, and $1.0 \times$ apical width, respectively. Forebasitarsus with $11-14$ rake spines. Apical depression of tergum V varying from setose to asetose. Pygidial plate incised apically, punctatorugose in most specimens but punctate in single female from Natal (in which punctures are of two sizes: small, dense, and large, sparse; most small punctures about one diameter apart). Length 11.6-13.4 mm. Forefemur black (red apically), mid- and hindfemora red except black basally. Gastral segments I and II or I-III red, remainder black.
σ^{*}.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 336b) with small, obtuse carina emerging from each lip corner; bevel varying from markedly shorter to about as long as baso-

Figure 336. Tachysphex scaber Pulawski, sp. nov.: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella.
median area; lip free margin arcuate, with well-defined corner; distance between corners 1.0-1.1 \times distance between corner and orbit. Width of postocellar area $0.9-1.1 \times$ length. Dorsal length of flagellomere I 1.2-1.3 \times apical width, equal to about 0.7 of II; ventral length equal to apical width or slightly smaller. Forefemoral venter, in apical third or so, unsculptured except for a few, sparse punctures (unsculptured area either narrow or wide). Forefemoral notch microscopically setose, margined posteriorly. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Length of midtarsomeres II and III 1.7-2.0 and $1.2 \times$ apical width, respectively. Venters of tarsomeres V each with one or two small, preapical spines. Sternum VIII tridentate apically. Length $10.0-10.4 \mathrm{~mm}$. Volsella: Fig. 336c, penis valve as in asinus (see Fig. 40c). Femora black to largely red (black basodorsally). Gaster red or with apex slightly darkened or (specimens from Zoutpansberg area, South Africa) segments I-III red, remainder black.

Geographic distribution (Fig. 337).- Namibia, Botswana, Zambia, Zimbabwe, northeastern South Africa.

RECORDS.-Holotype: \mho°, ZAMBIA: 25 km E Lusaka at $15^{\circ} 21^{\prime} \mathrm{S} 28^{\circ} 30^{\prime} \mathrm{E}$, 14 Mar 1995, WJP (CAS). Paratypes: BOTSWANA: Gemsbok Pan, 23 Apr-5 May 1930, Vernay-Lang Kalahari Expedition (1 ¢, TMP, determined asinus by G. Arnold). NAMIBIA: Ondangwa District: 38 km SE Ondangwa, 9 May 1971, collector unknown (1 ㅇ, NMN). Rundu District: Rundu at $17^{\circ} 53.4^{\prime} \mathrm{S} 19^{\circ} 46.9^{\prime} \mathrm{E}, 27-31$ Mar 1997, M. and O. Niehuis ($1 o^{*} ; 1 \sigma^{7}$, OHL). SOUTH AFRICA: Kwazulu-Natal: Natal, no specific locality or date, Frere ($1 \quad$ \& , SAM, determined asinus by G. Arnold). Northern Province: "N.E. Zoutp. dist." [probably NE Zoutpansberg near Louis Trichard], July and Aug 1916, H.G. Breyer ($1 \circ ; 2$ ơ, TMP). ZAMBIA: Lusaka,

25 June 1974, E.F. Mambanda (1 ํ, UCD). ZIMBABWE: Bulawayo, R. Stevenson, 28 Mar 1923 (1 ㅇ, SAM; 1 ơ, TMP), $^{\text {r }} 8$ May 1923 (1 ㅇ, SAM),
 6 Apr 1924 ($1 \sigma^{*}$, TMP), and 12 Apr 1924 ($1 \sigma^{\circ}$, SAM); Gwanda, Apr 1937, R.H.R. Stevenson (1 ơ;
 2 May 1917, G. Arnold (1 \uparrow, TMP); Shashe River near Tuli, 2-14 May 1959, no collector's name (1 \circ, SAM).

Tachysphex scaurus Arnold

Figures 338-341.
Tachysphex scaurus Arnold, 1945:98, ㅇ, ठ․ Lectotype: + , Madagascar: Bekily (MNHN), here designated, examined.- Leclercq, 1961: 110 (Madagascar); Bohart and Menke, 1976:276 (listed); Pulawski, 2003:798 (in checklist of Malagasy Sphecidae).
Recognition.- Tachysphex scaurus is known only from Madagascar and Aldabra Island. In the female, tarsomeres IV are wider than long (Fig. 338b), and their apicoventral margins are roundly prominent mesally; tarsomeres V are angulate basoventrally, each with a central cluster of small spines on the venter and the apicoventral margin produced into a lobe (Fig. 338d); and one claw of each leg is smaller than the other. In addition, the scutum and scutellum are flattened. Unlike suavis and subcoriaceus, the other Madagascan species with these characteristics, the female of scaurus has $8-10$ rake spines on the forebasitarsus (the apical three or four spines with sockets contiguous), 4-6 rake spines of foretarsomere II (the apical three or four with sockets contiguous), and the outer margin of foretarsomeres III and IV is markedly shorter than the inner margin. Females of the other two species have 5-7 rake spines on the forebasitarsus (of which only the apical two have contiguous sockets), two or three rake spines on foretarsomere II (of which only the apical two have contiguous sockets), and the outer and inner margins of foretarsomere III are about equal in length.

The male of scaurus is unique among Madagascan species in having expanded lateral margins of the apical tarsomeres, each expansion with a row of minute spines (Fig. 339d). It also has black tibiae and silvery frontal setae. The apical tarsomeres are also expanded in the African auropilosus and hippolyta and the Oriental changi. In the first two, however, the tibiae are red, the frontal setae are golden, and the clypeus is a different shape (compare Figs. 339a, 48b, and 184b). In hippolyta, in addition, the lateral expansions of apical tarsomeres lack the small spines. Unlike changi, the mesopleural punctures of scaurus are minute (rather than conspicuous), the setae are appressed on the postocellar area and scutum (rather than erect), and the clypeal lobe is broad (distance between lobe corners more than distance between a corner and orbit, while less than that in changi).

Description.- Scutal punctures, on disk, up to 2-3 diameters apart in some females and up to several diameters on disk in others, 1-2 diameters apart in male; interspaces evenly microareolate. Mesopleuron beneath scrobe and mesothoracic venter with punctures that average several diameters apart in female, about 2-3 diameters in male; interspaces evenly microareolate. Episternal sulcus complete in some specimens. Propodeal dorsum irregularly, longitudinally ridged (ridges evanescent posteriorly in small males), side ridged. Hindcoxal dorsum with inner margin carinate, carina somewhat expanded basally.

Setae in most specimens straight: erect on postocellar area (length about $1.0-1.5 \times$ midocellar diameter), slightly sinuous in single female from Montagne d'Ambre, Madagascar; erect on each side of oral fossa next to occipital carina (length about $0.4 \times$ basal mandibular width); nearly appressed on scutum (length about $1.0 \times$ midocellar diameter); inclined toward coxa on midfemoral venter (longest setae about 0.3 of basal mandibular width); oriented obliquely anterad on propodeal dorsum (but lateral setae oriented posterad and meeting apicomesally). A female from Amborovy differs in having the setae sinuous and markedly longer (about 0.4 basal mandibular width) on postocellar area, next to hypostomal carina, and on scutum (scutal setae erect).

Head, thorax, legs, and gaster black except mandible largely reddish, also pygidial apex reddish in most females; tarsal apex brown reddish. Frontal setae silvery in both sexes. Wing membrane nearly hyaline; forewing costal vein brown, subcostal vein dark brown. Terga I-IV (I-V in some males) silvery fasciate apically.

ㅇ.- Labrum emarginate. Clypeus (Fig. 338a): bevel as long as basomedian area or longer; lip free margin arcuate, shallowly emarginate mesally, with two lateral incisions on each side. Width of postocellar area 1.2-1.5 \times length. Dorsal length of flagellomere I $2.2-2.5 \times$ apical width. Scutum and scutellum flattened. Fore- and midtrochanteral venters unsculptured or alutaceous and with a few punctures that are many diameters apart. Fore- and midfemoral venters and posterior surfaces with well-defined punctures that are many diameters apart; interspaces unsculptured or nearly so. Dorsal foretibial surface with several suberect, inconspicuous bristles; outer surface impunctate, glabrous except for a few fine bristles, without spines. Forebasitarsus with $8-10$ rake spines.

Figure 338. Tachysphex scaurus Arnold, female: a - clypeus ($\times 60$); b - foretarsomere IV ($\times 240$); c - hindtarsomeres IV and $\mathrm{V}(\times 168)$; $\mathrm{d}-$ hindtarsomere V in ventral view ($\times 300$).

Fourth Series, Volume 58, Supplement I

Figure 339. Tachysphex scaurus Arnold, male: a - clypeus $(\times 72)$; b - base of forefemur showing notch $(\times 120)$; c - forefemoral notch $(\times 300)$; d - hindtarsomere V in lateral view $(\times 240)$; e - hindtarsomere V in ventral view $(\times 360)$.

Tarsomeres III with apicoventral margin arcuate. Tarsomeres IV (Fig. 338b, c) wider than long, with dorsoapical margin broadly emarginate, almost straight and apicoventral margin obtusely prominent; outer margin of foretarsomeres III and IV markedly shorter than inner margin. Tarsomeres V angulate basoventrally, with central cluster of small spines on venter; each lateral margin with several small spines subbasally (Figs. 338c, d), apicoventral margin produced into lobe (Fig. 338d). Outer claws of mid- and hindtarsi shorter, thinner than inner claws (opposite on foretarsus). Apical depression of tergum V impunctate, glabrous. Pygidial plate punctate, punctures

Figure 340. Tachysphex scaurus Arnold: a - individual variation of clypeus; b - volsella with outline showing variation; c - penis valve.
averaging several diameters apart; interspaces unsculptured or nearly so. Length 6.2-9.0 mm.
0^{π}.- Mandible: trimmal carina with obtuse tooth, without cleft. Clypeus (Figs. 339a, 340a): bevel absent or ill defined, shorter than basomedian area; lip free margin arcuate, sinuate, nearly straight, or concave, with welldefined corner; distance between corners $1.2-1.3 \times$ distance between corner and orbit. Width of postocellar area $1.2-1.3 \times$ length. Dorsal length of flagellomere I 1.5-1.7 \times apical width, equal to about 0.7 of II. Forefemoral notch with microscopic, erect setae (Figs. 339b, c). Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Venters of tarsomeres V each with preapical cluster of

Figure 341. Collecting localities of Tachysphex scaurus. small spines (Fig. 339e); lateral margins obtusely expanded, each with several small spines subbasally (Fig. 339e). Sterna IV-VI densely punctate on apical depressions (punctures 1-2 diameters apart), remainder with punctures that are several diameters apart. Length 5.6-6.2 mm. Volsella and penis valve: Figs. 340b, c.

Geographic distribution (Fig. 341).- Madagascar, Aldabra.
Records.- MADAGASCAR: Antsiranana: Forêt d'Orangea 3.6 km SE Ramena ($1 \stackrel{9}{ }$, $1 \mathrm{o}^{7}$), 7 km N Joffreville at $12^{\circ} 20^{\prime} \mathrm{S} 49^{\circ} 15^{\prime} \mathrm{E}(1+9)$, Parc National Montagne d'Ambre at $12^{\circ} 31^{\prime} 13^{\prime \prime} \mathrm{S} 49^{\circ} 10^{\prime} 45^{\prime \prime} \mathrm{E}$ (6 o , $1 \circ^{\circ}$), Reserve Spéciale d'Ankarana 2.6 km E Andrafiabe (1 \&), Sakalava Beach at $12^{\circ} 15^{\prime} 46^{\prime \prime} \mathrm{S} 49^{\circ} 23^{\prime} 51^{\prime \prime} \mathrm{E}$ ($1 \sigma^{\circ}$), 1 km W Sakalava Beach ($2+4 \sigma^{\circ}$). Fianarantsoa: Ihosy ($1 \sigma^{\circ}$, MNHN, paralectotype of scaurus). Mahajanga: Amborovy 8 km NE Mahajanga ($5 \circ$ o, $4 \circ^{\circ}$), Forêt d'Ambohimanga at $15^{\circ} 57^{\prime} 46^{\prime \prime} \mathrm{S} 47^{\circ} 26^{\prime} 17^{\prime \prime} \mathrm{E}$ (3 σ°), Mahatazana ($1+$, MHNB), Mahavavy River 6.2 km SE Mitsinjo at $16^{\circ} 03^{\prime} 06^{\prime \prime} \mathrm{S} 45^{\circ} 54^{\prime} 30^{\prime \prime} \mathrm{E}\left(30^{\circ}\right)$. Toliara: Ambovombe ($1 \sigma^{\boldsymbol{7}}, \mathrm{MHNB}$), Bekily ($1 \stackrel{+}{\circ}$, MNHN, lectotype of scaurus; $2 \circ$ ㅇ, SAM, including one

 SEYCHELLES: Aldabra: Ile Michel ($2 \sigma^{\circ}$, BMNH).

Tachysphex schmiedeknechti Kohl

Figures 337, 342, 343.
Tachysphex schmiedeknechti Kohl, 1883a:170, of (as Schmiedeknechti, incorrect original capitalization). Lectotype: ${ }^{\circ}$, Greece: Attica: Egina, also spelled Aegina, now Aiyina (NHMW), here designated, exam-ined.- Kohl, 1885:375 (in revision of Larrini); Dalla Torre, 1897:685 (in catalog of world Hymenoptera); de Beaumont, 1940:171 (in revision of Egyptian Tachysphex); Honoré, 1942:56 (in checklist of Egyptian Sphecidae); de Beaumont, 1947a:185 (in revision of Egyptian Tachysphex), 1950a:405 (Algeria), 1950b:20 (Egypt); Gussakovskij, 1952:240 (Transcaspia); Bytinski-Salz, 1956:226 (Turkey); de Beaumont, 1956a:197 (Libya), 1958:61 (Algeria), 1960a:18 (Greece: Island of Rhodes), 1960b:238 (Libya), 1965:48 (Greece); Myartseva, 1965:77 (Turkmenistan); Pulawski, 1967:398 (Turkey), 1971:389 (in revision of Palearctic Tachysphex); Myartseva, 1972a:79 (Turkmenistan), 1972b:112 (chrysidid parasite); de Beaumont, Bytinski-Salz, and Pulawski, 1973:12 (Israel); Bohart and Menke, 1976:276 (listed); Myartseva, 1976:77 (nesting habits); Kazenas, 1978:114, 126 (in key to Sphecidae of Kazakhstan and Central Asia); Guichard, 1980:227 (Oman); Gayubo and Mingo, 1988:82 (Spain); Dollfuss, 1989:13 (type material in NHMW); Guichard, 1991:339 (Jordan); Krombein and Pulawski, 1994:13 (summary of nesting habits), 93 (in revision of Sri Lankan Tachysphex); Roche and Zalat, 1994:115 (Egypt: Sinai); Kazenas, 2001:30 (in checklist of Sphecidae of Kazakhstan and Central Asia), 160 (summary of nesting habits); Schmid-Egger and Bitsch in Bitsch et al., 2001:271 (in Sphecid Fauna of Western Europe); Kazenas, 2002:75 (Kazakhstan); Gadallah and Assery, 2004:1396 (skeletal parts of sting apparatus).
Tachysphex psilopus Kohl, 1884:371, ơ *. Holotype or syntypes: ${ }^{\boldsymbol{*}}$, Egypt: Sinai Peninsula: Tor (NHMW), examined before 1971. Synonymized with Tachysphex schmiedeknechti by de Beaumont, 1940:171.Dalla Torre, 1897:684 (in catalog of world Hymenoptera); Bingham, 1898:104 (Yemen).
Tachysphex heliophilus Nurse, 1909:515, ㅇ, ${ }^{\top}$. Lectotype: ${ }^{\circ}$, India: Gujarat: Deesa (BMNH), designated by Pulawski, 1975:312, examined in 1974. Synonymized with Tachysphex schmiedeknechti by Pulawski, 1975:312.
Tachysphex ornatipennis Gussakovskij, 1933:283, ${ }^{\circ}$. Holotype: $0^{\star 7}$, former Persian province Seistan, now part of Iran and Afghanistan: no specific locality (ZIN), reexamined in 2006. Synonymized with Tachysphex schmiedeknechti by Pulawski, 1971:389.
Tachysphex fasciipennis Gussakovskij, 1933:283, ơ. Holotype: 0°, Turkmenistan: Farab (ZIN), reexamined in 2006. Synonymized with Tachysphex schmiedeknechti by Pulawski, 1971:389.- Myartseva, 1963:58 (Turkmenistan).
Tachysphex calopteryx Gussakovskij, 1933:284, + . Holotype: + , Turkmenistan or Uzbekistan: KaraDzhuzgun sands near Aral Lake in Kara Kum Desert (ZIN), reexamined in 2006. Synonymized with Tachysphex schmiedeknechti by Gussakovskij, 1952:240.
Tachysphex schmiedeknechti satanas Pulawski, 1971:393, ㅇ, ® $^{\circ}$. Holotype: ${ }^{\circ}$, Syria: Ramadan near Damascus (MSNT), examined before 1971. Synonymized with Tachysphex schmiedeknechti by Pulawski in Krombein and Pulawski, 1994:94.- Bohart and Menke, 1976:276 (listed).

RECOGNITION.- Tachysphex schmiedeknechti can be recognized by a conspicuously reticulate scutum and mesopleuron (Fig. 342c), widely spaced rays of the inner hindtibial spur (Fig. 343b), and female flagellomeres IV-X flattened laterally, with a well-defined ventral edge. A similar sculpture is found on the scutum and mesopleuron of prosopigastroides and on the mesopleuron of most mediterraneus, a similar hindtibial spur in micans, some pulcher, the female of crocodilus, and most females of speciosissimus, whereas prosopigastroides has a similar female flagellum. The combination of the three characters, however, is unique to schmiedeknechti. A dark transverse band on the forewing found in most specimens (Fig. 342d) is a subsidiary recognition feature (forewing all infumate in occasional specimens, Fig. 342e).

Description.-Supraantennal swelling triangularly prominent, although less so than in prosopigastroides, and evenly rounded in smallest males. Scutum and mesopleuron characteristically reticulate (Fig. 342c). Propodeal dorsum rugose, irregularly ridged longitudinally near base;

Figure 342. Tachysphex schmiedeknechti Kohl: a - female clypeus and mandible; b - male clypeus and mandible; c - scutal sculpture; d - forewing of average specimen; e - forewing of melanic specimen; f - male sternum VIII with outline showing individual variation; g - volsella; h - penis valve.
side ridged; posterior surface, in dorsal third or so, with wide median impression. Hindwing crossvein cu-a oblique in some specimens, with anal end further away from wing base than cubital end. Hindcoxal dorsum with inner margin carinate basally, carina not expanded. Inner spur of hindtibia with thick, widely spaced rays (Fig. 343b). Apical tarsomeres with several long, erect spines on venter, but no spines on lateral margins. Sternum I, in many specimens, with longitudinal carina.

Setae (figures in parentheses refer to length expressed as a fraction of basal mandibular width): erect, sinuous on postocellar area ($0.4-0.7$) and on each side of oral fossa next to occipital carina ($0.7-0.8$); sinuous, suberect on frons and scape; evenly curved, oriented posterad on scutum except suberect, sinuous anteriorly; sinuous, oriented posterad on propodeal dorsum except oriented anterad anteromesally; nearly erect on midfemoral venter; suberect on tergum I basolaterally (about 0.5). Sternum I in many specimens largely glabrous.

Head and thorax black. Frontal setae silvery in female and small males, golden (all or partly) in large males. Forewing in most specimens with dark, transverse band (Fig. 342d) that is faint in some females; conspicuously yellow between base and band in Ghanaian and some Senegalese specimens; all wings markedly infumate in some specimens from Algeria, Morocco, and Syria (Fig. 342e). Legs black (tarsal apex reddish), hindtibia partly red in some males; hindfemur (all or partly) and hindtibia red in males from Gambia and Ghana and most from Niger and Senegal, also midtibia in some. Gaster all black in most females and some Syrian males (that were described as schmiedeknechti satanas by Pulawski, 1971), but terga I-III red in most males and also in females from Ghana, Nigeria, and some from Senegal. Terga I-III silvery fasciate apically in female, not fasciate in male.

ㅇ.- Clypeus (Fig. 342a): middle section irregularly punctate (large punctures intermixed with small ones), bevel ill defined or not differentiated from basomedian area; lip free margin arcuate, not incised laterally. Width of postocellar area $1.0-1.2 \times$ length. Dorsal length of flagellomere I $2.5-3.2 \times$ apical width; flagellomeres III-X flattened laterally, with well-defined ventral edge, and inner and outer surfaces differently sculptured. Punctures of forefemoral venter several diameters apart. Dorsal foretibial surface with two or three spines; outer surface with one to three spines, in some specimens sparsely punctate and setose. Forebasitarsus with 7-9 rake spines. Pygidial plate unsculptured except for a few, sparse punctures, slightly constricted near apex, apex rounded. Length $8.0-11.0 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 342b): middle section irregularly punctate (large punctures intermixed with small ones), bevel not differentiated from basomedian area; lip free margin evenly arcuate, corner nonprominent; distance between corners 0.7-1.0× distance between corner and orbit. Width of postocellar area $0.8-1.0 \times$ length. Dorsal length of flagellomere I 2.4 $-3.0 \times$ apical width. Forefemoral notch glabrous, with pointed proximal margin and ill-defined distal margin (Fig. 343a). Outer margin of forebasitarsus with 5-8 rake spines. Sterna asetose (except for erect setae that delimit apical depressions); apical margin of sternum VIII in most specimens with median expansion (Fig. 342f). Length 6.0-10.0 mm. Volsella and penis valve: Figs. 342g, h.

Nesting behavior.- Myartseva (1976) observed the nesting habits of schmiedeknechti on sandy banks of the Tedjen River in Turkmenistan. The burrows, $11-21 \mathrm{~cm}$ long, ended in a single cell $5-8 \mathrm{~cm}$ below the soil surface. As in other species of the genus, nest construction precedes hunting, and forelegs are used for digging. The nest entrance is closed when the wasp is away for hunting (confirmed by Kazenas, 2001). Prey are mantids, either adults of small species, or second and third instars of large species, and flown to the nest. One to three prey are stored per cell. Both females and males dig temporary galleries in which they stay overnight, but females also use unfin-

Figure 343. Tachysphex schmiedeknechti Kohl: a - forefemoral base of male ($\times 72$); b - inner hindtibial spur of female (×126).
ished nests. De Beaumont (1955) found a female carrying a prey, a paralyzed nymph of Mantis religiosa Linnaeus, in Morocco.

The males perch on the ground, small plants, or slight elevations, watching insects that fly around and obviously looking for females. From time to time they fly away and return to the same perch or go to another one (Kazenas, 2001).

Myartseva (1972b) reared Chrysis decora Mocsáry, 1887 (as mesasiatica Semenov, 1912), from a nest of this species.

Geographic distribution (Fig. 337).- North Africa south to Ghana and Kenya, southern Spain, southern Greece, Cyprus, southern Turkey, Syria, Yemen, Iran, Transcaspia (Kazakhstan, Uzbekistan, Turkmenistan, and Tajikistan), northwest India.

Records.- ALGERIA: Bou Hanifia ($5 \delta^{\circ}, \mathrm{CU}$), Laghouat (de Beaumont, 1950a), Selfana = Zelfana ($1 \mathrm{o}^{\mathrm{R}}, \mathrm{FSAG}$), Tassili des Ajjer: Oued Oukrima (de Beaumont, 1958). Also: Méla (1 ơ, FSAG), a locality of unknown location. BURKINA FASO: Pala near Bobo Dioulasso ($1 \mathrm{o}^{\star}$). CYPRUS: Saettas (Pulawski, 1971),

 (= Cairo): Gebel Asfar and Helwan (de Beaumont, 1940), Maadi (3 \circ, 8 d $^{\circ}$). Al-Uqsur (= Luxor): near
 Mauwhoop (1 ㅇ, ZMAN), Mut (6 ค, 19, ơ, ZMAN); Kharga oasis (de Beaumont, 1940); Siwa oasis (de Beaumont, 1950a): Khamissa, Sitra. As Suways (= Suez): Fayed ($1 \mathrm{\delta}^{\circ}$), 10 km N Suez at $30^{\circ} 03^{\prime} \mathrm{N} 32^{\circ} 34^{\prime} \mathrm{E}$
 Nile valley (10°, OÖLM). Sina (= Sinai): Abu Rudeis at $28^{\circ} 54^{\prime} \mathrm{N} 33^{\circ} 11^{\prime} \mathrm{E}\left(10^{\circ}, \mathrm{CSE}\right)$, Ain Hudra at $28^{\circ} 55^{\prime} \mathrm{N}$ $34^{\circ} 33^{\prime} \mathrm{E}$ ($2 \mathrm{o}^{\circ}$, CSE), Tor (Kohl, 1884), Wadi Gharandal 30 km NW Abu Zenima (1 \& \&), Wadi Sudr 50 air km
 S Kartung ($1 \mathrm{o}^{\star}, \mathrm{ZMLU}$). GHANA: Kawampe 45 km N Kintampo at $8^{\circ} 30^{\prime} \mathrm{N} 1^{\circ} 35^{\prime} \mathrm{W}\left(1 \stackrel{\circ}{ }+6 \mathrm{o}^{\circ}\right)$. GREECE:
 SCHL). Attica: Aiyina ($1 \quad+$, NHMW, lectotype of schmiedeknechti). Ionian Islands: Zakinthos (1 o°). Pelopónnisos: Messenia: Finikous ($\begin{aligned} & \text { d }\end{aligned}$), Pyrgos (de Beaumont, 1965). Sterea Ellás (= Central Greece): Legrena (Pulawski, 1971). INDIA: Gujarat: Deesa ($1+$, BMNH, lectotype of heliophilus). IRAN (Pulawski, 1971): Baluchestan va Sistan: Benduk, Neizar. ISRAEL (de Beaumont, Bytinski-Salz, and Pulawski, 1973): Bat Yam, Elat, Haifa; also: 8 km NNE Ashkelon ($1 \mathrm{o}^{7}, \mathrm{CSE}$), 32 km SE Beersheba $=5 \mathrm{~km}$ E Yeroham ($1 \mathrm{ơ}^{\text {fo }}$, CSE), En Aqev near Sede Boker at $30^{\circ} 50.01^{\prime} \mathrm{N} 34^{\circ} 48.64^{\prime} \mathrm{E}\left(10^{\circ}\right.$, CSE), Iddan in Arava Valley (10°), Nakhal Mangan (wadi) about 2 km N Elifaz in Negev Desert (1 \& , UCD), Nasholim Beach 22 km S Haifa ($1 \circ^{\circ}, \mathrm{CSE}$), Qetura Kibbutz in Arava Valley (3 ơ, UCD), Ramon Crater in Negev Desert (1 0°, UCD), wadi near Saw Mill, Shizav Nature Reserve near Hazeva (1 \&, CSE). JORDAN: Aqaba and 15 km S Aqaba (Guichard, 1991),

Wadi Rum at $29^{\circ} 34.20^{\prime} \mathrm{N} 35^{\circ} 24.30^{\prime} \mathrm{E}\left(1 \mathrm{c}^{\circ}\right.$, RMNH). KAZAKHSTAN ($\mathrm{K}=$ Kazenas, 2002, $\mathrm{P}=$ Pulawski, 1971): Aktöbe: 2 km S and 30 km SW Irghiz (K). Almaty: Aidarly on Ili River ($1 \mathrm{o}^{\circ}$, OÖLM), Dubun on Ili river at approximately $43.5^{\circ} \mathrm{N} 80^{\circ} \mathrm{E}(\mathrm{K})$, Kapchagai (K), 35 km NW Kapchagai (K), 11 km S Panfilov, now Zharkent (K), Urpek in lower Ili River valley (P). East Kazakhstan: 12 km SW Buran (1 of), 10 km NE and 20 km E Karatal (K), Rozhkovo at about $47.5^{\circ} \mathrm{N} 85.5^{\circ} \mathrm{E}$ (K), Zaysan (K). Mangghystaū: Sozdy 135 km ESE Tauchik ($2{ }^{\text {® }}$). Qostanay: Zhalanash (K). Qyzylorda: Baigakum near Chiili (P), Djulek, now Chiili (1 \&) , Zhalanash 50 km WSW Aral'sk (K). South Kazakhstan: 5-8 km SW Chardara (1 o^{\top}), Khumsan (P), Koksu at approximately $42^{\circ} \mathrm{N} 70^{\circ} \mathrm{E}(\mathrm{K})$. Zhambyl: 30 km SW Chu (K), $50-70 \mathrm{~km}$ NW Furmanovka (K). KENYA: Rift Valley Province: Archer's Post on Ewaso Ng' iro River (1 o^{\prime}). LIBYA: Fezzan (Pulawski, 1971): Mendil, Mourzouk. Tripolitania (de Beaumont, 1956a, 1960b): Gargaresc, Garian, Giosc, Leptis Magna, Tagiura, Zuara. MAURITANIA: Fdérik (de Beaumont, 1952), Toungat ($1 \delta^{\circ} ; 2 \sigma^{\circ}$, FB). MOROCCO (de Beaumont, 1955, or as indicated): Errachida (20°), 1 km E Essaouira at $31^{\circ} 30^{\prime} \mathrm{N} 9^{\circ} 44^{\prime} \mathrm{W}(2 \circ$, S. Blank via CSE),
 and 34 km SE Zagora in Draa Valley ($1 \overbrace{}^{\circ}$, CSE). NIGER: Gaya ($1 \stackrel{\circ}{\circ}$, KMG), Say ($2 \sigma^{\circ} ; 4 \delta^{*}$, KMG). NIGERIA: Azare in SE Kano ($1+\frac{\circ}{} 1^{\star+}$, BMNH). OMAN (Guichard, 1980): Rostaq, Ruwi, Samail gap. Also: Al Bagriya at $23^{\circ} 32.3^{\prime} \mathrm{N} 58^{\circ} 31.3^{\prime} \mathrm{E}\left(1 \stackrel{+}{ }\right.$, $16 \sigma^{\circ} ; 4 \delta^{\circ}, \mathrm{NHMO} ; 1 \delta^{\circ}$, STUTTGART), Hail al Ghaf at $23^{\circ} 09.7^{\prime} \mathrm{N}$ $58^{\circ} 55.5^{\prime} \mathrm{E}\left(1\right.$ ㅇ) , Wadi Ghul near Nizwa at $22^{\circ} 53.0^{\prime} \mathrm{N} 57^{\circ} 31.2^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right)$, Wahiba Sands 11 km S Al Qabil at $22^{\circ} 31.0^{\prime} \mathrm{N} 58^{\circ} 41.2^{\prime} \mathrm{E}\left(40^{\circ}\right)$. SAUDI ARABIA: Al Ha'ir (1 ơ $^{\circ}, \mathrm{KMG}$), Khumrah S Jeddah (1 ㅇ, OHL). SENE-
 Toubacouta (60°, FB; $2 \sigma^{*}$, MSNT). SPAIN: Córdoba: Fuenteovejuna in Sierra Morena (Gayubo and Mingo,
 Kondara 35 km N Dushanbe (Pulawski, 1971). TOGO: 5 km W Sokodé (1 \&). TUNISIA: Chott el Djerid 5 km N El Fauar at $33^{\circ} 26^{\prime} \mathrm{N} 8^{\circ} 41^{\prime} \mathrm{E}\left(1+\right.$ ㅇ, CSE), Nefta (3 ơ' $^{\circ} ; 1$ \& CSE), 15 km W Nefta at $33^{\circ} 50^{\prime} \mathrm{N} 7^{\circ} 43^{\prime} \mathrm{E}$ ($2 \sigma^{\circ}$, CSE). TURKEY: Mersin: Alata near Mersin ($1 \overbrace{}^{\circ}$). TURKMENISTAN (Pulawski, 1971, or as indicated): Akibay in lower Murgab valley (Myartseva, 1965), Charjow (Myartseva, 1972a), Farab, Hasan-Kuli (Myartseva, 1972a), Karabekaul, Kerki, Repetek, Sandykachi (1 ơ *, OÖLM), Takhta Bazar, Tedjen (4 ㅇ, 3 o *). UNITED ARAB EMIRATES: Dubai: Nakhali (1 , UCD). UZBEKISTAN (Pulawski, 1971): Aman Kutan 30 km W Samarkand, Burguchi 190 km NNW Termez, Kara-Djuzgun sands on e. shore of Lake Aral, KaraKul ca 50 km SE Bukhara. YEMEN: Aden (Bingham, 1898).

Tachysphex schoenlandi Cameron

Figures 344, 345.
Tachysphex schoenlandi Cameron, 1905:211, ơ * (as Schönlandi, incorrect original capitalization and diacritic mark). Holotype or syntypes: σ^{7}, South Africa: Eastern Cape Province: Grahamstown (AMG according to original description, currently TMP), examined.-Arnold, 1923:167 (is a variety of panzeri, type lost), 169 (suspected synonymy with Tachysphex panzeri var. aethiopicus), 175 (listed, original description copied), 1924:68 (good species, description of 9 , South Africa), 1930:4 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:276 (listed); Gess, 1981:20 (South Africa, nesting site and prey); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).

Recognition.- Tachysphex schoenlandi, a southern African species, has the apical depression of sternum I bisected by a longitudinal, obtuse carina (as in Fig. 132a); propodeal posterior surface with broad shallow impression in the dorsal third or so (rather than a well-defined sulcus); apical female tarsomeres, on mid- and hindlegs, with two or three spines near midlength of each lateral margin; and male sternum II with conspicuous setae (see below for details). In most specimens, the anal end of hindwing vein cu-a is further away from the wing base than the cubital end (as in the other species related to erythropus), but it is vertical or nearly so in some specimens.

In the female of schoenlandi, the gaster is red basally, whereas it is all black in similar species that occur sympatrically: costae, detritus, and sericeus (the gaster is red basally in many costae in the northern hemisphere). Also, the setae of schoenlandi are straight on the postocellar area and in the vast majority of specimens on the thorax anteriorly (sinuous in the females of detritus and
sericeus). In addition, the mesopleural punctures of schoenlandi are inconspicuous, ill defined, and the clypeal lip and labrum of many specimens are arcuate or shallowly, inconspicuously emarginate mesally. In costae, the labrum and clypeal lip each has a well-defined notch, and mesopleural punctures are well defined in southern African populations. Unlike osiris, the frons of schoenlandi is not gibbose, the setae are erect rather than appressed on the postocellar area, and the scutal and mesopleural setae do not conceal the integument.

The male has a conspicuous, setal fringe on the apical depression of sternum II in addition to fringes of sterna III-VI (Figs. 344c-e). Tachysphex luctuosus is similar, but in schoenlandi the labrum is flat, not protruding or only minimally protruding beyond the clypeal free margin; the galea is shorter than wide; setae of postocellar area are erect; the mesopleuron is dull, microsculptured, with ill-defined punctures; hindwing crossvein cu-a, in most specimens, has the anal end further away from the wing base than the cubital end; the forefemoral notch has a basal tuft of setae; and the forebasitarsus has $3-5$ spines on the outer margin. In luctuosus, the labrum is slightly convex and somewhat protruding from beneath the clypeus; the galea is longer than wide; setae of postocellar area are appressed; the mesopleuron is shiny, with well-defined punctures; both ends of hindwing crossvein $\mathrm{cu}-\mathrm{a}$ are equidistant from the wing base; the forefemoral notch has no basal tuft of setae and the forebasitarsus has no preapical spines on the outer margin.

Description.- Gena unusually narrow in dorsal view. Scutal punctures averaging from about

Figure 344. Tachysphex schoenlandi Cameron, male: a - base of forefemur ($\times 72$); $\mathrm{b}-$ foretarsus ($\times 57$); $\mathrm{c}-$ gaster in lateral view ($\times 33$); d - gaster in lateral oblique view ($\times 33$); $\mathrm{e}-$ fringes of sterna II-IV $(\times 72)$.
one to several diameters apart on disk. Mesopleuron dull, markedly microsculptured, with shallow, ill-defined punctures. Propodeal dorsum longitudinally ridged or with ridges partly or totally reduced (then uniformly microareolate); propodeal ridged but ridges anastomosed in many specimens and effaced in smallest ones; posterior surface, in dorsal third or so, with wide median impression. Hindwing jugal lobe enlarged (as in Fig. 102a), crossvein cu-a oblique (anal end further away from wing base than cubital end) in most specimens, but vertical in some. Hindcoxal dorsum with inner margin carinate basally, carina not expanded. Sternum I with apical depression that is bisected by longitudinal, obtuse carina (as in Fig. 132a).

Setae appressed on scape; subappressed to suberect on interocellar area; straight, erect on postocellar area (about 0.3 of basal mandibular width); straight or angled apically on forecoxa, on each side of oral fossa next to occipital carina (about 0.5 of basal mandibular width), and in vast majority of specimens on mesopleuron anteroventrally (but sinuous in a female collected 30 km W Usakos and another from Swakop River mouth, Namibia); straight (angled apically) or sinuous on propodeal dorsum (about 0.5 of basal mandibular width).

Head and thorax black, mandible red mesally. Frontal setae silvery in females and small males, golden in large males. Wing membrane hyaline; forewing costal vein light brown, subcostal vein dark brown. Coloration of femora: see below. Tibiae and tarsi red. Gastral segments I and II red in female and many males, but gaster all black in some males. Terga I-III silvery fasciate apically.

ㅇ.- Labrum: free margin arcuate or broadly, shallowly emarginate mesally. Clypeus bevel shorter than basomedian area; lip free margin arcuate, either entire or with median notch and two lateral incisions on each side. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I $2.0-2.2 \times$ apical width. Dorsal foretibial surface with two or three spines; outer surface with two or three spines. Forebasitarsus with eight or nine rake spines. Apical mid- and hindtarsomeres with two spines at midlength of each lateral margin. Apical depression of tergum V impunctate, glabrous. Length $8.5-12.0 \mathrm{~mm}$. Forefemur black except red apically; midfemur black, red apically (up to distal half); hindfemur all red or basal two thirds black.
ơ.- Inner mandibular margin with tooth and cleft. Clypeus: bevel rudimentary; lip free margin arcuate or slightly sinuate, with illdefined corner; distance between corners $1.3-1.5 \times$ distance between corner and orbit. Width of postocellar area $0.4-0.8 \times$ length. Dorsal length of flagellomere I 1.9-2.3 \times apical width. Forefemoral notch glabrous, with basal tuft of setae (Fig. 344a). Outer margin of forebasitarsus with 3-5 rake spines; outer apical spine of foretarsomere II longer than tarsomere III (Fig. 344b). Sterna II-VI, on apical depressions, each with conspicuous fringe of dense, as if agglutinated setae (Figs. 344c-e), setae

Figure 345. Collecting localities of Tachysphex schoenlandi. markedly longer than on remaining surface. Length $6.0-10.0 \mathrm{~mm}$. Volsella and penis valve as in costae (see Fig. 102). Femora black except red apically (up to about one third on hindfemur).

Habitat and prey.- Tachysphex schoenlandi nests in friable soils and preys upon nymphal mantids (Gess, 1981).

Geographic distribution (Fig. 345).- Southern Africa north to Angola and Zimbabwe.

Abstract

 Aus on road to Helmeringhausen ($1 \mathrm{o}^{\boldsymbol{*}}$, AMG), Namib Farm 70 km N Aus ($1 \mathrm{o}^{\boldsymbol{\pi}}$, OHL), 16 km S Rosh Pinah Mariental District: 20 km S Stampriet (10^{7}, FSCA). Opuwo District: Otjinhungwa (20^{7}, NMN). Rehoboth Middle Tinkas in Namib Naukluft Park at $22^{\circ} 51^{\prime} 18^{\prime \prime} \mathrm{S} 15^{\circ} 28^{\prime} 28^{\prime \prime} \mathrm{E}$ ($1 \delta^{\circ}$, CSE), Namib Desert Research Station Swakopmund on road to Usakos ($1+1 \delta^{\circ}$, AMG), 40 km E Swakopomund ($1 \mathrm{o}^{\circ}$, ZMUC), 63 km NE ZMUC), Walvis Bay ($1 \delta^{\circ} ; 3 \delta^{\circ}, \mathrm{MS}$). Windhoek District: Gaub River bed at $23^{\circ} 29^{\prime} \mathrm{S} 15^{\circ} 46^{\prime} \mathrm{E}$ ($1 \circ$, AMG). SOUTH AFRICA: Eastern Cape Province: Algoa Bay (3 0^{*}, TMP), Belmont Valley 10 km E Grahamstown at $33^{\circ} 19^{\prime} \mathrm{S} 26^{\circ} 38^{\prime} \mathrm{E}$ (1 o , AMG), Grahamstown (10°, TMP, holotype of schoenlandi), 18 km WNW Grahamstown: Hilton Farm (3 ㅇ, $5 \delta^{\circ}$; 11 ㅇ, $33 \sigma^{\circ}$, AMG), Middelburg ($1 \delta^{\circ}$, SAM), Paterson ($1 \delta^{\circ}$, FSCA), Penn Rock 9 km NNE Grahamstown ($1 \mathrm{o}^{\circ}$, TMP, as Penrock), Vlakwater 27 air km NW Grahmstown ($1 \mathrm{o}^{\circ}$, at $32^{\circ} 59^{\prime} \mathrm{S} 23^{\circ} 34^{\prime} \mathrm{E}\left(2 \delta^{\circ}\right)$. Free State: Sandveld Nature Reserve ca 5 air km E Bloemhof at $27^{\circ} 40^{\prime} \mathrm{S} 25^{\circ} 41^{\prime} \mathrm{E}$ Northern Cape Province: Buffel River bed SW Springbok (1 , OÖLM), Gideonsfontein W Frasserburg at $31^{\circ} 47^{\prime} \mathrm{S} 20^{\circ} 57^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right.$, PPRI), Nossob in Kalahari Gemsbok National Park (1 ol $^{\circ}$, FSCA; 1 ㅇ, PPRI), Twee Rivieren in Kalahari Gemsbok National Park at $26^{\circ} 28^{\prime} \mathrm{S} 20^{\circ} 37^{\prime} \mathrm{E}(1 \mathrm{q}$, PPRI), Victoria West (2 8 , AMG). Northern Province: Ellisras (1 \&, $1 \mathrm{o}^{\boldsymbol{7}}, \mathrm{AMG}$). North-West Province: 5 km S Brits (1 o, OÖLM), Lichtenburg ($1 \mathrm{o}^{\circ}, \mathrm{TMP}$). Western Cape Province: Bainskloof ($1 \circ^{\circ}, \mathrm{FSCA}$), Barrydale ($1 \mathrm{o}^{\circ}$, OÖLM), Beaufort West ($1 \stackrel{\circ}{ }$, SAM), Cape of Good Hope Nature Reserve ($1 \stackrel{\circ}{ }$, USNM), Cape Town including 20 km N Citrusdal ($1+$, OÖLM), Clanwilliam ($3 \mathrm{o}^{\circ}$, FSCA), 18 km S Clanwilliam at $32^{\circ} 17^{\prime} \mathrm{S} 18^{\circ} 56^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right.$, AMNH), Dasklippas in Cederberg Mts. NE Porterville ($2 \mathrm{o}^{\circ}$, OHL), Goukamma at $34^{\circ} 02^{\prime} \mathrm{S} 22^{\circ} 57^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$, NMN), Konstabel Farm 30 km WSW Matjiesfontein ($1 \mathrm{~d}^{\circ}$), 5 km S Lambert's Bay ($1 \mathrm{o}^{\circ}$, OÖLM), 40 km S Lambert's Bay (2 ㄱ, 3 ơ, OÖLM), Merweville (6 ơn $^{\circ}$, SAM), Mossel Bay (3 ơ, BMNH), Mossel Bay: Great 23 km NE Prince Albert ($2 \mathrm{o}^{\star}$), 18 mi E Touwsrivier to Hondewater ($1 \mathrm{o}^{\star}$, SAM), Vredendal ($1 \mathrm{o}^{\star}$, AMNH), Ntabanende ($1 \circ$, AMG).

Tachysphex scopa Pulawski, sp. nov.

Figures 346-349.
Derivation of name.- Scopa, Latin for brush, a noun in apposition to the generic name. An allusion to the unique, brush-like vestiture of the male sterna.

Recognition.- The female of scopa resembles harpax and rapax in having conspicuously modified tarsi (Figs. 346c-f): tarsomeres III short (e.g., length of midtarsomere III 1.2-1.3 \times apical width); mid- and hindtarsomeres IV with the dorsoapical emargination rounded proximally rather than angulate; the apical tarsomeres and claws contrastingly elongate (length of arolium about one third that of claw); the apical tarsomeres with several basoventral spines, a cluster of subapical spines on venter, one to several spines on each lateral margin, and the apicoventral margin of each tarsomere V produced into a lobe (Fig. 346f). In addition, the setae of the labrum free margin are short, thick (as in Fig. 178c), and forefemoral venter has many small punctures. A narrow clypeal
lobe of scopa differentiates it from both harpax and rapax: the lip corners is equidistant from each other and antennal socket rather than further apart from each other (Fig. 346a). Unlike harpax, the female of scopa has sinuous, conspicuously erect setae on the gena, most of the thorax, and on the fore- and midfemoral venters (in harpax, the mesothoracic and femoral setae are straight, short, appressed). Unlike rapax, the gaster of scopa is all red or at least red basally (rather than black with reddish apex), and the propodeal side is ridged (rather than uniformly microsculptured).

The male of scopa is unique in having dense, suberect setae that cover sterna II-VI almost margin to margin (Figs. 347b-d). Subsidiary recognition features are: setae sinuous and erect on the gena, most of the thorax, and the fore- and midfemoral venters; outer margin of the forebasitarsus with at least three rake spines and the apical spine of foretarsomere II no longer than foretarsomere III; and venters of apical mid- and hindtarsomeres each with a central cluster of small spines (Fig. 347a).

Description.- Labrum: free margin with short, stout setae (as in Fig. 178c). Galea longer than wide in profile, as long as 0.7 of scape, sparsely punctate (interspaces shiny). Punctures well defined on scutal disk, averaging 2-3 diameters apart; on mesopleuron minute, at least 2-3 diameters apart; on mesothoracic venter several diameters apart. Propodeal dorsum longitudinally ridged, side ridged. Hindcoxal dorsum with inner margin carinate basally, carina not expanded.

Setae concealing integument on frons; sinuous on gena, scutum anteriorly, mesopleuron, propodeal dorsum, and venters of fore- and midfemora; erect on lower gena and on scutum anteriorly (length 0.6-0.7 and about $0.5-0.6 \times$ basal mandibular width, respectively); appressed or nearly so on postocellar area; erect or slightly inclined anterad on propodeal dorsum.

Head and thorax black, but mandible (except apically) yellowish reddish and the following reddish in male: clypeal bevel and lip, labrum, and scapal venter; also clypeal lip reddish in many females. Frontal setae silvery in female, golden in male. Wing membrane hyaline; forewing costal vein light brown, subcostal vein brown. Femora black in female (except apically), mostly red in male but fore- and midfemora black basodorsally; tibiae and tarsi red. Gaster all red, but segments III-VI black in a female from Dikbome Farm, South Africa. Terga I-IV silvery fasciate apically (fasciae inconspicuous in female).

ㅇ.- Clypeus (Fig. 346a): bevel markedly longer than basomedian area; lip free margin arcuate, not incised laterally; lip corners equidistant from each other and antennal socket. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I 2.6-2.9 \times apical width. Forefemoral venter minutely punctate, punctures several diameters apart. Dorsal foretibial surface with one or two spines; outer surface with narrow asetose zone and three long bristles. Forebasitarsus with nine or ten rake spines. Mid- and hindtrochanteral venters shiny, punctures several diameters apart. Length of tarsomeres III, on fore-, mid, and, hindlegs, about 1.2, 1.2-1.3, and about $1.4 \times$ apical width, respectively. Tarsomeres IV: length about equal to apical width, dorsoapical emargination rounded proximally, apicoventral margin markedly concave (Fig. 346d). Apical tarsomeres markedly elongate, with several basal spines and cluster of subapical spines on venter, apicoventral margin produced into lobe; and each lateral margin with one to several spines near midlength (Figs. 346 c , e, f). Claws elongate, arolium about one third of claw length (Fig. 346e). Apical depression of tergum V impunctate, glabrous. Length 7.1-9.0 mm.
σ^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 346b): bevel not sharply delimited from basomedian area, about as long as the latter or markedly longer; lip free margin arcuate, not emarginate mesally, corner somewhat ill defined; distance between corners $0.6-0.7 \times$ distance between corner and orbit. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I 2.2-2.4 \times apical width. Forefemoral notch small (microscopically setose) or absent. Outer margin of forebasitarsus with 3-6 rake spines; outer apical spine of foretarsomere

Figure 346. Tachysphex scopa Pulawski, sp. nov.: a - female clypeus and mandible ($\times 42$); b - male clypeus and mandible ($\times 56$); c - female hindtarsomere V in dorsal view ($\times 90$); d - female hindtarsomeres III and IV in dorsal view ($\times 90$); $\mathrm{e}-$ female hindtarsomere V in lateral view $(\times 90)$; f - female hindtarsomere V in ventral view $(\times 90)$.

II as long as tarsomere III or slightly shorter. Apical mid- and hindtarsomeres each with central cluster of two or three small spines on venter (Fig. 347a). Sternum II (except basally) and sterna III-VI with conspicuous dense, suberect setae that extend almost margin to margin (Figs. 347b-d). Apical margin of sternum VIII roundly prominent mesally. Volsella and penis valve: Fig. 348. Length $6.5-8.2 \mathrm{~mm}$.

Fourth Series, Volume 58, Supplement I

Figure 347. Tachysphex scopa Pulawski, sp. nov., male: a - hindtarsomere V ventrally ($\times 90$); b - gaster in lateral view $(\times 30)$; c - gaster in ventral view ($\times 30$); d - sterna II and III showing vestiture ($\times 72$).

Floral record.- Specimens of this species were collected on flowers of Welwitschia mirabilis J.D. Hooker (those from Homeb area, Namibia) and of Zygophyllum simplex L. (those from 30 km E Karasburg, from the road to Uis Myn, and 93 km from Swakopumund on the road to Usakos, all Namibia), as recorded by F.W. and S.K. Gess, the collectors.

Geographic distribution (Fig. 349).Angola, Namibia, western South Africa.

Records.- Holotype: ơ, nAMIBIA: Karibib District: 65 km SW Usakos, 1 Mar 1990, WJP (CAS). Paratypes: ANGOLA: Giraul River 10 mi

Figure 348. Tachysphex scopa Pulawski, sp. nov.: volsella and penis valve. NE Namibe, 27-29 Feb 1972, [British Museum] Southern African Expedition (1 σ^{*}, BMNH). NAMIBIA: Karasburg District: 52 km N Grünau, 2 Feb 1982,
 District: 97 km from Swakopmund on road to Usakos, 16 Mar 2000, FSG (3 +15 ơ 7, AMG), 65 km SW Usakos, 1 Mar 1990, MS (1 ㅇ, MS). Khorixas District: Uis, Feb 1978, C. Kok and S.J. van Tonder (1 아, 3 δ^{7}, PPRI); 94 km from coast on road to Uis Myn, 17 Mar 2000, FSG ($2 \sigma^{*}$, AMG); 120 km from coast on road to Uis Myn at $21^{\circ} 14^{\prime} \mathrm{S} 14^{\circ} 51^{\prime} \mathrm{E}, 17 \mathrm{Mar} 2000$, FSG ($1 \mathrm{q}, 1 \mathrm{o}^{\circ}$, AMG). Mariental District: 65 km S Mariental,

13 Feb 1990, WJP (1 of). Rehoboth District: 15 km N Kalkrand, 13 Feb 1990, WJP (1 or *). Swakopmund District: NW Cape Cross at $21^{\circ} 44^{\prime} \mathrm{S} 13^{\circ} 59^{\prime} \mathrm{E}$, 14 Mar 1999, FSG (1 ه̉, AMG); 20 km NE Hentiesbaai, 10 Dec 1996, WJP (2 o $^{\text {a }}$); Kuiseb River near Gobabeb, 18 Feb-20 Mar 1983, National Collection Kuiseb Survey (2 \circ, PPRI); Namib Desert at $23^{\circ} 38^{\prime} \mathrm{S} 15^{\circ} 41^{\prime} \mathrm{E}$, Marsh, 18 Apr 1982 (1 ㅇ, PPRI) and 18 Dec 1982 (10°, PPRI); Namib Naukluft Park N Homeb at $23^{\circ} 38^{\prime} \mathrm{S} 15^{\circ} 13^{\prime} \mathrm{E}, \mathrm{CDE}$ (2 $\delta^{\circ}, \mathrm{PPRI}$); 63 km NE Swakopmund, WJP, 15 Feb 1996 (8 ํㅜ, 25 ơ *), 19 Feb 1996 (17 우, 19 đ), 5 Mar 1996 (10 우, 21 ơ), $^{*} 5 \operatorname{Dec} 1996$ (5 o *), 9 Dec 1996 (3 or *); Swakop River at $22^{\circ} 41^{\prime} \mathrm{S} 14^{\circ} 35^{\prime} \mathrm{E}, 11$ Apr 1998, FSG (1 0°, AMG). SOUTH AFRICA: Western Cape Province: Beaufort West District, Feb 1958, [South African] Mus. Staff (1 ơ, SAM); Dikbome Farm on Merweville-Koup road, Jan 1953, H. Zinn (4 ㅇ, 2 ơ, SAM); Merweville in Laingsburg District, Jan 1959,

Figure 349. Collecting localities of Tachysphex scopa. H. Zinn ($1 o^{7}$, SAM); Merweville District [sic], JanFeb 1947, H. Zinn (1 ㅇ, SAM); Prince Albert Road, 27 Dec 1973, P.M.F. Verhoeff (1 ơ, RMNH); Tierberg

Tachysphex sericeus (F. Smith)

Figures 350-352.
Larrada sericea F. Smith, 1856:285, ㅇ. Holotype or syntypes: \circ, Gambia: no specific locality (BMNH), examined.- Nec Tachytes sericeus of De Stefani Perez, 1886:171 and 1895:226 (= Tachysphex erythro-pus).-As Larra sericea: Dalla Torre, 1987:674 (new combination, in catalog of world Hymenoptera).As Tachysphex sericeus: R. Turner, 1917c:197 (new combination, synonymy); Arnold, 1923:154 (in revision of southern African Tachysphex), 1930:3 (in checklist of Afrotropical Sphecidae); Guiglia, 1943b:76 (Ethiopia), 1950:249 (Ethiopia); Pulawski, 1975:313 (synonymy); Bohart and Menke, 1976:276 (listed); Gess, 1981:20 (nesting in friable soils); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).
Lyrops fluctuata Gerstaecker in Peters, 1858:510, \& (authorship attributed to Klug). Holotype: \&, Mozambique: Tette (ZMHU), examined. Synonymized with Tachysphex sericeus by R. Turner, 1917c:197, synonymy confirmed by Pulawski, 1975:313.- Kohl, 1883b:226 (incorrectly synonymized fluctuatus with erythropus).- As Tachytes fluctuatus: nec Magretti, 1884:587 (= Tachysphex vulneratus), Magretti, 1898:51 (Somalia).- As Tachysphex fluctuatus: nec F. Morawitz, 1894:342 (= Tachysphex sordidus); Dalla Torre, 1897:679 (in catalog of world Hymenoptera); Stadelmann, 1897:255 (study of type, new combination); Bingham, 1898:104 (Yemen: Aden); W. Schulz, 1905:9 (West Africa); Kohl, 1906:218 (Yemen); Longstaff, 1911:195 (Sudan), 199 (Sudan); nec Ferton, 1912:399 (= Tachysphex costae); nec Cros, 1936:355 (= Tachysphex costae); nec Móczár, 1938:80 (= Tachysphex costae); Arnold, 1945:97 (as valid species), 1951:155 (Ethiopia, Ghana); Pulawski, 1971:416 (recognition characters).- Nec following authors (= Tachysphex erythropus): Kohl, 1885:367; W. Fox, 1896:554; W. Schulz, 1904:102; von Schulthess, 1909:442; Mercet, 1910:165; Morice, 1911:101; Dusmet, 1915:87; von Schulthess, 1926:215; Guiglia, 1932b:474; Gussakovskij, 1933:280; Nadig, 1933:79; Guiglia in Zavattari, 1934:303; Gussakovskij, 1935:426 (Tajikistan); de Beaumont, 1936b:614, 1936c:8; Rungs, 1936:24; Guiglia, 1939a:187, 1940:292, 1942:234; Honoré, 1942:56 Giner Marí, 1943:139, 1947:25; Ceballos, 1956:376; Myartseva, 1963:58.
Lyrops fluctuata Gerstaecker, 1862:478, 우. Objective synonym of Lyrops fluctuata Gerstaecker, 1858.
Tachysphex selectus Nurse, 1909:514, σ^{*}. Holotype: σ^{\star}, India: Bombay (BMNH), examined.— Restored synonymy. Synonymized with Tachysphex sericeus by R. Turner, 1917c:198.- Pulawski, 1975:313 (syn-
onymy); Bohart and Menke, 1976:276 (listed); Krombein and Pulawski, 1994:72 (in revision of Sri Lankan Tachysphex).
As Tachysphex ferrugineipes (Lepeletier): Cameron, 1908:289 (Tanzania), corrected to Tachysphex sericeus by R. Turner, 1917c:198.
Tachysphex actaeon de Beaumont, 1960a:16, ㅇ, ơ. Holotype: ه̛, Israel: Jerusalem (LAUSANNE). Synonymized with Tachysphex selectus by Pulawski, 1975:313.— Pulawski, 1967:398 (Turkey), 1971:412 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:13 (Israel).
Species 2 (part): van Noort, Prinsloo, and Compton, 2000:348 (Namibia), present correction.
Recognition.- Tachysphex sericeus has the apical depression of sternum I intersected by a longitudinal carina (as in Fig. 132a), hindwing vein cu-a oblique (anal end further away from wing base than cubital end), at least some setae sinuous on the head and thorax, and male sternum III with setae markedly longer apically than basolaterally. This combination is shared with detritus and flavofimbriatus. In sericeus, however, setae of tergum I are appressed (erect on sides of basal declivity in female and many males of detritus) and the outer margin of the male forebasitarsus lacks preapical spines or occasionally has one or two spines next to the apical one (preapical spines present in detritus). Additionally, the clypeal bevel of sericeus is step-like in the vast majority of females (Figs. 350a, b), but evenly rounded in some, and the setae on the apical depression of sternum III appear agglutinated in many males (Fig. 351c). In detritus, the clypeal bevel is rounded in the vast majority of females (but step-like in some), and the setae of sternum III are not agglutinated in the male. In contrast with flavofimbriatus, the tibiae of sericeus are red except largely black

Figure 350. Tachysphex sericeus (F. Smith), female: a - clypeus and mandible ($\times 28$); b - clypeal lobe in lateral oblique view showing stepped bevel ($\times 58$); c - hindtarsomere V in dorsal view ($\times 86$); $\mathrm{d}-$ hindtarsomere V in ventral view ($\times 93$).

Figure 351. Tachysphex sericeus (F. Smith), male: a - base of forefemur ($\times 90$); b-gaster in lateral view ($\times 30$); c - setal fringe of sternum III in lateral view $(\times 90)$; $d-$ setal fringe of sternum III in ventral view $(\times 60)$.
in exceptional specimens from the United Arab Emirates, the male forefemur is emarginate (Fig. 351a), and setae of the apical depression of sternum III are dark brown. In flavofimbriatus (an endemic of Madagascar), the mid- and hindtibiae are all or partly black, the male forefemur is entire, and setae of the apical depression of male sternum III are white.

JUSTIFICATION OF NEW SYNONYMY.- Turner (1917c) synonymized selectus with sericeus, but I treated them as distinct species (Pulawski in Krombein and Pulawski, 1994:72). I distinguished selectus by slightly shorter setae on the postocellar area and midfemoral venter, male forefemoral notch not compressed, and its occurrence in Asia rather than Africa (with no known contact zone). Study of additional material has convinced me that these setal and femoral differences represent geographic variation and that only one species is involved. Therefore, I agree with Turner and regard the two names as synonyms.

Description.- Gena unusually narrow in dorsal view except in Asian specimens. Punctures of scutal disk varying from large, about one diameter apart, to minute, several diameters apart; interspaces microsculptured, dull in most specimens, but unsculptured, shiny in a female from 62 km SW Morogoro, Tanzania. Mesopleuron dull, markedly microsculptured, with shallow, illdefined punctures. Propodeal dorsum longitudinally ridged to irregularly rugose (ridges and rugae partly effaced in some males), intersecting posterior face at about right angle; side ridged but ridges anastomosed in many specimens and effaced in smallest ones; posterior surface, in dorsal third or so, with wide median impression. Hindwing jugal lobe enlarged (as in Fig. 102a), crossvein cu-a
oblique (anal end further away from wing base than cubital end), but only slightly so in some specimens from Sri Lanka. Hindcoxal dorsum with inner margin carinate basally. Sternum I with apical depression bisected by longitudinal, obtuse carina (as in Fig. 132a).

Setae erect and in most specimens sinuous on postocellar area, along hypostomal carina, on thorax, and also on fore- and midfemoral venters in some females, but sinuous only on pronotal lobe and propodeal dorsum in one female from Coimbatore, India, and on lower gena and propodeal dorsum in one female from Dakhla oasis, Egypt; in two males from Dakhla oasis, only a few setae on the lower gena are sinuous. Setal length expressed as a fraction of basal mandibular width: mostly 0.3 on postocellar area, but 0.2 or less in Asian specimens, and 0.6 in single male from Ndola, Zambia; about $0.6-0.7$ on each side of oral fossa next to occipital carina, on mesopleuron anteroventrally, and on propodeal dorsum.

Head, thorax, and gaster black, mandible reddish mesally. Frontal setae silvery in most females (golden in single female from Ivory Coast), golden in male (silvery in ventral half in some specimens). Wings hyaline to slightly infumate; forewing costal vein light brown, subcostal vein dark brown. Femora all or largely red in most females, black except red apically in some; in male forefemur black (except red apically), midfemur varying from black except narrowly red apically to red in apical half, hindfemur varying from black except narrowly red apically to all red; tibiae and tarsi red. The single female from the United Arab Emirates is unusual in having mid- and hindlegs darkened, nearly black (except femoral apex narrowly reddish). Terga I-IV (I-V in most males, I-III in some) silvery fasciate apically.

ㅇ.- Labrum with well-defined notch. Clypeus (Figs. 350a, b): bevel markedly shorter than basomedian area, step-like in vast majority of specimens (evenly convex in some); lip emarginate mesally, with two lateral incisions on each side (incisions varying from evanescent to conspicuous). Width of postocellar area 1.0-1.4 \times length. Dorsal length of flagellomere I 1.8-2.3 \times apical width. Dorsal foretibial surface with two or three spines; outer surface partly asetose, with three spines. Forebasitarsus with 13-15 rake spines. Apical mid- and hindtarsomeres with two or three spines at midlength of each lateral margin (Figs. 350c, d). Apical depression of tergum V impunctate, glabrous. Length 9.5-14.6 mm.
0^{π}.- Inner mandibular margin with tooth and cleft. Clypeus: bevel markedly shorter than basomedian area; lip free margin arcuate or slightly sinuate, with well-defined corner; distance between corners about $1.2 \times$ distance between corner and orbit. Width of postocellar area $0.3-0.6 \times$ length. Dorsal length of flagellomere I 1.8-2.0 \times width. Forefemoral notch somewhat compressed in most African males (glabrous longitudinal area crest-like in some specimens), with or without erect setae proximally (Fig. 351a, see Variation below). Outer margin of forebasitarsus without preapical spines, exceptionally with one or two such spines next to apex. Sternum II with setae as long on apical depression as on remaining surface or longer. Apical depression of sternum III with setae that are either appressed, appearing agglutinated (most specimens) or suberect and dense but not agglutinated, setae markedly longer than on remaining surface (Figs. 351b-d); apical depressions of sterna IV-VI either setose or glabrous. Length $8.0-14.2 \mathrm{~mm}$. Volsella and penis valve as in costae (see Figs. 102b, c).

Variation.- In most specimens, including the holotypes of sericeus and fluctuatus, scutal punctures are minute, several diameters apart; the postocellar area in the female is about as wide as long; the forefemoral notch in the male has no erect setae; and the setae of the fore- and midfemoral venters are straight, nearly appressed. In many southern African and several Ethiopian specimens, scutal punctures are large, conspicuous, markedly denser (no more than one diameter apart in some females); the postocellar area in the female is wider than long; setae are erect and sinuous on the female fore- and midfemoral venters; and the male forefemoral notch has several erect setae on
proximal quarter or third. No intermediates have been found in several places where the two forms coexist (e.g., Ellisras, South Africa), but this is probably an artifact of insufficient collecting. Indeed, the differences are not always correlated, suggesting individual rather than geographic variation or presence of two species. For example, scutal punctures are minute in a female from Sawmills, Zimbabwe, but the setae are erect and sinuous on the midfemoral venter. In a male from Afguns, South Africa, scutal punctures are large but sparse, setae of the femoral notch are appressed, and those of midfemoral venter are not sinuous. In specimens from the Ivory Coast, scutal punctures are relatively large, width of the postocellar area in the female is about $1.3 \times$ length, and

Figure 352. Collecting localities of Tachysphex sericeus. setae of the female midfemoral venter are suberect and sinuous, but the male forefemoral notch has no erect setae. A male from the Usakos area, Namibia, has large scutal punctures and sinuous setae on the fore- and midfemoral venters (like many southern African females), but no erect setae on the forefemoral notch. Scutal punctures are also relatively large in Asian specimens. Setae of the forefemoral notch vary in length from well developed to almost none in males from Olifanthoek and Wellington, South Africa.

Geographic distribution (Fig. 352).- Africa north to Ethiopia and Morocco; also Turkey, Cyprus, Rhodes, Israel, Lebanon, Jordan, Pakistan, India, Sri Lanka.

Records.- ANGOLA: Lunda: Nova Chaves ($1 \AA^{\circ}$). BENIN: 15 km SW Savé ($1 \stackrel{+}{ }$, OÖLM). BOTSWANA: Kasane: Chobe Rapids ($1 \circ$, SAM), Mongalatsila in Ghanzi District ($1 \stackrel{\circ}{\circ}$, BMNH), Serowe (1 of). BURKINA FASO: Pala near Bobo Dioulasso ($1 \circ$)). BURUNDI: Bururi ($2{ }^{\circ}$, MRAC). CYPRUS:
 ETHIOPIA: Gamo Gofa: 58 road km NNE Arba Minch (1 đ), Condaraba (Guiglia, 1950). Harerge: 44 km

 (Arnold, 1951). GAMBIA: no specific locality (1 ㅇ, BMNH, holotype of sericeus). GHANA: Kumasi ($1 \boldsymbol{o}^{\boldsymbol{*}}$, BMNH), Labadi (Arnold, 1951), Legon 12 km NNE Accra (1 \& 2 o $^{\circ}$). GREECE: Aegean Islands: Rhodes: Ixia (Pulawski, 1971). INDIA: Madhya Pradesh: Jabalpur ($1 \sigma^{\circ}$, BMNH). Maharashtra: Bombay ($1 \mathrm{o}^{\boldsymbol{*}}$, BMNH, holotype of selectus). Tamil Nadu: Coimbatore (1 ㅇ, 3 of ; 1 ㅇ, FSAG; 1 ㅇ, USNM), Dohnavur in Tirunelveli (= Tinnevelly) District (1 \&, BMNH), Karikal ($1 \AA^{\circ}$). ISRAEL (Pulawski, 1971, or as indicated): Dagania (= Deganya), Dalia, 5 km W Elat at $29^{\circ} 32^{\prime} \mathrm{N} 34^{\circ} 54^{\prime} \mathrm{E}$ (1 ㅇ, CSE), Jerusalem ($3 \mathrm{o}^{\circ}$, including 2 paratypes of actaeon), Tiberias. IVORY COAST: 40 km N Abijan ($1+$, MSNT), Bouaké ($1+$, MSNT),
 de la Maraqué (1 \&), 40 km S Toumodi ($2 \boldsymbol{o}^{\circ}$). JORDAN: Irbid at $32^{\circ} 33^{\prime} \mathrm{N} 35^{\circ} 51^{\prime} \mathrm{E}(1 \circ+$ RMNH). KENYA:
 Taita Discovery Centre (1 \uparrow), Taita Discovery Centre: Galla Hill area ($1 \sigma^{\circ}$), Voi area ($1 \stackrel{\circ}{\circ}, 43 \sigma^{\circ}$, OÖLM).
 Post on Ewaso Ng' iro River (1 早), Lodwar road 4 km N road to Sigor ($1 \circ^{\text {® }}$), Magadi road 25 air km SW Nairobi ($2 \delta^{\circ}$), 46 air km SW Nairobi at $1^{\circ} 34.0^{\prime} \mathrm{S} 36^{\circ} 27.4^{\prime} \mathrm{E}\left(1+9,30 \delta^{\circ} ; 10 \delta^{\circ}\right.$, NMK), 51 air km SW Nairobi at $1^{\circ} 34.6^{\prime} \mathrm{S} 36^{\circ} 24.5^{\prime} \mathrm{E}\left(2 \delta^{\circ}\right)$, Marich Pass Field Studies Centre ($1 \mathrm{~d}^{\circ}$), Olorgesailie ($8 \mathrm{o}^{\circ}$). LEBANON: Nahr el Kelb (Pulawski, 1971). LESOTHO: Leribe (10°, AMG), Mamathes (5 \& , 2 ơ AMG). MALAWI:

BMNH), Nkhotakota ($1 \sigma^{*}$, USU). MALI: Bamako ($1 \stackrel{\circ}{+}, \mathrm{KMG}$), 10 km S Mopti ($1 \mathrm{o}^{*}$). MOROCCO: 30 km S Zagora in Draa Valley ($1 \stackrel{\circ}{\circ}$, CSE). MOZAMBIQUE: Dondo ($1 \stackrel{\circ}{\circ}$, SAM), Guengère in Pungoué Valley ($1 \stackrel{\uparrow}{ }, \mathrm{MNHN}$), Maputo ($1 \mathrm{o}^{\prime}, \mathrm{AMG}$), Nova Chupanga near Chemba ($1 \stackrel{\circ}{ }$, MNHN), Tengo de Soungué in Gorongoza Province ($1 \stackrel{\circ}{ }, \mathrm{MNHN}$), Tette ($1 \stackrel{\circ}{\circ}, \mathrm{ZMHU}$, holotype of fluctuatus). NAMIBIA: Grootfontein District: Meteorite ($1 \mathrm{o}^{7}, \mathrm{MS}$), 60 km SW Otavi ($3 \mathrm{o}^{\text {º }}$, MS). Karasburg District: Fish River Canyon 15 km
 Grünau (FSCA). Karibib District: Okandukaseibe Farm 47 km S Wilhelmstal (1 ơ, LACM), 55 km SW
 Khorixas District: Brandberg Plateau ($1 \sigma^{7}, \mathrm{SAM}$, determined as Species 2 by van Noort, Prinsloo, and Compton, 2000). Lüderitz District: Aus ($1+$, BMNH), Chamnaub at $27^{\circ} 43^{\prime} \mathrm{S} 16^{\circ} 05^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\prime}$, AMG), Klein-Aus-Vista at $26^{\circ} 41^{\prime} \mathrm{S} 16^{\circ} 13^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{AMG}\right.$). Mariental District: 71 km E Stampriet (1 \&, AMG). Okahandja District: Waldau River 17 km W Okahandja (1 \circ). Otjiwarongo District: 50 km ESE Otjiwarongo ($1 \mathrm{o}^{\mathrm{r}}$), 50 km NE Otjiwarongo ($1 \mathrm{o}^{\star}, \mathrm{JG}$). Outjo District: 31 km SE Kamanjab ($1 \mathrm{o}^{*} ; 1 \mathrm{o}^{*}$, MS), Kaross Farm (1 ㅇ, SAM). Swakopmund District: Ganab ($6 \sigma^{7}$, PPRI), Gobabeb ($1 \sigma^{7}$, PPRI), Homeb ESE Gobabeb (3 σ^{*}, PPRI; 1 ㅇ, SDNHM), Kuiseb River at Gobabeb (2 ㅇ, PPRI; 1 ㅇ, ZMUC), Namib Desert Research Station at $23^{\circ} 33^{\prime} 45^{\prime \prime} \mathrm{S} 15^{\circ} 02^{\prime} 38^{\prime \prime} \mathrm{E}\left(1 \delta^{\circ}, \mathrm{CSE} ; 1 \circ\right.$, USU), Vogelfederberg ca 55 km N Gobabeb (2 ㅇ, FSCA), 88 mi E
 S Tanout at $14^{\circ} 38.2^{\prime}$ N $8^{\circ} 42.6^{\prime}$ E ($1 \delta^{\circ}$). PAKISTAN: Hazarganji Chiltan National Park 20 km SW Quetta ($1 \sigma^{*}$). SENEGAL: Bayakh 48 km E Dakar ($2 \sigma^{\star}$), Ndangane 45 air km SE Mbour ($1 \sigma^{\star}$, FB). SOMALIA: Umberto (Magretti, 1898). SOUTH AFRICA: Eastern Cape Province: Aberdeen area (1 \&, $1 \sigma^{\circ}$), Addo ($1 \sigma^{\circ}, \mathrm{TMP}$), Algoa Bay (2 ㅇ, TMP), Alicedale ($1+$, AMG), Belmont Valley 10 km E Grahamstown at $33^{\circ} 19^{\prime} \mathrm{S}$ $26^{\circ} 38^{\prime} \mathrm{E}$ (3 o , AMG), Goshen near Cathcart ($2 \mathrm{o}^{\star}$, SAM), Grahamstown (2 \circ, AMG), Grahamstown at
 AMG), Koonap River 17 km SE Adelaide ($1 \stackrel{\circ}{+} 1 \circ^{\circ}$, AMG), Resolution 17 air km NNE Grahamstown ($1 \circ$,
 Willowmore ($1 \mathrm{o}^{\circ}$), 12 km W Willowmore at $33^{\circ} 16^{\prime} \mathrm{S} 23^{\circ} 22^{\prime} \mathrm{E}(1 \quad$ ㅇ $)$. Free State: Belmont ($1 \mathrm{o}^{\circ}$, BMNH), Bothaville ($1 \sigma^{\circ}$, TMP), Caledon (2 ㅇ, $1 \sigma^{\circ}$, SCHL), Clocolan ($1 \delta^{\circ}$, AMG), Kroonstad ($1 \sigma^{*}$, AMG). Gauteng: Bronkhorstbaai ca 8-9 km S Bronkhorstspruit (3 $\uparrow, 1 \sigma^{*}$, AMG), Florida Hills (2 $\boldsymbol{\sigma}^{*}$, AMG), Hekpoort at $25^{\circ} 55^{\prime} \mathrm{S} 27^{\circ} 38^{\prime} \mathrm{E}\left(1 \sigma^{\circ}, \mathrm{AMG}\right)$, Johannesburg ($1 \stackrel{\circ}{ }$, 2 o $^{\circ} ; 1 \mathrm{o}^{\circ}, \mathrm{CU}$), Malanskraal at $26^{\circ} 41^{\prime} \mathrm{S} 28^{\circ} 25^{\prime} \mathrm{E}$ (1 o $^{\circ}$,
 $1 \sigma^{*}$, TMP). Kwazulu-Natal: Durban ($1 \sigma^{*}$, TMP), Kloof ($1 \sigma^{*}$, BMNH), Magudu ($1 \sigma^{\pi}$, TMP), Malvern (Arnold, 1923), Mfongosi in Zululand ($1 \stackrel{\circ}{ }$, SAM). Mpumalanga: Crocodile Bridge in Kruger National Park ($1 \sigma^{\circ}$, PPRI). Northern Cape Province: 23 km S Alexander Bay at $28^{\circ} 46^{\prime} \mathrm{S} 16^{\circ} 37^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{AMG}\right)$, Britstown
 Goegap Nature Reserve 10 mi E Springbok ($1 \sigma^{\circ}$, BMNH), Kalahari Gemsbok National Park 11 km NNE Twee Rivieren ($3 \stackrel{\circ}{+}, \mathrm{AMG}$), 25 km E Niewoudtville at $31^{\circ} 29^{\prime} \mathrm{S} 19^{\circ} 19^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$, AMG), Ritchie 50 km SSW Kimberley

 hole near Shingwedzi in Kruger National Park (1

 Mossel Bay ($3 \sigma^{\star} \mathrm{BMNH}$), 5 km W Robertson ($1 \mathrm{o}^{\star}$), Swartrivier 7 km NW Prince Albert (1 Wellington: Rooshoek ($4 \mathrm{o}^{\top}$). SRI LANKA: Monaragala District: Mau Ara 10 mi E Uda Walawe ($1 \mathrm{o}^{\text {on }}$, USNM). Puttalam District: Kali Villu in Wilpattu National Park ($1 \sigma^{\circ}$, USNM). Trincomalee District: China
 Khartoum (Longstaff, 1911), Kosti (Longstaff, 1911). TANZANIA: Arusha Region: Meru (1 \circ, NRS, determined as Tachysphex ferrugineipes by P. Cameron), Ngorongoro Game Reserve entrance ($1 \circ$, USU). Dar es
 Region: Mkomazi Game Reserve: Ibaya ($1 \mathrm{of}^{\boldsymbol{*}, ~ S A M) . ~ M o r o g o r o ~ R e g i o n: ~} 62$ road km SW Morogoro (2 \boldsymbol{q}),

 Zanzibar Region: Unguja (= Zanzibar Island): Kizimbani (1 ơ, RMNH). TURKEY (Pulawski, 1971): Maraṣ: Maraș area. Urfa: Urfa. UGANDA: Ngura ($1 \stackrel{\circ}{\circ}, \mathrm{CU}$). UNITED ARAB EMIRATES: locality illegible, perhaps Fagsha or Faysha ($1 \stackrel{\circ}{\circ}$, KMG). YEMEN: Aden: Gebel Jihaf ($1 \sigma^{\boldsymbol{R}}$, BMNH); Rougrafat in Wadi el Gaber ($10^{\circ} ; 1 \delta^{\circ}$, MHNCF), ca 30 air km from Sana'a at $15^{\circ} 14^{\prime} \mathrm{N} 43^{\circ} 60^{\prime} \mathrm{E}\left(10^{\circ}\right.$, CSE). ZAIRE: Lubumbashi
 ${ }^{\circ}$, BMNH), 10 mi N and 8 mi S Uvira (3 ${ }^{\text {® }}$). ZAMBIA: Central Province: Chibombo 97 road km N Lusaka ($1 \mathrm{o}^{\star}$). Copperbelt: Ndola ($1 \stackrel{\circ}{\circ}, 1 \mathrm{o}^{\star}$, AMG). Eastern Province: 31 km E Petauke ($1 \mathrm{o}^{\circ}$), 32 km E Petauke (1
 N^{\prime} Chili Island ($1{ }^{\circ}{ }^{\circ}, \mathrm{BMNH}$). Lusaka Province: Lusaka International Airport (1 of). Southern Province: 8
 σ°, PPRI; $1 \stackrel{\circ}{ }$, SAM; 2 ค, TMP), Bulawayo airport (1 ㅇ) , Delt ($1 \mathrm{o}^{\circ}$, SAM), Dete in Hwange National Park ($1 \circ$, OÖLM), 15 km E Gweru ($1 \sigma^{\star}$, USU), Hope Fountain ($1 \circ$, TMP), Iwaba near Kwekwe ($1 \delta^{\star}$, BMNH), Kami Ruins ($3 \circ+3$ ® $^{\circ}$), Leighwoods 52 km SW Bulawayo ($1 \circ$), Matetsi in Hwange District (o°, AMG),

 Falls (1

Tachysphex sexinus Leclercq

Figures 353, 354.
Tachysphex sexinus Leclercq, 1961:111, 0^{7}. Holotype: 0^{\circledR}, Madagascar: Ranomafana (MHNB), examined.Bohart and Menke, 1976:276 (listed); Pulawski, 2003:798 (in checklist of Malagasy Sphecidae).

Recognition.- Tachysphex sexinus, an all black endemic of Madagascar, differs from most of its congeners in having the supraantennal swelling microsculptured and punctate, dull. Tachysphex cavatus is similar, but differs in having conspicuously modified scutum and scutellum (see that species for details). The only other Tachysphex with a punctate swelling are asinus, carinatus, onager, scaber, spectrum, and some ulonyovu, whereas the swelling is rudimentary in tryssus and some harpax (none of which occurs in Madagascan). In asinus, onager, scaber, and ulony$o v u$, however, the gaster and legs are at least partly red (see Recognition under those species for further differences); in carinatus sternum I has a prominent, longitudinal carina that is lacking in sexinus; and in spectrum the mesopleural punctures are minute (large in sexinus) and the propodeal side is unridged (ridged in sexinus). Subsidiary recognition features of sexinus are: setae of propodeal dorsum inclined anterad, venter of apical tarsomeres without spines, and female labrum with a small but well-defined notch.

Description.- Scutal punctures well defined, averaging about one diameter apart (many punctures 2-3 diameters apart in female). Mesopleural punctures conspicuous, varying from one to two diameters apart near center; interspaces microsculptured, dull. Episternal sulcus complete. Propodeal dorsum varying from longitudinally ridged to irregularly rugose, side ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae erect on postocellar area, on scutum anteriorly (about as long as midocellar diameter), and on each side of oral fossa next to occipital carina (length about $0.4 \times$ basal mandibular width); oriented obliquely anterad on propodeal dorsum (basal setae diverging posterad in female).

Head, thorax, gaster, and legs black, mandible dark reddish mesally, tarsal apex red in some specimens. Frontal setae silvery in both sexes. Wing membrane slightly infumate; forewing costal and subcostal veins brown. Terga I-IV in female, I-V in male, silvery fasciate apically.

Figure 353. Tachysphex sexinus Leclercq: a - female clypeus and mandible; b - male clypeus and mandible; c - male sternum VIII; d - volsella; e - penis valve.

ㅇ.- Labrum with small but well-defined notch. Clypeus (Fig. 353a): bevel shorter than basomedian area; lip free margin arcuate, with two lateral incisions on each side. Width of postocellar area $1.0 \times$ length. Dorsal length of flagellomere I $2.6 \times$ apical width. Scutellum flattened. Forecoxa with small apical process in some specimens. Forefemoral venter microsculptured and with a few, sparse punctures. Dorsal foretibial surface with several minute, suberect btristles; outer surface with several thin bristles. Forebasitarsus with $11-13$ rake spines. Tergum V with minute punctures that are many diameters apart, its apical depression unsculptured, glabrous. Pygidial plate punctate, most punctures many diameters apart, interspaces aciculate. Length about 10.0 mm .

Figure 354. Collecting localities of Tachysphex sexinus.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 353b): bevel ill defined; lip free margin sinuate, with well-defined corner; distance between corners $0.8 \times$ distance between corner and orbit. Width of postocellar area 1.3-1.4 \times length. Dorsal length of flagellomere I 1.4-1.6 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Sterna III-VI or IV-VI each with large, impunctate area anterad of apical depression. Sternum VIII tridentate apically in most specimens (Fig. 353c), but only slightly convex mesally in one male from Berenty and intermediate in the other. Length 6.8-8.0 mm. Volsella and penis valve: Figs. 353d, e.

Collecting period.-April, May, 28 July, and November.
Geographic distribution (Fig. 354).- Madagascar.
RECORDS.- MADAGASCAR: Fianarantsoa: Ranohira ($1+\frac{\circ}{\circ}$ LB), 5 km SW Ranohira at $22^{\circ} 36^{\prime} \mathrm{S}$ $45^{\circ} 24^{\prime} \mathrm{E}\left(10^{\circ}\right)$, Ranomafana ($1 \mathrm{o}^{\star}$, MHNB, holotype of sexinus). Toamasina: 25 km W Morarano-Chrome at
 Berenty (2 ơ$^{\circ}, \mathrm{BMNH}$).

Tachysphex seyrigi Arnold

Figures 355, 356.
Tachysphex seyrigi Arnold, 1945:99, ${ }^{\circ}$, ه (as Seyrigi, incorrect original capitalization). Lectotype: ${ }^{\circ}$, Madagascar: Bekily (MNHN), here designated, examined.— Leclercq, 1960:99 (Madagascar), 1961:110 (Madagascar); Bohart and Menke, 1976:276 (listed); Leclercq, 1990:118 (Madagascar); Pulawski, 2003:798 (in checklist of Malagasy Sphecidae).

Recognition.- Tachysphex seyrigi, an endemic of Madagascar, is characterized by the following combination: gaster, femora, and tibiae black; mesopleuron with minute punctures that are ill defined in the male; setae straight (including mesopleural setae), erect on postocellar area (but shorter than one midocellar diameter), appressed or nearly so on scutum and midfemoral venter, inclined obliquely anterad on propodeal dorsum; and female apical tarsomeres not angulate basally and without small spines on lateral margins (Fig. 355c).

Several species share these characters, but seyrigi differs from most in having an unusually large clypeus (Figs. 355a, b): in the female, the distance between the lobe corners is about $1.5 \times$ clypeal midline and about $2.0 \times$ the distance between a corner and orbit; in the male, the distance between the lobe corners is practically equal to the clypeal midlength. The presence of a preapical ventral spine on tarsomeres V , in both sexes, is a subsidiary recognition feature. The clypeus is similar in the female of sexinus, but seyrigi has an impunctate, glabrous swelling above each antennal socket, and the female labrum is only minimally emarginate. In sexinus, the supraantennal area is uniformly punctate and setose, the apical tarsomeres have no preapical spine, and the female labrum has a well-defined emargination.

Description.- Scutal punctures averaging less than one diameter apart, but in female many discal punctures 2-3 diameters apart. Mesopleural punctures minute, well defined to ill defined, about 1-2 diameters apart beneath scrobe; interspaces microsculptured, dull. Episternal sulcus complete. Propodeal dorsum rugose in most specimens, transversely ridged in some; side ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae erect on postocellar area, shorter than midocellar diameter; erect on each side of oral fossa next to occipital carina, about as long as $0.3 \times$ basal mandibular width; shorter than midocellar diameter on scutum and midfemoral venter; oriented obliquely anterad on propodeal dorsum.

Head, thorax, legs, and gaster black, mandible reddish mesally. Frontal setae silvery in both sexes. Wing membrane moderately infumate; forewing costal and subcostal veins dark brown. Terga I-III in female, I-IV in male, silvery fasciate apically.

Figure 355. Tachysphex seyrigi Arnold: a - female clypeus and mandible; b - male clypeus and mandible; c - hindtarsomere V of female in ventral view; d - volsella with outline showing variation; $\mathrm{e}-$ penis valve.

ㅇ.- Labrum minimally, shallowly concave mesally. Clypeus (Fig. 355a): bevel longer than basomedian area; lip free margin arcuate, with two lateral incisions on each side, distance between corners $2.0-2.1 \times$ distance between corner and orbit. Width of postocellar area $1.4 \times$ length. Dorsal length of flagellomere I $2.4 \times$ apical width. Forefemoral venter minutely punctate (punctures many diameters apart in one female), impunctate basally. Dorsal foretibial surface with two spines; outer surface with two or three thin bristles. Forebasitarsus with 12 or 13 rake spines. Tarsomeres V: venter with one preapical spine, apicoventral margin arcuate (Fig. 355c). Tergum V with a few, scattered punctures, interspaces unsculptured; apical depression impunctate, glabrous. Pygidial plate with punctures several to many diameters apart, interspaces unsculptured. Length $10.0-10.5 \mathrm{~mm}$.
0^{0}. - Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 355b): bevel unsharply delimited, shorter than basomedian area; lip free margin arcuate, with ill-defined corner; distance between corners $1.1-1.2 \times$ distance between corner and orbit. Width of postocellar area $1.1-1.6 \times$
length. Dorsal length of flagellomere I 1.5-1.8 \times apical width. Forefemoral notch minutely setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Venters of tarsomeres V each with long, preapical seta. Sterna III-VI with large, impunctate area anterad of apical depression. Length $6.0-9.1 \mathrm{~mm}$. Volsella and penis valve: Figs. 355d, e.

Geographic distribution (Fig. 356).Madagascar.

Records.- MADAGASCAR: Antananarivo: Ankaratra ($1+$, MRAC). Toliara: Bekily (2 \& , $1 \mathrm{o}^{\text {o }}$, MNHN, lectotype and paralectotypes of seyrigi), Berenty (1 ค, 17 ơ; 3 ค, BMNH; 1 \& , MRAC), 38 km E Sakaraha (l°).

Figure 356. Collecting localities of Tachysphex seyrigi.

Tachysphex silvestris Pulawski, sp. nov.

Figures 357, 358.
Derivation of name.- Silvestris, a Latin adjective meaning of or belonging to a wood or forest; an allusion to the type locality habitat.

Recognition.- The female of silvestris has tarsomeres IV wider than long, with the dorsoapical margin very broadly emarginate, almost straight, apicoventral margin roundly prominent mesally; tarsomeres V angulate basoventrally, each with a central cluster of small spines on the venter and the apicoventral margin produced into a lobe; and on each leg one claw smaller than the other (Figs. 357d-f). Unlike most other species with these characteristics, the forebasitarsus of silvestris has only 5-7 rake spines (Fig. 357c). Tachysphex agilis and suavis are the only other species of continental Africa with a similar rake structure, but in silvestris the tibiae are black (mid- and hindtibiae largely red in agilis), the width of postocellar area is $1.0-1.2 \times$ length ($1.5-1.7 \times$ length in suavis), scutal punctures are equal in size or nearly so (scutal punctures of suavis are of two discrete types: denser small and sparser large), setae of the propodeal dorsum are all erect or inclined posterad (rather than oriented anterad basally). Also, the punctures of the pygidial plate are several diameters apart in silvestris, at least posteromesally, whereas the plate of suavis is variably sculptured: punctatorugose, or with punctures that are less than one diameter apart, or with punctures that are more than one diameter apart mesally.

The male of silvestris can be recognized by the presence of a central cluster of small spines on the venter of apical tarsomeres, in combination with the following: gaster either all black or with red apex, mesopleural punctures ill defined, several diameters apart, interspaces microsculptured, dull; setae suberect to markedly inclined posterad on scutum, slightly inclined posterad on the propodeal dorsum; propodeal side ridged; and sterna densely, uniformly punctate or nearly so, finely setose. In addition, the clypeal middle section is flat, and the lip corners are closer to adjacent orbits than to each other; the forebasitarsus, in most specimens, has one or more preapical rake spines, and the outer apical spine of foretarsomere II is shorter than foretarsomere III. Unlike suavis, the male of silvestris has no lateral carinae on tergum VII.

Description.- Scutal punctures well defined, averaging about two diameters apart on disk (three or four diameters in some specimens); interspaces microsculptured. Mesopleural punctures

minute, several diameters apart (relatively large in single female from Cameroon); interspaces dull, microsculptured. Propodeal dorsum irregularly ridged longitudinally (ridges irregularly anastomosed); side ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae erect on each side of oral fossa next to occipital carina, about as long as 0.3 of basal mandibular width; erect on postocellar area, erect or nearly so on scutum in female and suberect to obliquely inclined posterad in male, about equal to midocellar diameter; slightly inclined posterad on propodeal dorsum; setae of midfemoral venter suberect, about equal to midocellar diameter in female, slightly less than that in male.

Head and thorax black, mandible red at about two thirds of length. Frontal setae silvery in female, silvery or with golden tinge in most males but golden in those from Zaire. Wing membrane slightly infumate; forewing costal vein brown, subcostal vein dark brown. Legs black except tarsal apex reddish in most females, and tarsi all or largely red in male. Gaster all black in most populations, but one or two apical segments red in some specimens from Foro-foro, Ivory Coast. Terga I-III silvery fasciate apically.

ㅇ.- Labrum emarginate mesally. Clypeus (Fig. 357a): bevel ill defined, shorter than basomedian area; lip free margin slightly arcuate, emarginate mesally, with two lateral incisions on each side. Width of postocellar area 1.1-1.2 \times length. Dorsal length of flagellomere I 1.8-2.2 \times apical width. Scutum and scutellum flattened. Midtrochanteral venter: punctures minute, several diameters apart. Forefemoral venter with minute punctures that are several to many diameters apart. Dorsal foretibial surface with minute, inconspicuous bristles; outer surface with two or three thin bristles but no spines. Forebasitarsus with 5-7 rake spines (Fig. 357c), in most specimens two apical spines with sockets confluent (no sockets confluent or three sockets confluent in some, or two sockets confluent on one leg and three on other); foretarsomere II with three apical and one adapical rake spines, in many specimens also with one spine near midlength (the apical spines with sockets confluent or nearly so). Tarsomeres III with apicoventral margin arcuate. Tarsomeres IV wider than long, with dorsoapical margin very broadly emarginate (almost straight) and apicoventral margin roundly projecting (Figs. 357d, f); outer margin of foretarsomere IV about 0.5 length of inner margin. Tarsomeres V angulate basoventrally, with central cluster of small spines on venter; lateral margin with row of small spines subbasally; apicoventral margin produced into lobe (Figs. 357e, f). Outer claws of mid- and hindtarsi shorter, thinner than inner claws (Figs. 357d-f), opposite on foretarsus. Apical depression of tergum V unsculptured, glabrous. Pygidial plate with well-defined punctures that in most specimens concentrate along margins (several diameters apart at least posteromesally); interspaces almost unsculptured. Length $8.4-10.1 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 357b): middle section flat, bevel rudimentary or absent; lip free margin arcuate or sinuate, with well-defined corner; distance between corners $1.4-1.5 \times$ distance between corner and orbit. Width of postocellar area $1.1-1.3 \times$ length. Dorsal length of flagellomere I $1.5-1.7 \times$ apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with $0-4$ preapical rake spines (numbers of spines may differ in the same specimen, e.g., three on one leg and one on other); outer apical spine of foretarsomere II shorter than tarsomere III. Venters of tarsomeres V each with preapical cluster of minute spines. Length $6.9-8.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 357 g , h.

Geographic distribution (Fig. 358).- Ivory Coast to Zanzibar Region of Tanzania.
Records.- Holotype: ํ, IVORY COAST: Abijan: Forêt de Banco, 23 Jan 1991, WJP (CAS). Paratypes: CAMEROON: Nord: 15 km W Campement des Eléphants and 67 km S Garoua, 13-19 July 2002, WJP (1 \&) . GABON: Assok Ngum at $1^{\circ} 42^{\prime} \mathrm{N} 11^{\circ} 39^{\prime} \mathrm{E}, 19-21$ Feb 1986, A. Pauly ($20^{\circ} ; 40^{\circ}$, FSAG). GHANA: Breku 40 km E Kononga, 31 Jan 1991, WJP (1 ㄴ, 1 ه̛). IVORY COAST: Abijan: Forêt de Banco,

Abijan, 6 Jan 1991, WJP (1 ¢) ; Bouaké, 1974 (day and month not indicated), D. Duviard (28 o); Bouaké: Foro-foro, January through December, 1971-1973, same collector (5 ํ, 2 ơ' $^{\circ} 110$ ㅇ, 21 ơ, UCD); Lamto, 23 Sept 1971, D. Lachaise (1 ํ, MNHN); 40 km N Man, 14 Jan 1991, WJP (1 ㅇ); Ouro 30 km W San Pédro, 17 Jan 1991, WJP (1 ㅇ) ; 10 km N San Pédro, 18 Jan 1991, WJP (2 ¢). KENYA: Coast Province: Tiwi Beaches ca 17 km S Mombasa, 24-26 June 1999, J.S. Schweikert and WJP (2 +). TANZANIA: Zanzibar Region: Pemba Island, 15-23 Sept 1924, H.J. Snell (1 + , BMNH); Unguja (= Island of Zanzibar): airport, 8 June 1988, AM (MSNT). TOGO: Lomé, 23 Feb 1991, WJP (1 ㅇ). ZAIRE: Bandundu Province: 46 mi W Idiofa, 7 Aug 1957, E.S. Ross and R.E. Leech (2 o $^{\text {T }}$).

Tachysphex socotrae Pulawski, sp. nov.

Figures 358, 359.

Figure 358. Collecting localities of Tachysphex silvestris and socotrae.

Derivation of name.- Named after the Socotra Island where this species occurs.
Recognition.- Tachysphex socotrae, an endemic of the Socotra Island, has the labrum convex and markedly protruding beyond the clypeal free margin, galea about as long as the scape, propodeal side microareolate (all or largely so), glabrous adjacent to the metapleural sulcus, and setae appressed on the postocellar area and scutum. It resembles dolosus in having the longest setae of the lower gena markedly longer than midocellar diameter and setae of the propodeal dorsum oriented anterad (as in Fig. 124a), a unique such combination among the species with a convex labrum. Unlike dolosus, the punctures of the scutal disk are sparse (with shiny, unsculptured interspaces) in the female and many males of socotrae, and the corner of the male clypeus lip is prominent (Fig. 369b); also the volsellae are different (compare Figs. 359c and 124b).

Another species with a convex labrum that has a sparsely punctate scutal disk is caliban and, to a lesser degree, atlanteus. In both the setae of the propodeal dorsum are inclined posterad in the apical half (all or only sublateral ones) and in caliban the genal setae are no longer or slightly longer than the midocellar diameter.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea densely punctate (punctures about one diameter apart), impunctate anteriorly, about as long as 0.9-1.1 \times scape. Scutal punctures in female averaging several diameters apart on disk (interspaces unsculptured, shiny), in male varying from about one to several diameters apart on disk (interspaces microsculptured, dull). Mesopleuron dull, evenly microsculptured. Propodeal dorsum evenly microareolate; side evenly microsculptured (all or largely so). Hindcoxal dorsum with inner margin carinate basally.

Setae straight, suberect on each side of oral fossa next to occipital carina, longest setae about $0.4 \times$ basal mandibular width, markedly longer than midocellar diameter; appressed on postocellar area and scutum; oriented anterad on propodeal dorsum; propodeal side glabrous anteriorly.

Head and thorax black, mandible (except apical third) and clypeal bevel in female and many males yellowish red. Frontal setae silvery in both sexes. Wing membrane slightly infumate to nearly hyaline; costal vein of forewing light brown to brown, subcostal vein brown (both veins identical in color in some specimens). Femora in female all red or black basodorsally, in male varying from largely red to black except red apex; tibiae and tarsi red. Gaster red in female, in male three

Figure 359. Tachysphex socotrae Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d - penis valve.
or four apical segments brown. Terga I-III inconspicuously silvery fasciate apically (fasciae broadly interrupted mesally).

ㅇ.- Clypeus (Fig. 359a): bevel longer than basomedian area; lip free margin arcuate, shallowly emarginate mesally, sinuous laterally. Width of postocellar area $0.6 \times$ length. Dorsal length of flagellomere I 2.7 $-3.0 \times$ apical width. Forecoxa with short apicomedian process. Dorsal foretibial surface with three spines; outer surface with two or three spines. Forebasitarsus with 7-9 rake spines (mostly eight). Apical spines of hindtarsomere IV reaching claw bases. Apical depression of tergum V varying from impunctate to minutely punctate. Pygidial plate microsculptured and with shallow, inconspicuous punctures that average many diameters apart. Length $8.8-11.7 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 359b): bevel shorter than basomedian area, delimited anterolaterally by oblique carina that emerges from lip corner; lip free margin nearly truncate, emarginate mesally; lip corners prominent, about equidistant from each other and orbit. Width of postocellar area $0.8 \times$ length. Dorsal length of flagellomere I 2.1-2.4 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with 4-6 rake spines. Outer apical spine of foretarsomere II longer than tarsomere III. Length 7.2-8.2. mm. Volsella and penis valve: Figs. 359c, d.

Geographic distribution (Fig. 358).- Island of Socotra.
Records.- Holotype: \circ, YEMEN: Socotra: Hadibo Plain, 4 Apr 1967, K.M. Guichard (BMNH).

Tachysphex sordidus (Dahlbom)

Figures 360, 361.
Tachytes sordidus Dahlbom, 1845:470, oै (as sordida, incorrect original termination). Lectotype: ơ, "Egypt", actually Greece: Island of Rhodes (NRS, Hedenborg coll.), designated by de Beaumont, 1947b:391, not examined.- As Tachysphex sordidus: Kohl, 1885a:397 (tentative new combination, original description copied); Dalla Torre, 1897:694 (in catalog of world Hymenoptera); de Beaumont, 1940:170 (not found in Egypt); Honoré, 1942:56 (described from Egypt in error); de Beaumont, 1947a:176 (in revision of Egyptian Tachysphex, occurrence in Egypt doubtful), 1947b:391 (Cyprus); Pittioni, 1950:25 (Cyprus); de Beaumont, 1960a:16 (Greece: Island of Rhodes); Pulawski, 1971:417 (in revision of Palearctic Tachysphex); Kazenas, 1972:163 (Kazakhstan); Myartseva, 1972a:79 (Turkmenistan); de Beaumont, Bytinski-Salz, and Pulawski, 1973:13 (Israel); Bohart and Menke, 1976:276 (listed); Georghiou, 1977:192 (Cyprus); Kazenas, 1978:114, 126 (in key to Sphecidae of Kazakhstan and Central Asia); Islamov, 1986:527 (Uzbekistan); Nazarova, 1998:41 (Tajikistan); Kazenas, 2001:30 (in checklist of Sphecidae of Kazakhstan and Central Asia), 2002a:75 (geographic distribution, collecting localities in Kazakhstan).
Tachysphex lebedevi Gussakovskij, 1952:238, 오, ơ. Lectotype: Tajikistan: Koy-pyaz-tau (ZIN), designated by Pulawski, 1971:419, examined before 1971. Synonymized with Tachysphex sordidus by Pulawski, 1971:417 and 419.
As Tachysphex fluctuatus: Morawitz, 1894:342 (Turkmenistan: Repetek), corrected to Tachysphex sordidus by Pulawski, 1971:417.
As Tachysphex grandissimus (${ }^{\circ}$ only): Gussakovskij, 1933:382 (Iran), corrected to Tachysphex sordidus by Pulawski, 1971:417.

Recognition.- Tachysphex sordidus is one of the species in which the apical depression of sternum I is intersected by a longitudinal carina (as in Fig. 132a) and hindwing vein cu-a is oblique (anal end further away from wing base than cubital end). In the male, the apical depression of at least sternum III is covered with appressed setae that are markedly longer than those of remaining surface (Fig. 360e). As in grandissimus and osiris, the female has no spines on the lateral margins of apical tarsomeres and in the male the setae of the apical depressions on sternum III (and on the following sterna in most specimens) are dense, as if agglutinated.

The female differs from grandissimus and osiris in having the clypeal bevel clearly step-like, the gena noticeable in dorsal view (Fig. 360c), setae largely but not entirely concealing integument on thorax and gena (rather than entirely concealing), and the pygidial plate broad basally and contrastingly narrowing preapically (Fig. 360d). Unlike osiris, it has an emarginate labrum, clypeal lip incised laterally (Fig. 360a), frons not unusually convex; hindfemoral venter setose, flagellum black, and marginal cell densely microsetose.

The male differs from grandissimus in having many mesopleural punctures more than one diameter apart (punctures compressed against each other in grandissimus) and the frontal setae golden (but silvery in the smallest specimens). Unlike osiris, the outer margin of the forebasitarsus has at most one preapical spine that is close to apical one (rather than $4-6$ spines), the outer apical spine of foretarsomere II is at most as long as foretarsomere III (rather than longer), and sternum II is all setose (rather than glabrous in most specimens).

Description.- Scutal punctures less than one diameter apart in female and most males, about one diameter apart on disk in some males. Mesopleural punctures superficial, somewhat ill defined, almost compressed against each other in female, several diameters apart at center in male. Propodeal dorsum rugose; side ridged; posterior surface, in dorsal third or so, with wide median impression. Hindwing jugal lobe enlarged (as in Fig. 102a), crossvein cu-a oblique (anal end fur-

Figure 360. Tachysphex sordidus (Dahlbom): a - female clypeus and mandible; b-male clypeus and mandible; c - female head in dorsal view; d - pygidial plate of female; e - male gaster in lateral view.
ther away from wing base than cubital end). Hindcoxal dorsum with inner margin carinate basally. Sternum I with apical depression that is bisected by longitudinal, obtuse carina (as in Fig. 132a).

Setae erect on each side of oral fossa next to occipital carina, about $1.5 \times$ as long as midocellar diameter; appressed on postocellar area in female, in male suberect, inclined anterad, about as long as $0.5 \times$ midocellar diameter; appressed on scutum; oriented posterad on propodeal dorsum (erect basomedially).

Head and thorax black, mandible dark reddish mesally. Frontal setae silvery in female and smallest males, golden in most males. Wing membrane slightly infumate; costal vein of forewing yellowish brown, subcostal vein dark brown. Femora black, red apically in most specimens; hindfemur largely red in some females. Tibiae and tarsi red, but fore- and midtibiae partly black and hindtibia all black in single specimen from Oman. Gastral segments I and II red in female, remainder black (apical depression of tergum II and sternum II all black in some specimens); gaster all
black in male. Terga I-IV silvery fasciate apically in female (terga I-III in females from Cyprus and Israel); terga I and II or I-III fasciate in male (I-IV in single male from Oman).

ㅇ.- Labrum emarginate. Clypeus (Fig. 360a): bevel shorter than basomedian area, steeply sloping toward lip base; lip free margin arcuate, emarginate mesally, with one or two lateral incisions on each side. Width of postocellar area $0.8 \times$ length. Gena thick in dorsal view (Fig. 360c). Dorsal length of flagellomere I 2.3-2.7 \times apical width. Dorsal foretibial surface with three or four spines; outer surface with three or four spines. Forebasitarsus with 12 or 13 rake spines. Apical tarsomeres with two subbasal and one or two preapical spines on venter, lateral margins without spines. Apical depression of tergum V unsculptured, glabrous. Pygidial plate broad basally, markedly narrowed preapically (Fig. 360d), with punctures that average several diameters apart, aciculate preapically. Length $12.0-15.5 \mathrm{~mm}$.
σ^{7}.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 360b): bevel shorter than basomedian area, delimited laterally by short, longitudinal carina emerging from lip corner; lip free margin arcuate, emarginate mesally in many specimens, with well-defined corner; distance between corners $1.2-1.3 \times$ distance between corner and orbit. Width of postocellar area $0.2-0.5 \times$ length. Dorsal length of flagellomere I 1.9-2.4 \times apical width. Forefemoral notch glabrous. Outer margin of forebasitarsus with at most one preapical rake spine that is close to apical one; outer apical spine of foretarsomere II as long as tarsomere III or shorter. Venter of tarsomeres V with one spine. Sternum II: setae as long on apical depression as on remaining surface; apical depressions of sterna III-V (of sternum III only in single specimen from Oman) covered with appressed, dense setae that appear agglutinated (Fig. 360e). Sterna either densely, evenly punctate or (most specimens) sterna V and VI with sparse punctures anterad of apical depression. Length $8.2-12.3 \mathrm{~mm}$. Volsella and penis valve as in costae (Figs. 102b, c).

Geographic distribution (Fig. 361).- Greece (Island of Rhodes), Cyprus, Turkey, Israel, Oman, Azerbaijan, Iran, Central Asia (Kazakhstan, Uzbekistan, Turkmenistan, Tajikistan).

Records.- AZERBAIJAN: Mashtagi in Apsheron Peninsula (Pulawski, 1971). CYPRUS: Akrotiri (de Beaumont, 1947b), Cherkes (6 ㅇ, $4 \delta^{\circ}$), Limassol ($1 \delta^{\text {d }}$), Moni River (de Beaumont, 1947b), Yermasoyia River (4 \mathbf{o}°), Zakaki ($1 \overbrace{}^{7}$). GREECE: Island of Rhodes: Ixia (Pulawski, 1971), Kamiros (Pulawski, 1971), Kremasti (de Beaumont, 1960a), Phileremos (de Beaumont, 1960a). IRAN: Ardabil: unghut Mugan (Pulawski, 1971). Kerman (Pulawski, 1971): Bazman, Khunikaka, Podachi. Khorasan: Fazel 9 km W

Figure 361. Collecting localities of Tachysphex sordidus.
mont, Bytinski-Salz, and Pulawski, 1973, or as indicated): Beersheba (3 σ^{*}), Bir Rehme $=$ Kfar Yeroham 30 km SSE Beersheba (3 \ddagger), Gevulot, Revivim, Shibolim. KAZAKHSTAN (K = Kazenas, 2002, P = Pulawski, 1971): Aktöbe: 60-80 km NE Irghiz (K), Malye Barsuki sands near Aral Lake (P), Oymautskiy in Bauganin District (K). Almaty: Bakanas (K), Borandysu 30 km E Chilik (K), 60 km E Chilik (K), Ili 70 km NNE Almaty (K, P), Kapchagai (K), Kaskelen River 50 km N Almaty ($1 \stackrel{\circ}{ }+3$ o *), Myn Bulak on Ili River near Ayak-Kalkan (K). Mangghystaū: Ak-Bas 25 km SE Tauchik (P), Bas-Kuduk 90 km SE Tauchik (K, P), Beyneu (K), Karatau Range (K), Koilus (K), Sumsa (K). Qostanay: Zhalanash (K), 35 km NW Zhalanash (K). Qyzylorda: Akdjar-Mailibay in Kazalinsk District (P), 5 km E Akespe $=80 \mathrm{~km}$ W Aral'sk at about $47^{\circ} \mathrm{N}$ $60.5^{\circ} \mathrm{E}(\mathrm{K}), 6 \mathrm{~km}$ W village Amanotkel' at about $46^{\circ} \mathrm{N} 61.5^{\circ} \mathrm{E}\left(1 \sigma^{\circ}\right), 15 \mathrm{~km}$ SE Aral'sk (K), Chokusu railroad station 30 km NW Saksaul'skiy ($1 \mathrm{o}^{\star}$), 3 km NW Kamyshlybash (K), 28 km SW Kazalinsk (K), 14 km SE Saksaul'skiy (1 \&) . South Kazakhstan: 30 km S Chardara (K), Chayan (K). Zhambyl: S portion of Betpakdala (K). Location unknown: Koylus (P). OMAN: Al Bagriya at $23^{\circ} 32.3^{\prime} \mathrm{N} 58^{\circ} 31.3^{\prime} \mathrm{E}$ (1 $\boldsymbol{\sigma}^{\circ}$). TAJIKISTAN: Dushanbe ($1 \delta^{*}$), Kondara 35 km N Dushanbe ($\begin{aligned} & 1 \\ & \circ\end{aligned}$, $1 \delta^{*}$), Koy-pyaz-tau near Kabadian (Gussakovskij, 1952), Kulab (Pulawski, 1971), Kvak 35 km N Dushanbe (Pulawski, 1971), Pugus 30 km N Dushanbe (Pulawski, 1971), Ruidasht 40 km N Dushanbe (Pulawski, 1971), Tigrovaya Balka Nature Reserve (Nazarova, 1998). TURKEY: Çanakkale: Ayvalik (1 ơ). Mersin: Eksiler (2 o ${ }^{\text {º }}$), Mut (Pulawski, 1971). TURKMENISTAN (Pulawski, 1971 or as indicated): Akhcha-Kuyma near Nebit-Dagh, Askhabad, Chuli Pass in Kopet-Dagh, Imam Baba in Mary District, Kalai-Mor, Krasnovodsk, Kushka, Repetek, Sandy-Lachi (Myartseva, 1972a), Sary-Chop 180 km S Mary, Tedjen (2 o *), Unguz. UZBEKISTAN: Baisun in Karzhantau Range in Surkhandarya Oblast' (Islamov, 1986), Kyrk-Kuduk near Tashkent (Pulawski, 1971), Saraylaylik (Pulawski, 1971), steppes between Tashkent and Syr-Darya (Pulawski, 1971).

Tachysphex speciosissimus Morice

Figures 362, 363.
Tachysphex speciosissimus Morice, 1897:308, ํ. . Holotype: \odot, Egypt: Koubbeh near Cairo (OXUM), examined in 1974.— de Beaumont, 1940:177 (in revision of Egyptian Tachysphex); Honoré, 1942:55 (in checklist of Egyptian Sphecidae); de Beaumont, 1947a:206 (in revision of Egyptian Tachysphex); Pulawski, 1971:109 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:7 (Israel); Bohart and Menke, 1976:276 (listed).
Tachysphex redivivus Kohl, 1901:781, ㄴ. Holotype: ㅇ, Egypt: Cairo (NHMW), examined before 1971. Synonymized with Tachysphex speciosissimus by de Beaumont, 1940:178.- Dollfuss, 1989:13 (type material in NHMW).
As Tachysphex fasciatus (${ }^{\circ}$ only): de Beaumont, 1940b:178 and 1947a:207 (corrected to Tachysphex speciosissimus by Pulawski, 1971:109 and 112).

Recognition.- Tachysphex speciosissimus has a flat labrum, hindwing vein cu-a vertical, and apical tarsomeres without spines on the venter or lateral margins. In addition, the free margin of the lateral clypeal section is shallowly concave, almost straight (Figs. 362a, b), the scapal venter is unsculptured, shiny, glabrous, the mesopleuron is dull, finely rugose, and in most specimens the propodeal side is all setose.

The female of speciosissimus differs from other such species in having trochanteral venters I-III shiny, unsculptured except for a few, sparse punctures. The inner hindtibial spur of many specimens has sparsely spaced rays in the middle third or so, a subsidiary recognition feature.

The male differs in having trochanteral venters I-III or II and III unsculptured except for a few, sparse punctures, and in most specimens sternum II with only a few, sparse punctures and associated setae on a broad, median zone that extends from the sternal base to the apex (sparsely punctate area reduced in males from Pakistan). Additionally, it has a well-defined foretarsal rake, with the outer apical spine of foretarsomere II as long as tarsomere III or longer.

Tachysphex speciosissimus closely resembles the Central Asian hostilis Kohl, but differs in having well-defined silvery fasciae on at least terga I-IV, closely micropunctate female terga, and
black gastral apex in the male. In hostilis, the silvery tergal fasciae are ill defined, female terga are sparsely micropunctate, and the male gaster is all red.

Description.- Postocellar area shallowly concave. Scapal venter unsculptured, shiny, asetose. Scutal punctures well defined, up to 2-3 diameters apart on disk; interspaces shiny. Mesopleuron finely rugose, dull. Punctures of mesothoracic venter, except along midline, varying from about one to several diameters apart. Episternal sulcus complete in some specimens. Propodeal dorsum varying from almost evenly microareolate to finely rugose or finely ridged; side either finely rugose or evenly microsculptured but not ridged (contrary to Pulawski, 1971); posterior face at most with ill-defined ridges. Hindcoxal dorsum carinate basally. Trochanteral venters I-III or II and III unsculptured except for a few, sparse punctures. Inner hindtibial spur, in most females, with thick, relatively sparse rays near midlength (rays dense, usual, in two females from Mauritania).

Setae subappressed on postocellar area in female, suberect to erect in male, shorter than midocellar diameter (as long as midocellar diameter in males from Pakistan); suberect, about as long as midocellar diameter on each side of oral fossa next to occipital carina; appressed to suberect anteriorly on scutum; inclined anterad on propodeal dorsum; suberect to appressed on midfemoral venter. Scutal setae variously oriented: diverging posterolaterad in some specimens, arranged in characteristic rosette-like pattern in some others: oriented posterad along midline in middle third of length or so, oriented transversely adjacent to midline. Propodeal side setose throughout except asetose along metapleuron in two females from Mauritania.

Head and thorax black, mandible yellowish red except basally and apically. Frontal setae sil-

JK
Figure 362. Tachysphex speciosissimus Morice: a - female clypeus and mandible; b - male clypeus and mandible with outline showing variation in width of clypeal lobe; c - volsella; d - penis valve with outline showing variation.
very in both sexes. Wing membrane nearly hyaline; costal vein of forewing yellowish, subcostal vein brown. Femora black except apically (hindfemur red in some females); tibiae and tarsi red except black in some males. Gaster varying from all red to all black in female, in male all black or terga I and II red; apical depression of terga translucent. Terga I-V (I-IV in many females) silvery fasciate apically.

ㅇ.- Clypeus (Fig. 362a): bevel shorter to longer than basomedian area; lip free margin arcuate, not incised laterally. Width of postocellar area 1.5-1.7 \times length. Dorsal length of flagellomere I 2.3-2.8 \times apical width. Anteroventral surface of fore- and midfemora near base shiny and with a few, large punctures. Venter of trochanters I-III shiny, with a few, sparse punctures. Dorsal foretibial surface with one or two spines; outer surface with 1-3 spines. Forebasitarsus with 6-8 rake spines. Apical spines of hindtarsomere IV, in some females, nearly reaching claw bases. Apical tarsomeres with several erect spines on venter. Apical depression of tergum V mostly setose, but glabrous in holotype of redivivus and in specimen from Wadi Digla, Egypt. Pygidial plate with punctures that average many diameters apart; interspaces aciculate, unsculptured near apex in some specimens. Length $5.6-11.1 \mathrm{~mm}$.
$\mathrm{o}^{\boldsymbol{*}}$.- Mandible: trimmal carina with obtuse tooth, without cleft (Fig. 362b). Clypeus (Fig. 362b): bevel about as long as basomedian area; lip indistinctly separated from bevel, its free margin arcuate, with corner; distance between corners 1.1-1.5 \times distance between corner and orbit. Width of postocellar area 2.1-2.5 \times length. Dorsal length of flagellomere I 1.5-1.7 \times apical width. Forefemoral notch asetose. Outer margin of forebasitarsus with four rake spines; outer apical spine of foretarsomere II as long as tarsomere III or longer. Sterna II-IV, in most specimens, sparsely punctate and setose from base to apex on broad, median zone (sparsely punctate zone nearly reduced in males from Pakistan). Sternum VIII shallowly emarginate apically, apical margin nearly straight between lateral prongs. Length $5.0-7.3 \mathrm{~mm}$. Volsella and penis valve: Figs. 362c, d.

Geographic distribution (Fig. 363)- Mauritania, North Africa, Israel, Syria, Iran, Pakistan.

Records.- AlGERIA: Biskra (Pulawski, 1971). EGYPT: Al Jizah (= Ghiza): Kafr Hakim in Embabah (de Beaumont, 1940), Wadi um Assaad near Abu Rawash (de Beaumont, 1940). Al Qahirah (= Cairo): Cairo (Kohl, 1901), Kubbah (Morice, 1897), Maadi (Pulawski, 1971), Wadi Digla (1 ㅇ, USNM), Wadi el Tih ($1 \sigma^{*}$, NHMW). As Suways (= Suez): Ain Sokhna (Pulawski, 1971), 13-22 km N Ain Sokhna $\left(1 \delta^{\star}\right)$. Sina (= Sinai): Wadi Gharandal 30 km NW Abu Zenima ($1+1 \delta^{\circ}$), Wadi Sudr 50 air km SE Suez

Figure 363. Collecting localities of Tachysphex speciosissimus.
 Valley at $30^{\circ} 42.9^{\prime} \mathrm{N} 35^{\circ} 11.2^{\prime} \mathrm{E}(1+$ ㅇ, CSE), Arava Valley: Hazeva (1 ㅇ) , Arava Valley: Shizaf Nature Reserve
 Bytinski-Salz, and Pulawski, 1973), Nakhal Zin at En Akrabim (1 \uparrow). MAURITANIA: Akjoujt-Trevia at $19^{\circ} 36^{\prime} \mathrm{N} 14^{\circ} 03^{\prime} \mathrm{W}\left(1 \delta^{\circ}\right), 25 \mathrm{~km}$ SW Moudjéria (1 ㅇ $)$, 60 km SE Nouakchott (1 ㅇ) . MOROCCO (Pulawski,
 TUNISIA: 60 km W Gabes (1 ơ, MS). Location unknown: Poure Orophos (Pulawski, 1971).

Tachysphex spectrum Pulawski, sp. nov.

Figures 364, 365.
DERIVATION OF NAME.- Spectrum, Latin for ghost, an allusion to the sporadic occurrence of this species; a noun in apposition to the generic name.

Recognition.- Tachysphex spectrum is all black, with infumate wings, and a punctate supraantennal swelling (although slightly less densely than the adjacent frons). Both sexes can be recognized by the above characters in combination with the unridged propodeal side. Additionally, the female tarsi are somewhat shortened, with midtarsomere II less than twice as wide as long, and the pygidial plate is densely punctate (Fig. 364c); in the male, the apical (dentate) portion of the penis valve is broadened basally (Fig. 364e). Some males of harpax are externally similar, but they have two to several spines on the venter of apical tarsomeres. Only one preapical spine is present in the male of spectrum.

Figure 364. Tachysphex spectrum Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - pygidial plate of female; d - volsella; e - penis valve.

Description.- Supraantennal swelling minutely punctate, although slightly less densely than surrounding area. Scutal punctures minute, about one diameter apart; interspaces dull. Mesopleural punctures minute, about 2-3 diameters apart; interspaces microsculptured, dull. Propodeal dorsum evenly microareolate; side microscopically punctate. Hindcoxal dorsum with inner margin carinate basally.

Setae appressed on postocellar area and scutum; suberect on each side of oral fossa next to occipital carina, about as long as midocellar diameter; oriented posterad on propodeal dorsum.

Head, thorax, legs, and gaster black, mandible dark reddish mesally, tarsal apex dark brown. Frontal setae silvery in both sexes. Wing membrane infumate; costal vein of forewing dark brown, subcostal vein black. Terga I-IV silvery fasciate apically.

ㅇ.- Clypeus (Fig. 364a): middle section (except bevel) with dense, minute and large, sparse punctures; bevel shorter than basomedian area; lip free margin arcuate, incised laterally. Width of postocellar area 1.0-1.3 \times length. Dorsal length of flagellomere I 1.5-1.7 \times apical width; flagellomeres III-IX with ill-defined sensory areas. Dorsal foretibial surface with one spine; outer surface with two bristles. Tarsi short: length of fore- and midtarsomeres II about 1.1-1.3 and $1.8 \times$ apical width, respectively; of midtarsomere III $1.3 \times$ apical width; of fore-, mid-, and hindtarsomeres IV about $0.9,0.9$, and $1.0 \times$ apical width, respectively. Forebasitarsus with 11 rake spines. Apical tarsomeres with preapical spines on venter (spines inconspicuous in female from Tanzania). Apical depression of tergum V punctate and setose throughout. Pygidial plate shallowly emarginate apically, densely punctate (punctures less than one diameter apart except anterolaterally), some punctures elongate (Fig. 364c). Length 9.9-10.5 mm.
$\sigma^{\boldsymbol{*}}$.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 364b): middle section (except bevel) with dense, minute and large, sparse punctures; bevel ill defined, markedly shorter than basomedian area; lip free margin arcuate, with ill-defined corner; distance between corners 1.2 \times distance between corner and orbit. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I 1.3-1.5 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical rake spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Length of midtarsomere II $2.1 \times$ apical width, that of midtarsomere III $1.5 \times$ apical width, that of midtarsomere IV about equal to apical width. Venter of tarsomeres V with one preapical spine. Apical margin of sternum VIII with obtuse median point. Length $8.3-10.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 364d, e.

Geographic distribution (Fig. 365).Kenya, Tanzania.

RECORDS.-Holotype: i, TANZANIA: Morogoro Region: 128 road km NW Morogoro at $6^{\circ} 08.2^{\prime} \mathrm{S} 36^{\circ} 54.3^{\prime} \mathrm{E}, 5 \mathrm{Jan}$ 2003, WJP (CAS). Paratypes: KENYA: Coast Province: Voi area, 22 Nov-2 Dec 1996, Mi. Halada (1 \&, 1 ơ, OÖLM). TANZANIA: same data as holotype except collected by M.A. Prentice ($1 \mathrm{o}^{\circ}$).

Figure 365. Collecting localities of Tachysphex spectrum and stevensoni.

Tachysphex stevensoni Arnold

Figures 365, 366.
Tachysphex stevensoni Arnold, 1924:64, 우, 우 (as Stevensoni, incorrect original capitalization). Lectotype: ㅇ, Zimbabwe: Bulawayo (SAM), here designated, examined.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:277 (listed).

Lectotype selection.- Arnold designated a female and a male as types of stevensoni. I have selected the female as the lectotype, and the male as the paralectotype.

Recognition.- The female of stevensoni has tarsomeres IV wider than long, with the dorsoapical margin very broadly emarginate (almost straight), apicoventral margin roundly prominent mesally; tarsomeres V angulate basoventrally, each with a central cluster of small spines on the venter, and the apicoventral margin produced into a lobe; and on each leg one claw is smaller than the other. It can be distinguished from other such species by the red legs, a bicolored gaster (black basally, red apically), and setae of the propodeal dorsum (all or nearly all) inclined anterad. The flattened scutum and scutellum and well-defined mesopleural punctures are additional recognition characters.

The male is characterized by the following combination: trimmal carina nondentate (Fig.

JK \& CS

Figure 366. Tachysphex stevensoni Arnold: a female clypeus and mandible; b-male clypeus and mandible; c - female hindtarsomeres IV and V in dorsal view; d - volsella; e - penis valve.

366b), mesopleural punctures well defined, foretarsomere without preapical rake spines, length of tarsomeres IV equal to apical width or slightly less, legs red, gaster black with red tip (possibly all black in some specimens), and setae of the propodeal dorsum inclined anterad. A minute, preapical spine on the venter of each apical tarsomere helps in recognition.

Description.- Scutal punctures well defined, averaging 2-3 diameters apart on disk in female, less than one diameter in male. Mesopleural punctures well defined, slightly more than one to several diameters apart beneath scrobe, interspaces unsculptured. Punctures of mesothoracic venter several diameters apart in female, about one diameter apart in male. Propodeal dorsum irregularly ridged longitudinally (ridges evanescent posteriorly in some specimens), side ridged. Hindcoxal dorsum with inner margin carinate, carina expanded basally.

Setae appressed on postocellar area and scutum; about $0.2 \times$ basal mandibular width on each side of oral fossa next to occipital carina; oriented anterad on propodeal dorsum (oriented posterad at the very apex of dorsum in lectotype female).

Head and thorax black, mandible reddish mesally. Frontal setae silvery in female, golden in male. Wing membrane hyaline; forewing costal vein yellowish brown, subcostal vein brown. Femora, tibiae, and tarsi red. Gaster black except apical segments red (IV-VI in female, V-VII to VII alone in male). Terga I-III in female, I-IV or I-V in male, silvery fasciate apically (fasciae broadly interrupted mesally in female).

ㅇ.- Labrum: free margin emarginate mesally. Clypeus (Fig. 366a): bevel longer than basomedian area, but not sharply delimited; lip free margin arcuate, not emarginate mesally, with two rudimentary, lateral incisions on each side. Width of postocellar area $1.0 \times$ length. Dorsal length of flagellomere I 2.0-2.4 \times apical width. Scutum and scutellum flattened. Midtrochanteral venter impunctate. Forefemoral venter: punctures several diameters apart. Dorsal foretibial surface with minute suberect, inconspicuous bristles; outer surface glabrous, with a few inconspicuous bristles. Forebasitarsus with nine rake spines, two spines near midlength markedly shorter than others. Tarsomeres III with apicoventral margin arcuate. Tarsomeres IV wider than long, obtusely, broadly emarginate (Fig. 366c), with apicoventral margin obtusely, triangularly projecting; outer margin of foretarsomere IV about $0.5 \times$ length of inner margin. Tarsomeres V angulate basoventrally, with central cluster of small spines on venter; lateral margins each with row of small spines; apicoventral margin produced into lobe. Outer claws of mid- and hindtarsi shorter, thinner than inner claws (opposite on foretarsus). Apical depression of tergum V unsculptured, glabrous. Pygidial plate with punctures that are several diameters apart, interspaces unsculptured. Length $7.0-8.8 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina without tooth or cleft. Clypeus (Fig. 366b): bevel rudimentary; lip free margin pointed mesally, shallowly concave on each side of midpoint; corner well defined; distance between corners $0.8-0.9 \times$ distance between corner and orbit. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I $1.3-1.5 \times$ apical width, equal to 0.7 of II. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Length of tarsomeres IV equal to apical width or slightly less. Tarsomeres V each with minute, preapical spine on venter. Length $6.0-7.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 366d, e.

Geographic distribution (Fig. 365).- Namibia, Botswana, Zimbabwe, South Africa.
Records.- BOTSWANA: Serowe: Farmers Brigade ($1 \mathrm{o}^{\circ}$, PPRI). NAMIBIA: Khorixas District: Hungorob Ravine mouth ($2 \sigma^{\pi}$, SAM, determined as Species 4 by van Noort, Prinsloo, and Compton, 2000).
 Cape Province: VanWyksfontein 8 km W Norvalspont (1 ค, AMG). ZIMBABWE: Bulawayo (4 ㅇ, 2 of, SAM, including lectotype, paralectotype, and $2 \circ$ paratypes of stevensoni), Chipinga ($1 \circ^{\circ}, \mathrm{SAM}$), Hope

Tachysphex suavis Arnold

Figures 367, 368.
Tachysphex suavis Arnold, 1929:385, ㅇ. Holotype: ㅇ, Zimbabwe: Bulawayo (SAM), examined.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae), 1945:97 (Madagascar); Leclercq, 1961:109 (Madagascar); Bohart and Menke, 1976:277 (listed); Leclercq, 1990:118 (Madagascar); Pulawski, $2003: 798$ (in checklist of Malagasy Sphecidae).

Recognition.- The female of suavis has tarsomeres IV wider than long, with the dorsoapical margin very broadly emarginate (almost straight) and the apicoventral margin roundly prominent mesally; tarsomeres V angulate basoventrally, with a row of small spines on each lateral margin and apicoventral margin produced into a lobe; and on each leg one claw is shorter than the other (Fig. 367c). Unlike most other such species, suavis has only 5-7 rake spines on the forebasitarsus (of which only the apical two have their sockets confluent), and three rake spines on foretarsomere II (one adapical, two apical, the latter two with their sockets confluent or adjacent). The eastern South African agilis, the West African silvestris, and the Madagascan subcoriaceus have a similar rake structure (also several extralimital species), but suavis differs in having scutal punctures of two discrete sizes (denser small punctures interspersed with sparser large punctures), a wide postocellar area (width $1.5-1.6 \times$ length), and setae of the propodeal dorsum oriented anterad on a basal triangular area. In the other three species, scutal punctures are of equal size or nearly so, the postocellar area is narrower (width $1.1-1.3 \times$ length), and setae of the propodeal dorsum are all uniformly erect or slightly inclined posterad. Also, the pygidial plate of many suavis is punctatorugose or with punctures nearly contiguous (but many punctures are several diameters apart in some specimens, as in agilis, silvestris, and most subcoriaceus).

The male of suavis can be recognized by the presence, in the apical portion of tergum VII, of a lateral, obtuse carina (and therefore a rudimentary pygidial plate). The following combination is also diagnostic: forebasitarsus with one to several preapical spines on the outer margin and apicolateral spine of foretarsomere II shorter than tarsomere III; clypeal lobe corners closer to each other than to the respective orbit (Fig. 367b); and setae subappressed on scutum, oriented posterad on propodeal dorsum (except oriented anterad on basomedian triangular area). In addition, scutal punctures in many specimens are of two sizes, as in the female, although the difference is slight.

Description.- Scutal punctures: in female, minute punctures that average 1-2 to several diameters apart on disk are interspersed with large punctures that are many diameters apart; in male, smaller discal punctures average 1-2 diameters apart (several diameters apart in single male from Zagnanado, Benin), and larger punctures are absent or less well defined than in female. Scutellum and postscutellum shiny. Mesopleural punctures minute, about 2-3 diameters apart at center, interspaces microareolate or aciculate. Punctures of mesothoracic venter about one diameter apart near midline, up to several diameters apart near signum. Propodeal dorsum irregularly rugose to irregularly ridged longitudinally; side ridged. Hindcoxal dorsum with inner margin carinate, carina somewhat expanded basally.

Setae erect on postocellar area, inclined adjacent to hypostomal carina (and somewhat longer than midocellar diameter), subappressed on scutum; on propodeal dorsum oriented posterad or posteromesad, but oriented anterad on large basomedian area.

Head, thorax, legs, and gaster black but mandible reddish (black basally and apically) and tarsal apex brown reddish (hindfemoral apex, all tibiae, and all tarsi red in some males). Frontal setae silvery in both sexes. Wing membrane slightly infumate, nearly hyaline; forewing costal vein brown, subcostal vein dark brown, almost black. Terga I-IV or I-V silvery fasciate apically.

ㅇ.- Labrum emarginate mesally. Clypeus (Fig. 367a): middle section slightly convex, bevel

Figure 367. Tachysphex suavis Arnold: a - female clypeus and mandible; b-male clypeus and mandible; c - female hindtarsomeres IV and V in ventral view; d - pygidial plate of female; e - male hindtarsomeres IV and V in ventral view; f - volsella; g - penis valve.
longer mesally than basomedian area; lip slightly arcuate or biarcuate, emarginate mesally, with two lateral incisions on each side. Width of postocellar area 1.5-1.6 \times length. Dorsal length of flagellomere I 2.3-2.4 \times apical width. Scutum and scutellum flattened. Midtrochanteral venter with sparsely punctate area (punctures several diameters apart). Forefemoral venter with minute punc-
tures that average several diameters apart and large punctures that are many diameters apart. Dorsal foretibial surface with several suberect, inconspicuous bristles; outer surface impunctate, glabrous, with a few bristles. Forebasitarsus with 5-7 rake spines (only two apical spines with sockets confluent), foretarsomere II with three rake spines (one adapical, two apical), apical two with sockets confluent or adjacent. Tarsomeres III with apicoventral margin arcuate. Tarsomeres IV wider than long, with dorsoapical emargination widely obtuse (almost straight) and apicoventral margin obtusely triangularly projecting; outer margin of foretarsomere IV about 0.5 length of inner margin. Tarsomeres V angulate basoventrally, with venter shallowly concave, with group of small spines basolaterally but no central cluster of such spines; each lateral margin with row of small spines (markedly smaller on inner side, opposite on foretarsus); apicoventral margin produced into lobe (Fig. 367c). Outer claws of mid- and hindtarsi shorter but not thinner than inner claws (Fig. 367c), inner claw shorter on foretarsus. Apical depression of tergum V largely impunctate and glabrous or punctate only basomedially. Pygidial plate punctatorugose or punctate (Fig. 367d). Length 7.9-12.0 mm .
0^{0}. - Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 367b): bevel shorter than basomedian area or absent; lip free margin almost straight or with shallow median notch, with welldefined corner; distance between corners $0.8-0.9 \times$ distance between corner and orbit. Width of postocellar area $1.5 \times$ length. Dorsal length of flagellomere I $1.8 \times$ apical width. Forefemoral notch large, its bottom microscopically setose, slightly margined both anteriorly and posteriorly. Outer margin of forebasitarsus with 3-5 rake spines, but with only one preapical spine (at about tarsomere midlength) in single male from Tiwi Beaches, Kenya; outer apical spine of foretarsomere II shorter than tarsomere III. Venter of apical tarsomeres with preapical cluster of small spines in most specimens, but without such spines in those from Ivory Coast and Togo; apicoventral margin arcuate (Fig. 367e). Tergum VII posteriorly with obtuse carina adjacent to lateral margin, thus with rudimentary pygidial plate. Length $8.3-9.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 367f, g.

Prey.- A female from Madagascar (MNHN) is pinned with an immature cockroach, presumably her prey.

Geographic distribution (Fig. 368).Senegal to South Africa, Madagascar.

Records.- ANGOLA: Lunda: Murieje (1 \&). BENIN: Cotonou (1 ㅇ, 1 ơ, ZMAN), Zagnanado (1 ơ, OÖLM). IVORY COAST: Adiopodoumé ($1 \nrightarrow, \mathrm{KMG}$), Bouaké: Foro-foro (1 ; 1 \& , UCD), Lamto (1 ơ, $^{\circ}, \mathrm{MNHN}$), 56 km N Niakara-

Figure 368. Collecting localities of Tachysphex suavis. mandougou ($1 \mathrm{c}^{\mathrm{o}^{\prime}}$). KENYA: Coast Province: 30 km S Mombasa (10°), Tiwi Beaches at $4^{\circ} 14^{\prime}$ S $39^{\circ} 36^{\prime}$ E (10°, ZMUC), Uchweni Forest near Witu at $2^{\circ} 24^{\prime} \mathrm{S}$ $40^{\circ} 28^{\prime}$ E (1 ㅇ, BMNH), Voi area (1 ㅇ, 1 ơ $^{\circ} ; 3$ ㅇ, 4 ơ $^{\prime}$, OÖLM), about 1 km SE Voi (6 우). Eastern Province: Kibwezi ($1+$ \& , BMNH). MADAGASCAR: Antsiranana: Parc National Montagne d'Ambre at $12^{\circ} 31^{\prime} \mathrm{S}$

 (Leclercq, 1990), Toliara (3 ㅇ, LB). NAMIBIA: Karasburg District: banks of Orange River near

 PPRI). TANZANIA: Tanga Region: 10 km WNW Mabokweni (3 fo). Zanzibar Region: Unguja (= Island of Zanzibar): no specific locality ($1 \mathrm{o}^{\boldsymbol{7}}, \mathrm{MCZ}$). TOGO: 5 km W Sokodé ($1 \mathrm{o}^{\mathrm{f}}$). ZAIRE: Shaba: Mabwe at Lake Upemba in Upemba National Park (1 ${ }^{\circ}$, FSAG). Sud-Kivu: S Bukavu (1 1 , BMNH), Uvira ($1 \mathrm{o}^{\top}, \mathrm{BMNH}$). ZAMBIA: Southern Province: Katombora ($1 \stackrel{\circ}{ }$, SAM). ZIMBABWE: Bulawayo (1 \& , SAM, holotype of suavis), Matobo (1 \&, SAM), 11 km NE Nyamandhlovu (1 \&), Turk Mine (1 ¢, SAM).

Tachysphex subcoriaceus Arnold

Figures 369-371.
Tachysphex subcoriaceus Arnold, 1945:98, $\overbrace{}^{\circ}$. Holotype: $\overbrace{}^{\circledR 7}$, Madagascar: Ranomafana (MNHN), examined.Leclercq, 1961:109 (description of $\boldsymbol{+}$; Madagascar); Bohart and Menke, 1976:277 (listed); Leclercq, 1990:118 (Madagascar); Pulawski, 2003:798 (in checklist of Malagasy Sphecidae).
 (MHNB), examined. New synonym.- Bohart and Menke, 1976:277 (listed); Pulawski, 2003:798 (in checklist of Malagasy Sphecidae).

Recognition.- Tachysphex subcoriaceus is an endemic of Madagascar with an all black gaster. The female has tarsomeres IV wider than long, with the dorsoapical margin very broadly emarginate (almost straight) and apicoventral margin obtusely projecting; tarsomeres V angulate basoventrally, with a central cluster of small spines on venter, a row of spines on the basal half of each lateral margin, and the apicoventral margin produced into a lobe (Fig. 369d); and on each leg one claw smaller than the other. Unlike its Malagasy congeners with such tarsi (scaurus, suavis), the female of subcoriaceus has all setae of the scutum and propodeal dorsum erect or slightly inclined posterad (rather than appressed on the scutum and oriented anterad on the propodeal dorsum, at least anteromesally), the scutellum convex (rather than flattened), and the propodeal dorsum slightly shorter than the scutellum and postscutellum combined (rather than slightly longer). Like suavis and unlike the other Malagasy species, the female has only five or six rake spines on the forebasitarsus, of which only the apical two have their sockets contiguous (Fig. 369c); additionally, foretarsomere II has only two rake spines (both apical, with confluent or adjacent sockets), whereas suavis has three. Unlike suavis, the scutal punctures are uniform in size on any given portion (small, dense punctures intermixed with large, sparse punctures in suavis).

The male of subcoriaceus can be recognized by the setae of the propodeal dorsum uniformly erect or slightly inclined posterad, in combination with a central cluster of small spines on the venter of apical tarsomeres (Fig. 369e), although spines may be difficult to see at first, and the distance between the clypeal lip corners equal to the distance between a corner and the adjacent orbit or greater (Fig. 369b). Most males have scutal setae erect or suberect (about one midocellar diameter long), and many have the black gaster combined with red tibiae, a subsidiary recognition feature.

Justification of new synonymy.- The holotype of subeditus differs from most males of subcoriaceus in having finely, uniformly punctate sterna, but this appears to be merely an individual variation (see Description below for details). Leclercq (1961) spoke of a differently shaped sternum VII in the holotype of subeditus, but I found no differences from subcoriaceus after having removed a gum-like deposit.

Description.- Scutum and mesopleuron dull, conspicuously microsculptured; scutal punctures up to several diameters apart in female, 1-2 diameters apart in male; mesopleural punctures minute, several diameters apart in female, 2-3 diameters in male. Episternal sulcus complete. Propodeal dorsum irregularly rugose to evenly microareolate, longitudinally ridged basally; side either ridged or with ridges evanescent in female; in male with evanescent ridges or evenly microsculptured. Hindcoxal dorsum with inner margin not carinate basally. Sternum I, in some

Figure 369. Tachysphex subcoriaceus Arnold: a - female clypeus ($\times 45$); b - male clypeus $(\times 46)$; c - female forebasitarsus $(\times 60)$; d - female hindtarsomere V in ventral view $(\times 180)$; e - male hindtarsomere V in ventral view $(\times 240)$.
specimens, with obtuse median carina.
Setae straight; erect, about $0.3 \times$ basal mandibular width on postocellar area and on each side of oral fossa next to occipital carina; erect, about one midocellar long on scutum and midfemoral venter (scutal setae nearly appressed in one male from Tongobory); erect or slightly inclined posterad on propodeal dorsum.

Head, thorax, and gaster black, mandible reddish mesally. Frontal setae silvery in female, with golden tinge in male. Wing membrane nearly hyaline; forewing costal vein brown, subcostal vein black. Legs black in female except tarsal apex red or reddish; in male at least tibial apex and tarsi red (all tibiae and tarsi red in males from Isalo). Terga I-III silvery fasciate apically.

ㅇ.- Labrum emarginate. Clypeus (Fig. 369a): middle section almost flat; bevel shorter than basomedian area to fully reduced; lip slightly arcuate (almost straight), emarginate mesally, with two lateral incisions on each side. Width of postocellar area 1.3-1.4 \times length. Dorsal length of flagellomere I 2.0-2.1 \times apical width. Forefemoral venter with minute punctures that are several diameters apart, interspaces dull, microsculptured. Dorsal foretibial surface with several inconspicous, suberect bristles; outer surface with two or three erect bristles. Forebasitarsus with five or six rake spines, of which only two apical ones have confluent

Figure 370. Tachysphex subcoriaceus Arnold: a - pygidial plate of average female; b - pygidial plate of female described by Leclercq (1961) as allotype of subcoriaceus; c - volsella; d - penis valve. sockets (Fig. 369c); foretarsomere II with two rake spines (both apical, with sockets confluent or adjacent). Tarsomeres III with apicoventral margin arcuate, foretarsomere III with inner and outer margin about equal in length. Tarsomeres IV wider than long, with dorsoapical margin widely emarginate, almost straight, and apicoventral margin obtusely prominent; outer margin of foretarsomere IV shorter than inner margin. Tarsomeres V angulate basoventrally, with central cluster of small spines on venter; lateral margin with row of spines in basal half, apicoventral margin produced into lobe (Fig. 369d). Outer claws of mid- and hindtarsi shorter, thinner than inner claws (opposite on foretarsus). Apical depression of tergum V impunctate, glabrous. Pygidial plate, in most specimens, with scattered, welldefined punctures and unsculptured interspaces, but most punctures compressed or less than one diameter apart in female from Fampanambo that was described as allotype of subcoriaceus by Leclercq, 1961 (Figs. 370a, b). Length 9.6-10.5 mm.
0^{7}.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 369b): bevel rudimentary of absent; lip free margin slightly arcuate, with well-defined corner; distance between corners 1.0-1.2 \times distance between corner and orbit. Width of postocellar area 1.2-1.3 \times length. Dorsal length of flagellomere I $1.4-1.6 \times$ apical width. Forefemoral notch relatively large, with glabrous platform that is margined both anteriorly and posteriorly. Outer margin of forebasitarsus with $0-2$ preapical rake spines; outer apical spine of foretarsomere II shorter than tarsomere III. Venters of tarsomeres V each with preapical cluster of small spines (Fig. 369e). Sternal punctures, in most specimens, becoming larger toward gastral apex, but uniformly fine in single males from Nosy-Komba and Mahavelona; and somewhat intermediate in single male from Antanambe. Sternum VIII evenly emarginate apically or with rudimentary prominence apicomesally, tridentate apically in holotype of subcoriaceus. Length $8.8-10.2 \mathrm{~mm}$. Volsella and penis valve: Figs. 370c, d.

Geographic distribution (Fig. 371).- Madagascar.
Records.- MADAGASCAR: Antsiranana: Montagne des Français at $12^{\circ} 19^{\prime} 22^{\prime \prime} \mathrm{S} 49^{\circ} 20^{\prime} 17^{\prime \prime} \mathrm{E}$ (1 \&), Nosy-Komba island near Nosy-Be (1 ơ, MNHN), Reserve Spéciale d'Ankarana 2.6 km E Andrafiabe
(2 ㅇ). Fianarantsoa: Isalo National Park at $22^{\circ} 36^{\prime} \mathrm{S}$
 ($2 \sigma^{\text {T}}$, MNHN, including now headless holotype of
 coriaceus). Mahajanga: Amborovy 8 km NE Mahajanga (1 \%), Katsepy ($1 \begin{gathered} \\ \text { or , NHMW), Réserve }\end{gathered}$ d'Ankoririka 10.6 km NE Tsaramandroso at $16^{\circ} 16^{\prime} 02^{\prime \prime} \mathrm{S} 46^{\circ} 02^{\prime} 55^{\prime \prime} \mathrm{E}$ (2 아). Toamasina: AnosibeNord (Leclercq, 1960), Antanambe (1 σ°, MHNB), Fampanambo ($1+\frac{\circ}{}$ ơ, MHNB; $1 \circ+$ MRAC), Mahavelona (1 \& allotype of subeditus, $1 \delta^{\star}$ holotype of subeditus, MHNB; $1 \sigma^{\text {or }}$, MRAC). Toliara: Bereboka 60 km NE Morondava (1 ㅇ, BMNH), 50 km
 N Toliara (1 \circ), Tongobory ($1+3$ ơ, BMNH).

Tachysphex subfimbriatus Arnold

Figures 372-374.
Tachysphex subfimbriatus Arnold, 1924:69, ㅇ, ठ̛. Lec-

Figure 371. Collecting localities of Tachysphex subcoriaceus. totype: \uparrow, South Africa: Eastern Cape Province: Willowmore (TMP), here designated, examined.Arnold, 1930:4 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:277 (listed).

ReCognition.- Tachysphex subfimbriatus shares the following with kalaharicus: setae sinuous adjacent to the hypostomal carina, anteriorly on scutum (only slightly so in some females), and on propodeal dorsum; width of postocellar area smaller than length; mesopleuron punctate; propodeal side ridged; labrum flat, not protruding or slightly protruding beyond clypeal margin; hindwing crossvein cu-a vertical; apical tarsomeres of female not elongate, with apicoventral margin nearly straight. The female also resembles scopa, but unlike the latter species it has setae about as long as midocellar diameter on the midfemoral venter (markedly longer than that in scopa), midand hindtarsomeres III almost twice as long as wide apically (rather than $1.2-1.3 \times$ apical width), dorsoapical emargination of tarsomeres IV acutely angulate (rather than roundly emarginate), apicoventral margins of the apical tarsomeres nearly straight (rather than roundly produced), and claws not elongate (arolium about half length of a claw rather than one third).

The female of subfimbriatus has the free margin of the clypeal lobe evenly arcuate (Fig. 372a), hindtarsomeres V without spines on the lateral margins, and the basal platform of sternum II broadly rounded (and with a sharp median point in some specimens). In kalaharicus, the clypeal free margin has a small median notch (Fig. 202c), hindtarsomeres V of most specimens have a spine on each lateral margin (Fig. 202e), and the basal platform of sternum II is wedge-shaped, acutely angulate (Fig. 202g).

In the male of subfimbriatus, sterna III-V each has a well-defined tuft of erect setae that emerge from a small, longitudinally elongate apicomedian area (Figs. 373c, d), a feature unique within the genus; the forefemoral notch is glabrous; foretarsomere I has three or four preapical rake spines (Fig. 373b); and the outer apical spine of foretarsomere II is as long as foretarsomere III. In kalaharicus, the erect apicomedian setae of sterna III-V emerge from a single transverse line (Figs. 203c, d), the femoral notch is setose, foretarsomere I has 0-3 preapical rake spines, and the outer apical spine of foretarsomere II is shorter than foretarsomere III.

Description.- Gena nearly absent in dorsal view (Fig. 372c). Scutal punctures coarse, averaging about one diameter apart in female, up to several diameters apart on disk in male. Mesopleural punctures less than one diameter apart in female, about one diameter apart in male.

Figure 372. Tachysphex subfimbriatus Arnold: a - female clypeus and mandible; b - male clypeus and mandible; c - female head in dorsal view; d - volsella; e - penis valve.

Punctures of mesothoracic venter several diameters apart in most males. Propodeal dorsum irregularly ridged longitudinally, side ridged; posterior surface, in dorsal quarter or so, with wide median impression. Hindcoxal dorsum with inner margin carinate basally, carina not expanded.

Setae (numbers in parentheses refer to setal length expressed as a fraction of basal mandibular width): sinuous or curved on gena, postocellar area, and thorax; erect on each side of oral fossa next to occipital carina (up to $0.7-0.8$); suberect on scutum anteriorly (up to 0.8); not obscuring mesopleural integument; oriented posterad on propodeal dorsum ($0.6-0.7$); erect or nearly so on male fore- (up to 0.7) and midfemoral venters, including several setae next to proximal margin of forefemoral notch.

Head and thorax black, mandible yellowish red mesally. Frontal setae silvery in female, golden in male. Wing membrane almost hyaline; forewing costal vein yellowish brown, subcostal vein brown. Femora black, red apically (distal half of hindfemur red in some females). Tibiae and tarsi red. Gastral segments I-III of female red, pygidial plate reddish, remainder black; male gaster red, but only segments I and II and base of III red in one specimen (remainder black). Terga I-III in female, I-IV in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 372a): bevel shorter than basomedian area; lip free margin arcuate, not incised laterally. Width of postocellar area $0.7-0.8 \times$ length. Dorsal length of flagellomere I 1.9-2.0 \times apical width. Dorsal foretibial surface with two spines; outer surface with two spines. Forebasitarsus with six or seven rake spines. Venters of hindtarsomeres V each with several spines of various thickness, of which two are subbasal and the remaining preapical. Apical depression of tergum V unsculptured, asetose. Pygidial plate rounded apically. Length $7.2-8.9 \mathrm{~mm}$.

Figure 373. Tachysphex subfimbriatus Arnold: a - base of male forefemur showing notch $(\times 180)$; $\mathrm{b}-$ male foretarsomeres I-IV ($\times 93$); $\mathrm{c}-$ male gaster in lateral view $(\times 36)$; $\mathrm{d}-$ male sterna III-VI in ventral view $(\times 72)$.
σ^{\top}. - Mandible: trimmal carina with small tooth and cleft. Clypeus (Fig. 372b): bevel longer than basomedian area; lip free margin arcuate, with well-defined corner; distance between corners $1.4-1.5 \times$ distance between corner and orbit. Width of postocellar area $0.3-0.8 \times$ length. Dorsal length of flagellomere I 1.7-1.8 \times apical width. Forefemoral notch glabrous (Fig. 373a). Outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III (Fig. 373b). Venter of hindtarsomere V with thin, preapical spine. Sterna III-VI largely impunctate and glabrous, each with apicomedian tuft of dense, erect setae that emerge from small, longitudinally elongate area (Figs. 373c, d); setal length about $0.5 \times$ basal mandibular width. Length 4.1-9.0 mm. Volsella and penis valve: Figs. 372d, e.

Geographic distribution (Fig. 374).- Namibia, South Africa east to about 24° E.
RECORDS.- NAMIBIA: Karasburg District: Ai Ais on Fish River ($1 \sigma^{7}$, FSCA). Khorixas District: 120 km from Khorixas on road to Palm (1 δ^{*}). Lüderitz District: Aus ($1 \delta^{*}$, BMNH), 16 km S Rosh Pinah ($1 \mathrm{o}^{7}$, AMG). Okahandja District: Waldau River 17 km W Okahandja (1 \&) . Swakopmund District: Kuiseb River near Gobabeb ($1 \stackrel{+}{ }$, PPRI), Kuiseb River 20 km NW Gobabeb (0°, FSCA). Walvis Bay District:

 Eastern Cape Province: Elandsheuwels Farm 40 km W Steytlerville ($1+1$ of *, USU), Willowmore (1 ㅇ, $1 \sigma^{\top}$, SAM, paratypes of subfimbriatus; 2 ㅇ, $2 \sigma^{\circ}$, TMP, including lectotype and paralectotype of subfimbriatus), 9 km E Willowmore (2 ㅇ, 2 o $^{\circ}$). Northern Cape Province: 58 km S Alexander Bay at $29^{\circ} 02^{\prime} \mathrm{S} 16^{\circ} 49^{\prime} \mathrm{E}$ ($10^{\prime \prime}$, AMG), Anenous in Namaqualand at $29^{\circ} 15^{\prime} \mathrm{S} 17^{\circ} 35^{\prime} \mathrm{E}$ (2 o , AMG), W Calvinia ($2 \mathrm{o}^{\circ}$, OÖLM),

Fraserburg ($1 \mathrm{o}^{*}$, AMG), 40 km SW Garies ($1 \mathrm{o}^{*}$, OÖLM), Groen River 40 km SW Garies (1 우, OÖLM), 25 km E Hondeklipbaai ($2 \sigma^{*}$, OÖLM), SW Loeriesfontein ($1 \circ^{*}$, OÖLM), Pofadder ($1 \stackrel{\circ}{ }$, SAM), SW Springbok ($1 \quad$, OÖLM), Steinkopf ($1 \sigma^{\circ}$, FSCA), Tanqua-Karoo National Park (1 , 1 ó, SAM), Voëlklip at $29^{\circ} 45^{\prime} \mathrm{S} 17^{\circ} 22^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$, AMG), 5 km E Williston (4 \circ, AMNH). Western Cape Province: Cape Town: Milnerton ($2 \sigma^{\star}, \mathrm{BMNH}$), 50 km N Cape Town ($1+2$ of, OÖLM), 60 km N
 RMNH), 20 km N Citrusdal ($1 \sigma^{\text {h }}$, OÖLM), Clanwilliam ($2 \sigma^{*}, ~ F S C A$), 11 km W Clanwilliam: Ysterfontein Farm (1 ơ, USU), Dikbome Farm on Merweville-Koup road (1 $\stackrel{+}{ }$, SAM), Doringbos at $31^{\circ} 58^{\prime} 19^{\prime \prime} \mathrm{S} 19^{\circ} 13^{\prime} 33^{\prime \prime} \mathrm{E}$ (1 ㅇ, CSE), Graafwater (2 ㅇ, 1 ơ, FSCA), Kliprand 60 km WNW Loeriesfontein (5 ơ, OÖLM), Knersflakte: Kalkgat (1 ¢) , Konstabel Farm 30 km WSW Matjiesfontein (1 ㅇ, $13 \sigma^{\circ}$), Laingsburg at $33^{\circ} 12^{\prime} \mathrm{S} 20^{\circ} 51^{\prime} \mathrm{E}$ (1 우),

374. Collecting localities of Tachysphex subfimbriatus and sulcidorsum.

Lambert's Bay ($1 \stackrel{+}{+}$, OÖLM), 5 km S Lambert's Bay ($1 \stackrel{\circ}{ }$, 3 ơ' *, OÖLM), 40 km S Lambert's Bay (10^{*}, OÖLM), Matjiesfontein ($2 \sigma^{\star}$, BMNH), Murraysburg ($1 \sigma^{*}$, SAM), Rooinek Pass (10^{*}, SAM).

Tachysphex sulcidorsum de Beaumont

Figures 374, 375.
 in 1974.- de Beaumont, 1952a:195 (Algeria), 1955a:186 (Morocco); Pulawski, 1971:115 (in revision of Palearctic Tachysphex); Bohart and Menke, 1976:277 (listed).

RECOGNITION.- Tachysphex sulcidorsum can be recognized by its unusual thoracic structures: the scutum is deeply impressed anteromesally, the notaulus is expanded into a carina, the scutal flange gradually expands in posterior half and is roundly prominent apically (Fig. 375c), the mesopleural flange is conspicuously expanded, yellowish brown, and overhangs the subalar fossa (Fig. 375d), and the metapleural flange is unusually large. In addition, the free margin of the lateral clypeal section is almost straight, barely concave (Figs. 375a, b).

Description.- Free margin of clypeal lateral section shallowly concave, almost straight (Figs. 375a, b). Scutum anterior declivity almost perpendicular to disk, disk deeply impressed anteromesally, notaulus raised into carina; scutal flange gradually expanding in apical half, roundly prominent apically (Fig. 375c). Scutal and mesopleural punctures well defined, most punctures one diameter apart or less, many mesopleural punctures in male more than one diameter apart, interspaces unsculptured. Mesopleural flange conspicuously expanded, overhanging subalar fossa (Fig. 375d). Mesopleural punctures about one diameter apart, some punctures in female more than one diameter apart. Punctures of mesothoracic venter (except along midline) slightly more than one diameter apart in female, several diameters apart in male. Metapleural flange conspicuously expanded. Propodeal dorsum irregularly rugose, with tendency to form longitudinal ridges; side ridged. Hindcoxal dorsum with inner margin carinate basally

Setae erect on postocellar area, minimally longer than midocellar diameter; scutal setae suberect, thickened except anterolaterally and posteriorly; erect on each side of oral fossa next to occipital carina, slightly longer than midocellar diameter; inclined anterad on propodeal dorsum.

Figure 375. Tachysphex sulcidorsum de Beaumont: a - female clypeus and mandible; b - male clypeus and mandible; c - female scutum; d - female mesothorax in lateral view; e - volsella; f - penis valve.

Head and thorax black, mandible reddish except black apically, pronotal lobe yellowish or reddish, and scutal flange (except anteriorly), mesopleural flange, and metapleural flange (except anteriorly) pale brown. Frontal setae silvery in both sexes. Wing membrane almost hyaline; costal vein of forewing yellowish brown, subcostal vein reddish brown. Femora reddish in female, in male black except red apically. Tibiae and tarsi red. Gaster red in female; in male either segments I-III
red and remainder dark or gaster largely black except anterior terga and sterna reddish laterally. Terga I-IV in female, I-VI in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 375a): bevel longer than basomedian area; lip free margin arcuate, not incised laterally. Width of postocellar area $1.7 \times$ length. Dorsal length of flagellomere I $2.2 \times$ apical width. Dorsal foretibial surface with two small spines; outer surface with two spines. Forebasitarsus with eight rake spines. Midtrochanteral venter impunctate. Midtibial outer surface partly asetose. Apical depression of tergum V asetose. Pygidial plate with most punctures several diameters apart; interspaces microsculptured. Length $7.5-9.0 \mathrm{~mm}$.
$\delta^{\boldsymbol{T}}$.- Mandible: trimmal carina expanded subbasally but without tooth or cleft. Clypeus (Fig. 375b): bevel about as long as basomedian area; lip free margin arcuate, distance between corners $1.5 \times$ distance between corner and orbit. Width of postocellar area $2.4 \times$ length. Dorsal length of flagellomere I 1.0-1.2 \times apical width; ventral length slightly smaller than apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Length $5.5-6.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 375e, f.

Geographic distribution (Fig. 374).- Morocco, Algeria.
Records.- ALGERIA: Biskra ($1+$, paratype of sulcidorsum), Idjef Melène in Hoggar Mts. (de Beaumont, 1952a), Laghouat (de Beaumont, 1950a). MOROCCO: Ksar es Souk (1 σ°, paratype of sulcidorsum).

Tachysphex sycorax Arnold, new status

Figures 376, 377.
Tachysphex panzeri var. sycorax Arnold, 1923:169, ه((as Sycorax, incorrect original capitalization). Holotype: σ^{7}, Zimbabwe: Bulawayo (SAM), examined.- Arnold, 1930:4 (in checklist of Afrotropical Sphecidae).As Tachysphex panzeri sycorax: Bohart and Menke, 1976:275 (new status, listed).

Type material.- Arnold labeled a female (collected 29 September 1923) and a male (28 September 1920) as types of sycorax. Since the female was not included in the original description, it is not part of the type series, and the male is therefore the holotype.

Recognition.- Tachysphex sycorax, known only from Zimbabwe and North-West Province of South Africa, has the labrum convex, protruding beyond the clypeal free margin, galea as long as the scape, width of postocellar area smaller than length, propodeal side uniformly microsculptured, and terga I-IV (I-V in male) silvery fasciate apically. Also, the propodeal dorsum is all setose, with setae pointing anterad on a broad median zone (pointing anterolaterad near propodeal foremargin) and adlateral setae contrastingly oriented posterad and joining apicomesally (Fig. 376c). The female differs from similar species in having the following combination: apical depression of tergum V largely asetose (setose mesally in some specimens), foretibial outer and midtibial dorsal surface with glabrous, longitudinal zone (at least in apical half), and forecoxa with short apicomedian process (Figs. 376d, e). In the male, the foretarsal rake is well developed, the clypeal free margin is emarginate mesally and the lip corners are slightly closer to each other than to the adjacent orbit, the foretibial outer surface has a glabrous or sparsely setose longitudinal zone, and the volsellar dorsal process is low (Fig. 376f).

Tachysphex sycorax is superficially similar to dolosus. In the latter species, however, setae of the propodeal dorsum are oriented mostly anterad (Fig. 124a), without adlateral setae being oriented posterad and joining posteriorly (although orientation of setae may be altered by mechanical handling or specimens' old age). Also, the female forecoxa of dolosus has no apical process, and the volsella is different (compare Figs. 376 f and 124b). The Northern Hemisphere species incertus is also similar (see p. 352 for differences).

 c - propodeal dorsum of female showing setal pattern; d - female forecoxa; e - apex of female forecoxa; f - volsella; g - penis valve.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea closely punctate except along anterior margin, as long as scape. Scutal punctures averaging about one diameter apart on disk in female, less than that in male. Mesopleuron evenly microsculptured, dull, punctures indiscernible. Propodeal dorsum evenly microareolate, side evenly microsculptured. Hindcoxal dorsum with inner margin not carinate.

Setae appressed on postocellar area and scutum; erect on each side of oral fossa next to occipital carina (setal length about $0.25 \times$ basal mandibular width); on propodeal dorsum pointing anterad on broad median zone (pointing anterolaterad near propodeal foremargin), but adlateral setae oriented posterad and joining apicomesally (Fig. 376c).

Head and thorax black except the following: mandible yellowish red (black apically); scape yellow; pronotal lobe pale yellow posteriorly; female clypeus largely yellow, narrowly black basally, lateral sections red; clypeal middle section of male yellow in about apical half to two thirds. Frontal setae silvery in female, golden in male. Wing membrane slightly infumate, almost hyaline; forewing costal and subcostal veins light brown. Legs red except coxae and trochanters black in male. Gaster all red in female; in male segments II-V, III-V, or II-VII brown, remainder red. Terga I-IV in female, I-V in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 376a): bevel about as long as basomedian area; lip free margin arcuate, emarginate mesally, broadly incised laterally. Width of postocellar area $0.7 \times$ length. Dorsal length of flagellomere I $2.6 \times$ apical width. Forecoxa with small apicomedian process (Figs. 376d, e). Dorsal foretibial surface with three spines; outer surface impunctate, glabrous (at least in distal half), with two spines. Forebasitarsus with nine rake spines. Midtibia with small, glabrous area dorsoapically. Apical spines of hindtarsomere IV long, reaching claw bases. Apical depression of tergum V impunctate, glabrous (except punctate and setose along midline in some specimens). Pygidial plate with punctures averaging about one diameter apart; interspaces alutaceous, shiny. Length 11.3-13.9 mm.
$0^{\boldsymbol{*}}$.- Mandible: trimmal carina with tooth and small cleft. Clypeus (Fig. 376b): bevel shorter than basomedian area; lip free margin arcuate, emarginate mesally, with well-defined corner; distance between corners $0.9 \times$ distance between corner and orbit. Width of postocellar area 0.7-0.8 \times length. Dorsal length of flagellomere I 1.9-2.0 \times apical width. Forefemoral notch microscopically setose. Foretibial outer surface with glabrous or sparsely setose zone. Outer margin of forebasitarsus with six or seven rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Hindfemoral venter with inner (= posterior) margin sharp in distal half. Length $8.6-9.7 \mathrm{~mm}$. Volsella and penis valve: Figs. 376f, g.

Collecting Period.- $28-30$ September, 1,10 , and 12 October.

Geographic distribution (Fig. 377).-North-West Province of South Africa, Zimbabwe.

RECORDS.- SOUTH AFRICA: North-West Province: Rustenburg ($1 \stackrel{\circ}{ }$, USNM). ZIMBABWE: Bulawayo (1 ค \uparrow, 1 ơ; 4 ㅇ, 9 ه̛, SAM, including holotype and paratype of sycorax; $1 \stackrel{\circ}{+}, 1 \delta^{7}$, TMP), Lonely Mine (Arnold, 1923). Some specimens from Bulawayo determined as sycorax by G. Arnold are actually dolosus (see that species).

Figure 377. Collecting localities of Tachysphex sycorax and tanqua.

Tachysphex taita Pulawski, sp. nov.

Figures 378, 379.
Derivation of name.- Named after the Taita people of southeastern Kenya in whose territory the species was first collected, as well as an allusion to Taita Hills.

Recognition.- Tachysphex taita, from Kenya, Tanzania, and Namibia, is one of many species in which the labrum is conspicuously convex and protruding beyond the clypeal free margin, and the galea is longer than wide in profile. In addition, the scutal punctures average less than one diameter apart, the genal setae are straight, no longer than the midocellar diameter, the propodeal side is uniformly microsculptured, the setae adjacent to the hypostomal carina are straight and no longer than a midocellar diameter, and oriented posterad on the propodeal dorsum apicomesally. In the female, tergum V is glabrous (setose mesally in some specimens), and the male foretarsus has a well-defined rake.

Several other species share these characters, but the female of taita differs from most in having a laterally sinuous rather than incised clypeal lip (Fig. 378a), setae with golden tinge on the upper frons, and markedly golden on the thoracic dorsum (including the propodeal dorsum). Tachysphex palopterus is similar, but has the scutal setae silvery or with a golden tinge. Also, in many (but not all) taita, the pygidial plate is broad, as in incertus (see Fig. 192c), and the apical depression is setose mesally. In palopterus, the pygidial plate is narrow and the apical depression of tergum V is asetose. Unlike camptopygus, the pygidial plate of taita is not downcurved apically and the gaster is black apically (rather than all red or with irregular black spots).

The male can be recognized by the presence of a sharp carina that separates the hindfemoral venter from its inner surface (except basally) and the trimmal mandibular carina reduced distad of tooth and contrastingly sharp (the usual shape) preapically (Fig. 378b), a unique such combination. Among the species with a convex labrum, a reduced trimmal carina is also found in camptopygus and many sahelensis. Tachysphex taita, however, differs from camptopygus by several features (in addition to the hindfemoral structure): clypeus black and gaster red basally (rather than red and all

JK
Figure 378. Tachysphex taita Pulawski, sp. nov.: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.
black, respectively), galea shiny, with well-defined punctures (rather than dull, with ill-defined punctures), and hindmargin of sternum VIII simply emarginate apically (rather than tridentate or with blunt mesal projection). Finally, the foretarsal rake is well developed in taita, but absent in sahelensis.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea shiny, with a few, sparse, well-defined punctures; in profile longer than wide, as long as 0.8 of scape. Scutal punctures averaging less than one diameter apart, but some punctures about one or two diameters apart; interspaces dull, microsculptured in males and most females (hence punctures appearing ill defined). Mesopleuron uniformly microsculptured, dull. Propodeal dorsum evenly microareolate; side uniformly microsculptured. Hindcoxal dorsum with inner margin carinate basally.

Setae appressed on postocellar area and scutum; on each side of oral fossa next to occipital carina mostly subappressed, shorter than midocellar diameter, but a few setae nearly erect, about as long as midocellar diameter; adlateral setae of propodeal dorsum oriented obliquely posterad and meeting apicomesally, admedian setae diverging anterolaterad from midline in anterior half or so, converging obliquely posterad toward midline in posterior half or so.

Head and thorax black, mandible reddish except black basally and apically, clypeal bevel reddish in some females. Setae in female with golden tinge on upper frons, golden on scutum, scutellum, metanotum, and propodeal dorsum; in male golden on clypeus and frons. Wing membrane yellowish (only slightly so in smallest males); veins all reddish brown. Femora red except black basodorsally, tibiae and tarsi red. Gastral segments I-III red (also tergum IV in some females, only segments I and II in some males, only most of tergum I and part of II in one female from Watamu, Kenya), remainder dark brown to black. Terga I-III silvery fasciate apically.

ㅇ.- Clypeus (Fig. 378a): bevel about as long as basomedian area; lip free margin arcuate, emarginate mesally, sinuous laterally (at least slightly so). Width of postocellar area $0.6-0.7 \times$ length. Dorsal length of flagellomere I 2.6-2.7 \times apical width. Dorsal foretibial surface with two or three spines; outer surface with two spines. Forebasitarsus with nine rake spines. Apical depression of tergum V impunctate and asetose or punctate and setose mesally. Pygidial plate with punctures that average several to many diameters apart; interspaces unsculptured to aciculate. Length $10.2-11.4 \mathrm{~mm}$.
σ^{7}.- Mandible: trimmal carina with tooth, without cleft, obtuse distad of tooth but contrastingly sharp preapically (Fig. 378b). Clypeus (Fig. 378b): bevel as long as basomedian area or shorter, delimited anterolaterally by oblique carina that emerges from lip corner; lip free margin arcuate, with well-defined corner; distance between corners $1.1-1.3 \times$ distance between corner and orbit. Width of postocellar area $0.7 \times$ length. Dorsal length of flagellomere I 2.1-2.2 \times apical width. Forefemoral notch with bottom microscopically setose. Outer margin of forebasitarsus with 3-6 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Hindfemoral venter with inner (= posterior) margin sharp, carina-like in distal half. Length $6.3-9.2 \mathrm{~mm}$. Volsella and penis valve: Figs. 378c, d.

Figure 379. Collecting localities of Tachysphex taita and tarsinus (African and Arabian localities only).

Geographic distribution (Fig. 379).— Kenya, Tanzania, Namibia.
Records.- Holotype: $\boldsymbol{o}^{\boldsymbol{\gamma}}$, KENYA: Coast Province: 10 km N Taita Discovery Centre, 23 May 2000, V.F. Lee and WJP (CAS). PARATYPES: KENYA: Coast Province: same data as holotype (1 ${ }^{\circ}$); Taita Discovery Centre: Galla Hill area, 2 June 2002, M.A. Bourbin, V.F. Lee, and WJP (2 ${ }^{\text {º }}$); Voi, $21-22$ May 2000, V.F. Lee
 River 23 km N Karibib, 20-21 Feb 1996, WJP ($1 \mathrm{o}^{\circ}$). TANZANIA: Tanga Region: 2 km NE Mkomazi:
 2003, M.A. Prentice ($2 \delta^{\circ}$) and WJP ($1 \delta^{\circ}$).

Tachysphex tanqua Pulawski, sp. nov.

Figures 377, 380.
Derivation of name.- Tanqua, a Khoi (= Hottentot) name for San (= Bushman), a noun in apposition to the generic name.

Recognition.- Both sexes of tanqua have the fore- and midfemoral venters impunctate except for a few, sparse punctures, and gastral terga not fasciate. The female, in addition, has tarsomeres IV roundly emarginate proximally (as in Fig. 48c) and elongate claws, each arolium being less than half length of each adjacent claw (as in Figs. 48c, d), a unique such combination.

The male can be recognized by the femoral sculpture in combination with the following: foretarsus without rake, setae appressed on postocellar area and scutum, clypeal free margin slightly concave between middle tooth and lip corner (Fig. 380b), propodeal side ridged (ridges evanescent in many specimens), gaster red basally and black apically, and in many specimens femora all or partly red. Also, setae are appressed on sterna III-VI.

Description.- Galea about as long as wide in lateral view, as long as 0.6 of scape. Scutal punctures unevenly distributed on disk, averaging about 2-3 diameters in female, 1-3 diameters in male; interspaces shiny. Mesopleural punctures, near center, averaging several diameters apart. Punctures of mesothoracic venter, in many specimens, several diameters apart except less than one diameter apart along midline. Propodeal dorsum conspicuously ridged in female, finely ridged or evenly microareolate in male; side ridged (ridges evanescent in many males). Hindcoxal dorsum with inner margin carinate basally.

Setae suberect on each side of oral fossa next to occipital carina, about one midocellar diameter long; on postocellar area suberect and shorter than midocellar diameter in female, appressed in male; appressed on scutum; uniformly erect or oriented posterad on propodeal dorsum.

Head and thorax black, mandible red mesally. Frontal setae silvery in female, golden in male. Wing membrane slightly infumate; forewing costal vein reddish brown (light brown in specimen from Little Karoo), subcostal vein brown. Femora varying from all black to all red (except black basally), tibiae and tarsi red. Gaster red basally (segments I-III in female, I-III or I-IV in male), remainder black. Terga not fasciate apically.

ㅇ.- Clypeus (Fig. 380a): bevel markedly longer than basomedian area; lip conspicuously arcuate, with rudimentary lateral incision. Width of postocellar area $0.7 \times$ length. Dorsal length of flagellomere I $2.5 \times$ apical width. Forecoxa with minute apicomedian process. Midtrochanteral venter unsculptured, shiny. Fore- and midfemoral venters aciculate, with well-defined punctures that are many diameters apart. Dorsal foretibial surface with one or two spines; outer surface broadly glabrous, with several spines. Forebasitarsus with 18 rake spines, its outer margin broadly concave. Tarsomeres IV with dorsoapical emargination rounded proximally (as in Fig. 48c); apical width of hindtarsomere IV about $0.9 \times$ length, apicoventral margin shallowly emarginate mesally. Apical tarsomeres elongate, not angulate basally; with short, erect setae but no spines on venter; apicoventral margin produced into lobe (Fig. 380c); each lateral margin with one or two small spines near

Figure 380. Tachysphex tanqua Pulawski, sp. nov.: a - female clypeus and mandible; b-male clypeus and mandible; c - female hindtarsomere V in ventral view; d - male hindtarsomere V in ventral view; e - volsella; f - penis valve.
midlength (two or three on hindtarsus). Claws elongate, arolium less than half of claw length (as in Figs. 48c, d). Tergum V with punctures that are several diameters apart; apical depression unsculptured, glabrous. Pygidial plate narrowly truncate apically, sparsely punctate (but several punctures next to margin less than one diameter apart), interspaces unsculptured. Length 10.5 mm .
0°. - Mandible: trimmal carina broadly angulate, without tooth or cleft (Fig. 380b). Clypeus (Fig. 380b): bevel ill defined; lip free margin with obtuse median point and well-defined corner, concave between midpoint and corner; distance between corners about $1.1 \times$ distance between corner and orbit. Width of postocellar area $0.6-0.7 \times$ length. Dorsal length of flagellomere I $1.8 \times$ apical width. Fore- and midfemora impunctate on venters and posterior surfaces except for a few punctures that are many diameters apart. Forefemoral notch microscopically setose, slightly larger than average for the genus. Dorsal surface of tibiae (outer surface of foretibia) impunctate or sparsely punctate between spines. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Venters of tarsomeres V each with one spine near center, apical margin slightly arcuate (Fig. 380d). Sternal setae appressed (sterna largely glabrous in specimens from Richtersveld National Park, sterna III-VI largely impunctate). Sternum VIII slightly tridentate (middle tooth smaller than lateral prongs). Length $8.0-10.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 380e, f.

Geographic distribution (Fig. 377).— Northern Cape and Western Cape provinces of South Africa.

Records.- Holotype: $\boldsymbol{\text { ¢ , SOUTH AFRICA: Northern Cape Province: Pofadder, Oct 1939, [South }}$ African] Museum Staff (SAM). Paratypes: SOUTH AFRICA: Eastern Cape Province: Goodehoop Farm 16 km W Steytlerville, 19 Nov 1999, M.E. Irwin, E.I. Schlinger, F.D. Parker ($1 \delta^{\circ}$, USU). Northern Cape Province: Goegap (as Hester Malan) Nature Reserve, 15-21 Oct 1987, FSG (2 ơ, AMG); same data except 10-12 Oct 1988 ($30^{\circ} ; 1 \delta^{\star}$, AMG); Goegap Nature Reserve: near Kraaiwater at $29^{\circ} 37^{\prime} \mathrm{S} 18^{\circ} 00^{\prime}$ E, $3-4$ Oct 1994, FSG (10°, AMG); Richtersveld National Park at $28^{\circ} 18.9^{\prime}$ S $16^{\circ} 58.3^{\prime}$ E, $12-14$ Sept 2001, WJP (70°; 20°, BMNH); Sors Sors to Taaiboskraal at $30^{\circ} 08^{\prime}$ S $18^{\circ} 01^{\prime}$ E, 3 Oct 1995, FSG ($1 \delta^{\circ}$, AMG). Western Cape Province: Bain's Kloof in Wit River Valley, Dec 1949, [South African] Museum Expedition (2 ơ, SAM); 11 km W Clanwilliam on road to Graafwater, 2-8 Oct 1990, FSG (30^{π}, AMG); Jonkers Hoek 36 mi from Cape Town [at $33^{\circ} 58^{\prime}$ S $18^{\circ} 58^{\prime}$ E], 1930, H.W. Simmonds (1 d $^{\circ}$, BMNH); Klein [= Little] Karoo SE Groot River, 25 Oct 1999, M. Halada (1 ơ; $^{\circ} 1$ ở $^{\circ}$, OÖLM); Moordenaars: Swanepoel, Oct 1952, [South African] Museum Expedition (20°, SAM); Pakhuis Pass 13.5 km ENE Clanwilliam at $32^{\circ} 08^{\prime} 18^{\prime \prime}$ S $19^{\circ} 01^{\prime} 14^{\prime \prime} \mathrm{E}, 15$ Nov 1996 , M.E. Irwin and E.I. Schlinger ($10^{*} ; 1 \delta^{\circ}$, CSE); E Pakhuis Pass, Sept 1947, [South African] Museum Expedition ($1 \delta^{\circ}$, SAM); Wellington: Rooshoek, Dec 1973, P.M.F. Verhoeff ($1 \delta^{\circ} ; 1 \delta^{\circ}$, RMNH).

Tachysphex tarsinus (Lepeletier de Saint Fargeau)

Figures 379, 381, 382.
[N.B. There are some 115 literature records of tarsinus subsequent to the original description, mostly locality records from Europe, but only the essential nomenclatural references are presented below. Previous revisionary studies are by de Beaumont 1936a:206, 1947a:198, and Pulawski, 1971:158.]

Tachytes tarsinus Lepeletier de Saint Fargeau, 1845:243, ơ (as tarsina, incorrect original termination). Holotype or syntypes: σ^{\circledR}, France: probably Dauphinée: no specific locality (MNHN), not examined.- As Tachysphex tarsinus: Kohl, 1885:398 (tentative new combination, original description copied); Dalla Torre, 1897:686 (new combination, in catalog of world Hymenoptera).
Tachysphex nitidus Spin., variété B: de Beaumont, 1936a:206 (in revision of French Tachysphex). Synonymized with Tachysphex tarsinus by de Beaumont, 1940:175.
Recognition.- Tachysphex tarsinus is an all black species occurring north of the equator, with well-defined mesopleural punctures and shiny interspaces, and with setae erect on the postocellar area, nearly so on the scutum anteriorly, suberect on midfemoral venter (shorter than one midocellar diameter), and inclined obliquely anterad on the propodeal dorsum. Other characters include a flat, nonemarginate labrum, presence of only three silvery tergal fasciae, and unspecialized tarsi (length of midtarsomere II more than twice length, tarsomeres IV longer than wide apically, tarsomeres V without spines on the venter or lateral margins).

The female of tarsinus is difficult to recognize without comparative material. It is characterized by a clypeal bevel clearly shorter than the basomedian area (except narrowly extending to about clypeal midlength in some specimens), the lip free margin arcuate, not incised laterally (Fig. 381), and the mesopleural punctures less than to slightly more than one diameter apart. Tachysphex lindbergi (Cape Verde Islands and Madeira) is similar, but its mesopleural punctures are finer, about two diameters apart beneath the mesopleuron center. Unlike nitidior, the punctures of sterna III and IV are ill-defined in tarsinus and in most cases do not extend to the apical depression.

The male of tarsinus can be recognized by the unusually dense setae of the forefemoral notch (Fig. 381c), markedly denser than on the remaining femoral surface. Additional recognition characters are: clypeal lip with a well-defined corner (Fig. 381b), length of flagellomere IV less than $2.0 \times$ apical width, forebasitarsal outer margin without preapical spines or with a few spines near the base that are nearly as long as the basitarsus width, and sternum VIII evenly emarginate apically. Also, the free margin of the clypeal lip is concave in many African specimens (Fig. 381b).

Description.- Scutal punctures well defined, no more than one diameter apart, but up to several diameters apart on disk in most specimens from Lebanon; interspaces shiny. Mesopleural punc-
tures well defined except effaced posteroventrally in some specimens, less than to slightly more than one diameter apart; interspaces unsculptured or slightly microsculptured. Propodeal dorsum irregularly ridged longitudinally; side ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae suberect, straight or angled apically on each side of oral fossa next to occipital carina (setal length $0.2-0.4 \times$ basal mandibular width); erect on postocellar area ($1.0-1.5 \times$ midocellar diameter long), inclined posterad on scutum (about one midocellar diameter long anteriorly); inclined anterolaterad on propodeal dorsum; suberect on midfemoral venter (shorter than midocellar diameter).

Head, thorax, legs, and gaster black except mandible reddish mesally and tarsal apex brown. Frontal setae silvery in both sexes. Wing membrane infumate, nearly hyaline in Egyptian specimens; costal and subcostal veins of forewing brown or subcostal vein yellowish (Egyptian, Mauritanian, and some Kazakh specimens). Terga I-III silvery fasciate apically.

ㅇ.- Clypeus (Fig. 381a): bevel markedly shorter than basomedian area (narrowly extending mesally to about clypeal midlength in some specimens); lip free margin arcuate, not incised laterally. Width of postocellar area 1.2-1.5 \times length. Dorsal length of flagellomere I 1.9-2.4 \times apical width. Dorsal foretibial surface with one or two small spines; outer surface with one spine in most specimens, with two in some. Forebasitarsus with 6-9 rake spines. Apical depression of tergum V either setose or glabrous. Pygidial plate alutaceous to almost unsculptured, with punctures that aver-

Figure 381. Tachysphex tarsinus (Lepeletier de Saint Fargeau): a - female clypeus and mandible ($\times 36$); b - male clypeus and mandible ($\times 29$); c - base of male forefemur showing notch $(\times 144)$.
age many diameters apart (but close to each other near margin in some specimens); punctures evanescent in some specimens. Length $6.5-11.0 \mathrm{~mm}$.
0^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 381b): bevel crescentlike, markedly shorter than basomedian area; lip reduced in size, its free margin either slightly arcuate, or straight, or (most African specimens) slightly concave; lip corner well defined, slightly prominent; distance between corners $0.8-1.1 \times$ distance between corner and orbit. Width of postocellar area $1.5-1.7 \times$ length. Dorsal length of flagellomere I $1.1-1.6 \times$ apical width. Forefemoral notch (Fig. 381c) with bottom microscopically, densely setose (setae markedly denser than on adjacent surface). Outer margin of forebasitarsus without preapical spines or, in some specimens, with a few spines near base (spine length nearly equal to tarsomere width); outer apical spine of foretarsomere II shorter than tarsomere III. Tergum VII punctate, punctures well defined in some specimens from Kazakhstan, evanescent in those from Egypt. Length $4.3-8.5 \mathrm{~mm}$. Volsella and penis valve: Fig. 382.

Larva.- Asís, Gayubo, and Tormos (1989) described a mature larva of tarsinus.

Geographic distribution (Fig. 379). - North Africa south to Mauritania and Aswan area in

Figure 382. Tachysphex tarsinus (Lepeletier de Saint Fargeau): volsella and penis valve with outlines showing variation. Egypt; Europe north to northern France, most of Germany (Ohl et al., 2001), central Poland, Belarus (Shlyakhtenok and Skibinska, 2002), and Bryansk Oblast' in Russia (Kolesnikov, 1977); and Asia: Arabian Peninsula, Lebanon, Israel, east to Kazakhstan and Kiangsu Province of China.

Records (only African and Arabian localities).- ALGERIA: 15 km W Biskra (1 ㅇ, ZMAN), Laghouat (de Beaumont, 1950). EGYPT: Al Buhayrah: Sahara Inn Hotel 117 km SE Alexandria (1 ํ, 2 ơ $^{\text {on }}$ FSCA). Al Fayyum: Kom Osheim ($3 \sigma^{\star} ; 3 \sigma^{\text {or }}, \mathrm{MSNT}$). Al Iskanderiyah (= Alexandria): Mansuria and Mariout: Dekhela (de Beaumont, 1940). Al Jizah (= Ghiza): Dahshur (2 와), Ghiza (2 ㅇ, 3 ه ºr $^{\text {) }}$, Kerdasa (de Beaumont, 1940). Al Qahirah (= Cairo): Gebel Asfar (de Beaumont, 1940), Maadi (3 $\frac{+}{}, 4 \circ^{*}$). Al-Uqsur (= Luxor): Luxor (1 \& , SCHL). Al-Wadi al-Jadid: Dahkhla oasis: Ewina (1 , ZMAN), Mut (1 ㅇ, ZMAN); Kharga oasis: Kharga (4 ㅇ, $5 \sigma^{\star}$). Aswan: Aswan (6 ㅇ, $15 \sigma^{\circ}$). LIBYA (de Beaumont, 1956): Fezzan: Brak, Mourzouk, Oum el Araneb. MAURITANIA: 20 km NE Aleg ($1 \mathrm{o}^{*}$), Oued Henné ca 50 air km NE Moudjéria (3 ㅇ). MOROCCO: Goulimine: Oued Seyad ($1 \stackrel{\circ}{ }$, 5 o *), Marrakech (de Beaumont, 1955), Tiznit: Oued Massa (de Beaumont, 1955). OMAN (Guichard, 1980): Northern Oman: Rostaq, Tinaf. SAUDI ARABIA: El Riyadh (Pulawski, 1971). TUNISIA: 15 km W Nefta at $33^{\circ} 50^{\prime} \mathrm{N} 7^{\circ} 43^{\prime} \mathrm{E}\left(20^{\circ}\right.$, CSE).

Tachysphex tembe Pulawski, sp. nov.

Figures 383, 384.
Derivation of name.- Named after Tembe Elephant Park, South Africa, where the type series was collected; a noun in apposition to the generic name.

Recognition.- Tachysphex tembe is an all black South African species. The female (the male is unknown) is characterized by an emarginate labrum, the presence of sensory areas on flagellomeres III-IX, slightly shortened midtarsomeres (e.g., the length of midtarsomeres II and III is about $1.9 \times$ and $1.1 \times$ the apical width, respectively), and venter of apical tarsomeres with at least one apicomedian spine. Additionally, the supraantennal swelling is largely impunctate and not enlarged,
the mesopleural punctures are minute and ill defined (interspaces dull, microsculptured), and the propodeal side is minutely punctate, not ridged.

Description (female only).- Scutal punctures minute, 1-2 diameters apart except for a few larger, sparse punctures. Mesopleural punctures minute, about 2-3 diameters apart near center, interspaces markedly microsculptured, dull. Episternal sulcus complete. Propodeal dorsum evenly microareolate; side minutely punctate, not ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae erect on each side of oral fossa next to occipital carina, shorter than midocellar diameter; appressed on postocellar area and scutum; oriented posterad on propodeal dorsum.

Body black, mandible dark reddish mesally, apical tarsomeres brown. Frontal setae silvery in female. Wing membrane brownish yellow; costal vein of forewing reddish brown, subcostal vein dark brown. Terga I-III silvery fasciate apically.

ㅇ.- Labrum with well-defined emargination. Clypeus (Fig. 383): bevel shorter than basomedian area; lip free margin arcuate, slightly emarginate mesally, with ill-defined sublateral incision and one lateral incision; clypeal midlength equal to distance between lip corners. Width of postocellar area $1.1 \times$ length. Dorsal length of flagellomere I $1.7 \times$ apical width; flagellomeres III-IX with characteristic sensory areas. Dorsal foretibial surface with one or two spines; outer surface with two or three bristles. Tarsi slightly shortened: length of fore- and midtarsomeres II about 1.4 and $1.9 \times$ apical width, respectively; of midtarsomere III 1.1 apical width; of fore-, mid-, and hindtarsomeres IV about $0.9,0.9$, and $1.0 \times$ apical width, respectively. Forebasitarsus with 9 or 10 rake spines. Apical tarsomeres with at least one apicomedian spine on venter, without spines on lateral margins. Apical depression of tergum V impunctate, glabrous. Pygidial plate with punctures of two sizes: smaller and larger, most punctures several diameters apart; interspaces unsculptured. Length $10.7-12.1 \mathrm{~mm}$.
0^{*}. - Unknown.
Geographic distribution (Fig. 384).Eastern South Africa.

Records.- Holotype: ${ }^{+}$, SOUTH AFRICA: Kwazulu-Natal: Tembe Elephant Park, 30 Nov 2002, Marek Halada (OÖLM). Paratypes: same data as holotype but 8 Dec $2002(1+; 1$ ㅇ, OÖLM).

Figure 383. Tachysphex tembe Pulawski, sp. nov.: female clypeus and mandible.

Figure 384. Collecting localities of Tachysphex tembe, tenuicornis, and theseus.

Tachysphex tenuicornis Bischoff

Figures 384, 385-387.
Tachysphex tenuicornis Bischoff, 1913a:120, ㅇ, ® $^{\text {T. Lectotype: } \uparrow \text {, Namibia: Lüderitz District: Prinzen Bucht }}$ S of Lüderitz (ZMHU), here designated, examined.-Arnold, 1923:175 (listed), 176 (original description translated into English), 1930:4 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:277 (listed).

ReCognition.- Tachysphex tenuicornis has the labrum convex and protruding well beyond the clypeal free margin (Figs. 385a-d) and the galea at least as long as the scape. It differs from all other such species in having erect, sinuous setae on the postocellar area (Fig. 386a) in combination with an all black gaster (the apical depressions of segments are translucent). It also has an unusually small mandibular notch (Figs. 385c, d), a character shared only with hadronyx. Subsidiary recognition features are: setae erect and sinuous on the gena and thorax, all appressed on tergum I, hindfemoral venter glabrous in distal half or so; female flagellum unusually long (Fig. 385e), and width of postocellar area 1.0-1.2 \times length in female and 1.2-1.4 in male. Erect and sinuous setae and the elongate flagellum are shared with hadronyx, in which, however, the gaster is red basally, the setae of tergum I are erect on the basal declivity, the width of the postocellar area is 1.7-1.8 \times length in female and 1.8-1.9 in male, and the female claws are unusually thick (Fig. 175f).

Description.- Labrum convex, markedly protruding from beneath clypeus (Figs. 385a-d). Galea aciculate, sparsely punctate, as long as 1.0 of scape in female and 1.1 in male. Mandibular notch unusually small, markedly distant from mandibular base: distance between notch base and orbit about $1.9 \times$ basal mandibular width (Figs. 385c, d). Middle clypeal section markedly convex. Scutal punctures about 2-3 to several diameters apart on disk, interspaces aciculate to unsculptured. Mesopleuron dull, its punctures minute, ill defined, several diameters apart. Propodeal dorsum dull, longitudinally ridged mesally, microscopically rugose laterally (ridges evanescent and irregular in some specimens); side ridged but ridges evanescent in some males; upper metapleural pit oblong. Hindcoxal dorsum with inner margin carinate except apically.

Setae erect and sinuous on postocellar area (Fig. 386a), gena, scutum, mesopleuron, propodeal dorsum and posterior surface, and on female midfemoral venter (at least in distal half); inclined anterolaterad on propodeal dorsum. Setal length expressed as a fraction of basal mandibular width: about 0.5 on postocellar area, about 0.8 on each side of oral fossa next to occipital carina, about 0.5 on scutum anteriorly, about 0.6 on propodeal dorsum. Hindfemoral venter glabrous in distal half or so.

Head and thorax black but the following are yellowish red: mandible (except apically), clypeal bevel and lip (except some males), and labrum. Frontal vestiture silvery in female, golden in male. Wings hyaline, forewing costal and subcostal veins light brown. Femora black (except apex), tibiae and tarsi red or tibiae largely black. Gaster black, apical depression of terga translucent. Terga I-IV or I-V silvery fasciate apically (fasciae becoming ill defined toward gastral apex).

ㅇ.- Mandible: trimmal carina with largely reduced tooth (Fig. 385a). Clypeus (Fig. 385a): bevel about as long as basomedian area; lip free margin arcuate, minimally emarginate mesally, not incised laterally. Width of postocellar area $1.0-1.2 \times$ length. Dorsal length of flagellomere I 4.0-4.2 \times apical width, that of flagellomere II 5.5-6.2 \times apical width, remaining flagellomeres unusually long (Fig. 385e), with differentiated setae and with pores (Fig. 385f). Forefemoral venter with minute, shallow punctures that in some specimens are several diameters apart. Dorsal foretibial surface with two or three spines; outer surface with two spines. Forebasitarsus with 5-8 rake spines (mostly seven). Apical depression of tergum V microsculptured, sparsely setose. Length 6.8-9.5 mm .

Figure 385. Tachysphex tenuicornis Bischoff: a - female clypeus and mandible ($\times 36$); b - male clypeus and mandible ($\times 48$); c - female mandible in lateral view ($\times 60$); d - male mandible in lateral view ($\times 60$); $\mathrm{e}-$ female flagellomeres VI-X $(\times 39)$; $\mathrm{f}-$ portion of female flagellomere VII showing different types of setae and pores ($\times 900$).
ơ.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 385b): bevel about as long as basomedian area; lip free margin evenly arcuate or emarginate mesally, with well-defined corner; distance between corners $0.8 \times$ distance between corner and orbit. Width of postocellar area $1.2-1.4 \times$ length. Dorsal length of flagellomere I $2.5-2.8 \times$ apical width, that of flagellomere II $3.5-3.6 \times$ apical width. Forefemoral notch asetose, smaller than average for Tachysphex (Fig. 386b).

Figure 386. Tachysphex tenuicornis Bischoff: a - ocellar area and vertex of female ($\times 72$); b-base of male forefemur showing notch $(\times 120)$; c - apex of male sternum VIII $(\times 180)$; d - male genitalia ($\times 69$).

Outer margin of forebasitarsus with 4-6 rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Hindfemoral venter with inner (= posterior) margin sharp in distal half. Tergum VII conspicuously microsculptured, punctures evanescent. Sterna V and VI (except laterally) each with subbasal, erect fringe of agglutinated setae (fringes visible only when gaster is fully extended). Apex of sternum VIII with large, semicircular emargination; lateral prongs wide, rounded apically (Fig. 386c). Length 5.8-8.3 mm. Volsella and penis valve: Fig. 387; apex of gonoforceps curved toward midline (Fig. 386d).

Habitat.- Tachysphex tenuicornis occurs

Figure 387. Tachysphex tenuicornis Bischoff: volsella and penis valve.
in sandy areas that are exposed to the morning fog and during the day to cold oceanic wind. Specimens can be active even in cloudy weather. They fly low over the ground and congregate around hummocks overgrown with small bushes.

Floral records.- Specimens collected $21 \mathrm{~km} \mathrm{E}, 10 \mathrm{~km} \mathrm{~N}$, and 110 km NW of Swakopmund by F.W. and S.K. Gess were visiting flowers of Brownanthus kuntzei (Schinz) Ihlenf and Bittrich, and of Psilocaulon salicornioides (Pax) Schwantes, both members of Aizoaceae, and those from 113 km NW of Swakopmund were collected on flowers of Arthraerua leubnitziae (Kuntse) Schintz (Amaranthaceae).

Geographic distribution (Fig. 384).- Namibia up to about 30 km inland from coast.
Records.- NAMIBIA: Lüderitz District: Elizabeth Bay (o $^{\circ}$, NMN), Luderitz: Diaz Point (1 ơ $^{\circ}$, AMG), Lüderitz: Grosse Bucht (1 \& , AMG), Prinzen Bay S Lüderitz (1 q , ZMHU, lectotype of tenuicornis). Swakopmund District: NW Cape Cross at $21^{\circ} 44^{\prime} \mathrm{S} 13^{\circ} 50^{\prime} \mathrm{E}\left(3 \mathrm{o}^{\circ}, \mathrm{AMG}\right)$, Hentiesbaai ($1 \circ+13 \mathrm{o}^{\circ} ; 4 \mathrm{o}^{\boldsymbol{7}}$,
 near Rossing Mountain. at $22^{\circ} 34^{\prime} \mathrm{S} 14^{\circ} 49^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}\right.$, AMG), Swakop River mouth ($10^{\circ} ; 2$ ơ $^{\circ}$, ZMUC),

 21 km E Swakopund on road to Usakos ($2 \sigma^{\circ}$, AMG), 10 km N Swakopmund (7 早, $24 \sigma^{*} ; 10 \sigma^{\circ}$, AMG; $6 \sigma^{\circ}$, SAM), 50 km N Swakopmund ($4 \mathrm{\delta}^{\circ}$), 113 km NNW Swakopmund ($1 \circ, 27 \mathrm{o}^{\circ}$), 110 km NW Swakopmund ($80^{\circ}, \mathrm{AMG}$), 114 km NW Swakopmund at $21^{\circ} 51^{\prime} \mathrm{S} 14^{\circ} 05^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{AMG}\right.$), Uniab River mouth ($20^{\circ}, \mathrm{AMG}$), 30 km E Walvis Bay (o $^{\circ}$, FSCA). Walvis Bay District: 11 km E Walvis Bay (5 ค, 8 o $^{\circ}$), Walvis Bay to Swakopmund at $22^{\circ} 55^{\prime} \mathrm{S} 14^{\circ} 36^{\prime} \mathrm{E}$ (100°, AMG).

Tachysphex theseus Arnold

Figures 384, 388.
Tachysphex theseus Arnold, 1951:156, \odot. Holotype: \circ, Ghana: Accra (BMNH), examined.- Bohart and Menke, 1976:277 (listed).

Recognition.- The female of theseus has tarsomeres IV wider than long, with the dorsoapical margin very broadly emarginate and the apicoventral margin roundly prominent mesally; tarsomeres V angulate basoventrally, with a central cluster of small spines on the venter and the apicoventral margin produced into a lobe; and on each leg one claw smaller than the other (Fig. 388c). Other species share these characteristics, but theseus differs in having a combination of welldefined mesopleural punctures that average about one diameter apart at center, long flagellomere I (dorsal length 2.4-2.8 \times apical width), bicolored gaster (black except segments V and VI red), legs all or predominantly black, and setae erect or inclined posterad on the propodeal dorsum.

The male of theseus has the clypeal lobe corners closer to each other than to the respective orbit (Fig. 388b), sterna III-VI largely glabrous mesally, with large, sparse punctures, and the venter of apical tarsomeres with a preapical cluster of small spines in most specimens (Fig. 388d), with only one spine in some specimens. Other recognition features include: gaster black except tip red, femora and tibiae black, mesopleural punctures well defined, about one diameter apart, and forebasitarsus with at most two preapical rake spines (that are close to the apical spine).

Description.- Scutal punctures well defined, in female many discal punctures up to 2-3 diameters apart, in male averaging less than one diameter apart. Mesopleural punctures well defined but smaller than those on scutum, about one diameter apart at center; interspaces unsculptured or nearly so. Episternal sulcus nearly complete in female. Propodeal dorsum irregularly rugose, side ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae suberect on each side of oral fossa next to occipital carina, about $0.4 \times$ basal mandibular width; nearly erect on postocellar impression, slightly longer than midocellar diameter; nearly

e

Figure 388. Tachysphex theseus Arnold: a - female clypeus and mandible; b-male clypeus and mandible; c - female hindtarsomeres IV and V in ventral view; d - male hindtarsomeres IV and V in ventral view; e - volsella; f - penis valve.
appressed posterad of postocellar impression; appressed on scutum; erect or inclined posterad on propodeal dorsum (basomedian setae inclined anterad in some males); on midfemoral venter suberect in female, suberect to subappressed in male, about as long as midocellar diameter.

Head and thorax black, mandible reddish mesally. Frontal and clypeal setae silvery in female, golden in male. Wing membrane slightly infumate; forewing costal and subcostal veins brown. Femora and tibiae black, but foretibial inner surface brown red in some females. Gaster black
except apex red (segments V and VI in female, in most males segments V-VII and sterna IV-VIII, but only tergum VII and sterna V-VIII in some). Terga I-III silvery fasciate apically.
¢.- Labrum emarginate mesally. Clypeus (Fig. 388a): bevel absent or rudimentary, markedly shorter than basomedian area; lip free margin arcuate, emarginate mesally, with two lateral incisions on each side. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I $2.4-2.8 \times$ apical width. Scutum and scutellum flattened. Midtrochanteral venter shiny, punctures several diameters apart. Forefemoral venter with minute punctures that are several diameters apart; interspaces aciculate. Dorsal foretibial surface with several suberect bristles; outer surface either evenly setose or with narrow, asetose zone, without spines or bristles or with one thin seta. Forebasitarsus with 10 or 11 rake spines, four or five apical spines with contiguous sockets. Tarsomeres III with apicoventral margin arcuate. Tarsomeres IV wider than long, with dorsoapical margin very broadly emarginate (almost straight), and apicoventral margin roundly prominent (Fig. 388c); outer margin of foretarsomere IV about 0.5 length of inner margin. Tarsomeres V angulate basoventrally, with central cluster of small spines on venter; each lateral margin with row of small spines subbasally; apicoventral margin produced into lobe (Fig. 388c). Outer claws of mid- and hindtarsi shorter, thinner than inner claws (opposite on foretarsus). Apical depression of tergum V impunctate, glabrous. Pygidial plate with punctures that average many diameters apart; interspaces practically unsculptured. Length $8.8-11.4 \mathrm{~mm}$.
$\mathrm{o}^{\boldsymbol{\pi}}$.- Mandible: trimmal carina with tooth and cleft. Clypeus (Fig. 388b): middle section flat, without bevel; lip free margin arcuate or minimally sinuate, with well-defined corner; distance between corners $0.6-0.7 \times$ distance between corner and orbit. Width of postocellar area 0.9-1.0 \times length. Dorsal length of flagellomere I $1.8-2.0 \times$ apical width. Forefemoral notch finely setose. Outer margin of forebasitarsus with 0-2 preapical rake spines (when present, located next to apical one); outer apical spine of foretarsomere II markedly shorter than tarsomere III. Tarsomeres V each with preapical cluster of small spines on venter in most specimens (Fig. 388d), with one spine in some specimens. Sterna III-VI mesally with large punctures that are several diameters apart, thus sparsely setose. Sternum VIII: apical margin evenly emarginate or with mesal convexity. Length $8.5-10.2 \mathrm{~mm}$. Volsella and penis valve: Figs. 388e, f.

Geographic distribution (Fig. 384).- Senegal to Ivory Coast and Togo.
Records.- GAMBIA: Fajara ($1 \sigma^{*} ; 1 \sigma^{\circ}$, KMG). GHANA: Accra (1 ค, BMNH, holotype of theseus), Kawampe 45 km N Kintampo at $8^{\circ} 30^{\prime} \mathrm{N} 1^{\circ} 35^{\prime} \mathrm{W}\left(1 \delta^{\circ}\right)$. IVORY COAST: Bouaké (1 ㅇ, $1 \AA^{\circ}$, UCD), Bouaké: Foro-Foro ($2 \stackrel{\circ}{\circ}, 1 \sigma^{\circ} ; 38 \circ, 72 \sigma^{\circ}$, UCD), Ferkessedougou ($5 \sigma^{\circ}$). SENEGAL: Gîte de Bandiala, ca $13^{\circ} 38^{\prime} \mathrm{N}$ $16^{\circ} 38^{\prime} \mathrm{W}$ ($1 \mathrm{o}^{\circ}, \mathrm{KMG}$). TOGO: 5 km W Sokodé (2 ㅇ, 4 o $^{\circ}$).

Tachysphex thysanomerus Pulawski, sp. nov.

Figures 389-391.
Derivation of name.- Thysanomerus is derived from the Greek words thysanos, a fringe, and meros, thigh, femur, an allusion to the characteristic midfemoral setae of this species.

ReCognition.- Tachysphex thysanomerus has a conspicuously convex labrum (markedly protruding beyond the clypeal free margin), elongate galea (length equal to $0.9-1.1$ of scape), a ridged propodeal side, and an oblong upper metapleural pit. Unlike most other such species, the hindfemoral venter of thysanomerus is largely asetose in the distal half.

In addition, the female can be recognized from other such species by its straight genal, thoracic, and femoral setae that are suberect on the scutum anteriorly, and erect on the midfemoral venter (Fig. 389c). Setae are also erect on the midfemoral venter in gastrotrichus, hadronyx, and tenuicornis, but their genal and thoracic setae are sinuous (see these species for further differences).

The male of thysanomerus also differs from similar species in having an essentially truncate
middle clypeal lobe (Fig. 389b), the carinae that emerge from the lip corners being well defined, extending well above lip, and almost parallel to one another. Subsidiary recognition features are: scutal setae suberect anteriorly, sterna IV-VI each with a basal fringe of agglutinated, nearly erect setae (the fringes are visible only when the gastral segments are fully extended), and setae of midfemoral venter erect in many specimens.

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea aciculate, sparsely punctate, about as long as $0.9-1.0$ of scape in female, $1.0-1.1$ in male. Scutal punctures fine but well defined, averaging from about two to several diameters apart on scutum; interspaces shiny. Mesopleural punctures minute, averaging from about $2-3$ to several diameters apart below scrobe, interspaces finely microsculptured but shiny. Propodeal dorsum microareolate and, in many specimens, with longitudinal ridges mesally; side ridged; upper metapleural pit oblong. Hindcoxal dorsum with inner margin carinate, carina minimally expanded basally.

Setae appressed or nearly so on postocellar area (suberect in many males), no longer than midocellar diameter; suberect on each side of oral fossa next to occipital carina (about $0.4 \times$ basal mandibular width); suberect on scutum anteriorly; on propodeal dorsum diverging anterolaterad from midline except oriented anterad along midline in many females (oriented posterad near base); on midfemoral venter erect in female, suberect in distal half in many males but nearly appressed in some (Figs. 389c, d), setal length about equal to midocellar diameter.

Head largely black (see below for details). Frontal setae silvery in female, golden in male.

Figure 389. Tachysphex thysanomerus Pulawski, sp. nov.: a - female clypeus and mandible ($\times 37$); b - male clypeus and mandible ($\times 42$); c - female midfemur showing erect setae on venter $(\times 55)$; d - male midfemur showing erect setae on venter ($\times 59$) .

Thorax black, but pronotal lobe brown posteriorly in most males. Wing membrane hyaline; forewing costal vein yellowish, subcostal vein pale yellow. Femora black (except apically), tibiae and tarsi red. Gastral segments I and II or I-III red, remainder black (apical depressions of terga translucent). Terga I-V in female, I-VI in male, silvery fasciate apically.

ㅇ.- Mandible: trimmal carina with evanescent tooth (Fig. 389a). Clypeus (Fig. 389a): bevel longer than basomedian area; lip free margin arcuate, not emarginate or slightly, shallowly emarginate mesally, lateral incision rudimentary or absent. Width of postocellar area $1.0-1.2 \times$ length. Dorsal length of flagellomere I 3.2-3.7 \times apical width. Dorsal foretibial surface with two spines; outer surface with two spines. Forebasitarsus with six or seven rake spines. Midtrochanteral venter: punctures 2-3 diameters apart, interspaces shiny. Tergum V evenly micropunctate and setose, including apical depression. Pygidial plate varying: punctures averaging several to many diameters apart, interspaces conspicuously microsculptured to nearly unsculptured. Length $5.7-7.2 \mathrm{~mm}$. Mandible varying from yellowish red (except basally and apically) to nearly all black; labrum and clypeal lip dark reddish; clypeal bevel varying from dark reddish to black.
$\sigma^{\boldsymbol{*}}$.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 389b): bevel somewhat ill defined but at least as long as basomedian area; lip free margin minimally arcuate to minimally concave, mostly with evanescent median notch, with well-defined corner; distance between corners $1.3-1.5 \times$ distance between corner and orbit. Width of postocellar area $1.1-1.3 \times$ length. Dorsal length of flagellomere I 2.0-2.2 \times apical width. Forefemoral notch microscopically setose, smaller than average for Tachysphex. Outer margin of forebasitarsus with 4-6 rake spines; outer apical spine of foretarsomere II markedly longer than tarsomere III. Sterna IV-VI (except laterally) each with subbasal fringe of agglutinated setae (fringes visible only when gaster is fully extended), with well-defined apical depression, and with apicolateral portion somewhat swollen and less densely punctate than remaining surface. Sternum VIII varying: apical notch wide (lateral prong sharp, thin) or narrow (lateral prong wider than average for the genus, as in Fig. 386c). Length $4.7-7.7 \mathrm{~mm}$. Volsella and penis valve: Fig. 390. Mandible (except apically), labrum, and clypeal bevel and lip yellowish red.

Floral Record.- One male from 10 km N Swakopmund (AMG) was collected on flowers of Brownanthus kuntzei (Schinz) Ihlen. and Sittrich, a member of Aizoaceae, as noted by F.W. Gess and S.K. Gess, the collectors.

Geographic distribution (Fig. 391).Namib Desert.

Records.- Holotype: if, NAMIBIA: Swakopmund District: 10 km N Swakopmund at

Figure 390. Tachysphex thysanomerus Pulawski, sp. nov.: volsella and penis valve.

Figure 391. Collecting localities of Tachysphex thysanomerus and tryssus.
$22^{\circ} 35^{\prime} \mathrm{S} 14^{\circ} 32^{\prime} \mathrm{E}, 16$ Feb 1996, WJP (CAS). Paratypes: NAMIBIA: Swakopmund District: Hentiesbaai, 18 Feb 1996, WJP (2 ㅇ, 14 ® $^{\circ}$); 20 km NE Hentiesbaai at $21^{\circ} 58^{\prime} \mathrm{S} 14^{\circ} 22^{\prime}$ E, 10 Dec 1996, WJP ($11 \mathrm{o}^{\text {o }}$); Swakopmund, 12 Feb 1993, J. Gusenleitner ($1 \mathrm{\delta}^{\star}, \mathrm{JG}$) and MS ($4 \mathrm{\delta}^{\circ}$, MS); 15 km E Swakopmund, 8 Feb 1993,

 Swakopmund, 5 Feb 1978, O. Lomholdt (1 \& , ZMUC); 63 km NE Swakopmund, WJP, 15 Feb 1996 (5 8 $^{\text {º }}$),
 District: 11 km E Walvis Bay, 7 Dec 1996, WJP (1 đ̛) $^{\text {) }}$.

Tachysphex titania Arnold

Figures 392-394.
Tachysphex titania Arnold, 1923:163, ${ }^{\circ}$, ${ }^{7 *}$ (as Titania, incorrect original capitalization). Lectotype: ${ }^{\circ}$, Zimbabwe: Bulawayo (SAM), here designated, examined. - Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:277 (listed); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).
Tachysphex titania var. willowmorensis Arnold, 1924:55, ㅇ, ơ. Lectotype: ${ }^{\text {or }}$, South Africa: Eastern Cape Province: Willowmore (TMP), here designated, examined. New synonym.-Arnold, 1930:3 (in checklist of Afrotropical Sphecidae).—As Tachysphex titania willowmorensis: Bohart and Menke, 1976:277 (new status, listed).

Recognition.- Tachysphex titania has the gaster, femora, and tibiae black; mesopleuron shiny, with well-defined punctures (that are less than one diameter apart); setae erect on postocellar area (Figs. 392a, b), nearly erect on scutum and midfemoral venter, and inclined obliquely anterad on propodeal dorsum; labrum flat, not emarginate; and apical tarsomeres without spines on venter or lateral margins. Other species are similar, but titania differs in having a galea slightly longer than wide in profile (Fig. 393) rather than equal to width or shorter, a character that can be seen only when the mouthparts are not retracted. Unlike longipes, the setae of the hindfemoral venter are appressed in titania (rather than erect), and the apical tarsomeres are not elongate (length of hindtarsomere IV $1.2-1.3 \times$ apical width rather than 2.5 in the female and 1.5 in the male, respectively).

The female of titania, in addition, has the clypeal free margin evenly convex, not incised laterally (Fig. 392c) and in most specimens evenly arcuate (roundly prominent mesally in hermia), apical portion of the galea (distad of crease) sparsely punctate (densely punctate in hermia), postocellar area flat or nearly so (concave in angustus and longipes), and mesopleuron punctate, with shiny interspaces (punctatorugose, dull in longipes).

Like diversilabris, hermia, and longipes, the male of titania has a pointed clypeal lobe (Fig. 392d). It has evenly sculptured flagellomeres (middle flagellomeres with longitudinal sulcus in diversilabris), and the oblique carina that emerges from the clypeal midpoint does not end as a tubercle (a minute tubercle is present in hermia). Also, the forebasitarsus either has no preapical rake spines (as in the other species) or the spines are present (unlike these species).

Similar unassigned specimens.- Two females and two males from Namaqualand, South Africa (CAS), closely resemble titania (including the shape of the galea), but differ in having unusually long, sinuous setae on the head and thorax (setal length, on postocellar area, about $1.3 \times$ basal mandibular width). The width of postocellar area is as in titania in one of the females, but $3.2-3.5 \times$ length in the other three specimens. Most likely, they are just extreme variants of titania adapted to Namaqualand cold weather conditions, but I have not seen intergradation. The difference in the width of postocellar area between the two topotypical females is also perplexing. The specimens were collected in Northern Cape Province of South Africa: Dassiefontein Farm 14 road km E

Figure 392. Tachysphex titania Arnold: a - female head in frontal view; b - male head in frontal view; c - female clypeus and mandible; d - male clypeus and mandible; $\mathrm{e}-$ volsella with outline showing variation; f - penis valve with outline showing variation.

Kamieskroon at $30^{\circ} 09.3^{\prime} \mathrm{S} 17^{\circ} 59.6^{\prime} \mathrm{E}, 16-17$ Sept 2001 (2 ㅇ); 23 and 90 km ENE Springbok at $29^{\circ} 33.0^{\prime} \mathrm{S} \quad 18^{\circ} 11.6^{\prime} \mathrm{E}$ and $29^{\circ} 20.1^{\prime} \mathrm{S}$ $18^{\circ} 44.3^{\prime}$ E, 19 Sept 2001 (2 o $^{\top}$).

Justification of new synonymy Arnold's (1924) var. willowmorensis is characterized by the presence, in the male, of a welldeveloped foretarsal rake. Such males occur mainly in the Karoo Desert but also in the Bulawayo area, Zimbabwe, and there appears to be a continuous spectrum of intermediate forms (see Variation below for details). For this reason I treat willowmorensis as a synonym of titania.

Description.- Galea in profile slightly longer than wide, with apical portion (distad of crease) sparsely punctate, about as basal portion (Fig. 393). Mandible: outer ridge somewhat swollen and expanded over notch. Scutal and mesopleural punctures well defined, averaging less than one diameter apart (some scutal punctures 2-3 diameters apart, some mesopleural punctures exceptionally more than one diameter apart). Propodeal dorsum irregularly,

Figure 393. Tachysphex titania Arnold: galea in lateral view ($\times 140$). coarsely ridged, side ridged. Hindcoxal dorsum with inner margin carinate basally.

Setae erect on postocellar area (Figs. 392a, b), curved posterad or sinuous on scutum anteriorly (also sinuous on mesopleuron in one female from Willowmore); inclined anterad on propodeal dorsum; setal length (expressed as a fraction of basal mandibular width) $0.3-0.4$ on postocellar area and on each side of oral fossa next to occipital carina, 0.3-0.5 on scutum anteriorly.

Head, thorax, legs, and gaster black, mandible reddish mesally. Frontal setae silvery in both sexes. Wing membrane moderately infumate to nearly hyaline, forewing costal and subcostal veins brown. Terga I-III or I-IV silvery fasciate apically.

ㅇ.- Clypeus (Fig. 392c): bevel longer mesally than basomedian area; lip free margin not incised laterally, evenly arcuate in most specimens, but with obtuse, median projection if female from Brandberg Plateau, Namibia. Width of postocellar area 1.9-2.1 \times length (Fig. 392a). Dorsal length of flagellomere I 2.4-2.6 \times apical width. Forefemoral venter with minute punctures that are up to several diameters apart. Dorsal foretibial surface uniformly setose or with several suberect, inconspicuous bristles; outer surface with one spine near midlength. Forebasitarsus with six or seven rake spines. Apical depression of tergum V setose throughout. Length $5.5-10.0 \mathrm{~mm}$.
δ^{*}.- Mandible: trimmal carina roundly expanded but not dentate, without cleft (Fig. 392d). Clypeus (Fig. 392d): bevel ill defined, with an oblique, ill-defined carina that emerges from clypeal midpoint and is nearly parallel to clypeal free margin (carina almost effaced in smallest specimens); lip free margin pointed (acutely so in most specimens, obtusely in some), without well-defined corner, forming single curved line with rest of clypeal margin. Width of postocellar area 2.3-2.4 \times length (Fig. 392b). Dorsal length of flagellomere I $1.6 \times$ apical width. Forefemoral notch microscopically setose. Foretarsal rake: see Variation below. Length $4.5-7.6 \mathrm{~mm}$. Volsella and penis valve: Figs. 392e, f.

Variation.- Most males have no preapical spines on the outer side of the forebasitarsus, but such spines are present in many individuals from the Karoo Desert and Bulawayo area, Zimbabwe. In some cases, there is only one preapical spine, placed near the tarsomere midlength (on one leg only in some specimens, or the spine is replaced by a seta on the opposite leg); the spine length is about equal to the basitarsus width. In other cases, there are $2-5$ such spines, and their length may exceed the basitarsus width. The outer apical spine of foretarsomere II is shorter than tarsomere III in most specimens, but it may be longer in specimens with two or three preapical spines on tarsomere I.

Prey.- A female from Richtersfeld National Park, South Africa, was collected with her prey, a nymphal pyrgomorphid (det. F.W. Gess).

Geographic distribution (Fig. 394).Botswana, Zimbabwe, Namibia, South Africa (including Lesotho and Swaziland).

Records.- BOTSWANA: Serowe (1 o°). LESOTHO: Bokong P.O. ($1+$, AMG). NAMIBIA: Khorixas District: Brandberg (determined as Species 1 by van Noort, Prinsloo, and Compton, 2000): Hungorob River mouth ($2 \sigma^{\circ}$, SAM), Messum Valley (1 ㅇ, 1 of $^{*} ; 3$ ㅇ, 1 ơ *, SAM), Plateau valley ($1 \circ$, SAM) , and Wasserfallfläche ($1 \mathrm{o}^{*}$, SAM, determined as Species 3 by van Noort, Prinsloo, and

Figure 394. Collecting localities of Tachysphex titania. Compton, 2000). Windhoek District: Windhoek ($1 \sigma^{\circ}$, NMN). SOUTH AFRICA: Eastern Cape Province: Algoa Bay (1 ㅇ, TMP), Fullerton near Willowmore (1 ㅇ, AMG), Grahamstown (1 ㅇ, PPRI), Resolution 17 air km NNE Grahamstown ($1 \stackrel{\circ}{ }$, SAM), 6 km N Steytlerville ($1 \stackrel{\circ}{ }$, $1 \mathrm{o}^{\circ}$, USU), Willowmore ($1 \mathrm{o}^{\circ}, \mathrm{AEI}$; $1 \sigma^{\circ}$, SAM, paratype of titania willowmorensis; 2 ㅇ, $1 \sigma^{\star+}$, TMP, including lectotype and paralectotype of titania willowmorensis), 37 km NW Willowmore in Grootrivierberg Range ($1 \mathrm{o}^{\circ}$, USU). Free State: Caledon River between Bethulie and Aliwal North ($1 \stackrel{\circ}{ }$, SAM). Kwazulu-Natal: 20 km S Emanguzi (1 \& , OÖLM), Kloof (2 old $^{\circ}$, BMNH). Mpumalanga: Crocodile Bridge in Kruger National Park (1 ㅇ, PPRI), Loskop Dam Nature Reserve (10^{0}, PPRI). Northern Cape Province: Arkoep Farm 6 km N Kamieskroon at $30^{\circ} 19^{\prime} \mathrm{S}$ $17^{\circ} 56^{\prime}$ E ($1 \delta^{7}$, PPRI), Garies ($2 \sigma^{\prime}$, AEI), Goegap Nature Reserve ($1 \circ$, AMG), Melton Wold ($1 \circ$, SAM),
 $\left.10^{\circ}, \mathrm{AMG}\right)$, Magoebaskloof at $23^{\circ} 51^{\prime} \mathrm{S} 30^{\circ} 02^{\prime} \mathrm{E}(1+\mathrm{q}, \mathrm{AMG})$, Malta Forest between $24^{\circ} 00^{\prime}$ and $24^{\circ} 15^{\prime} \mathrm{S}$ and $30^{\circ} 00^{\prime}$ and $30^{\circ} 15^{\prime} \mathrm{E}(1+$, AMG). Western Cape Province: Cape Town: Constantiaberge above Tokai Forest and Donkerboskloof, 460 m alt., at $34^{\circ} 02^{\prime} \mathrm{S} 18^{\circ} 23^{\prime} \mathrm{E}(1+\mathrm{o}, \mathrm{SAM})$, Cape Town: Table Mountain at $33^{\circ} 57^{\prime} \mathrm{S}$ $18^{\circ} 24^{\prime} \mathrm{E}\left(1 \quad\right.$ ㅇ) and $33^{\circ} 58^{\prime} \mathrm{S} 18^{\circ} 25^{\prime} \mathrm{E}$ (1 ค +3 o $^{\circ}$), Clanwilliam (1 ㅇ, USU), Clanwilliam District: Biedouw Valley (1 ค, 2 ơ $^{\text {, }}$, PRRI), Hermanus: Fernkloof Nature Reserve (1 ค, SAM), SW side of Hexriver Pass (1 of, BMNH), Hottentots Kloof ($1 \sigma^{\prime \prime}, \mathrm{UCD}$), Knersvlakte: Kaap se Drif Farm at $31^{\circ} 26^{\prime} 01^{\prime \prime} \mathrm{S} 18^{\circ} 47^{\prime} 34^{\prime \prime} \mathrm{E}$ (1 of, OHL), Lammerskraal in Prince Albert District ($1+$, SAM), Matjiesfontein at $33^{\circ} 14^{\prime} \mathrm{S} 20^{\circ} 35^{\prime} \mathrm{E}\left(1 \delta^{\circ}, \mathrm{BMNH}\right.$),
 (1 ơ, BALDOCK), Swartrivier 7 km NW Prince Albert (1 \&) , 9 mi NE Wellington (1 \& , USNM). SWAZILAND: Mhlangate River near Phuzumoya ($1 \sigma^{\circ}$, ZMAN). ZIMBABWE: Bulawayo (2 \uparrow, 2 o $^{\circ}$, SAM, including lectotype $\stackrel{\circ}{\circ}$, paralectotype $\sigma^{\circledR 7}$, and 1 paratype ơ of titania), Great Zimbabwe ($1 \circ$, AMG), Kami Ruins ($1 \mathrm{~d}^{\star}$), Matobo ($1 \mathrm{o}^{\star}$, SAM), Nyamandhlovu ($1 \mathrm{o}^{\star}$, TMP), Sawmills ($2 \mathrm{o}^{\star}$, SAM), Shangani: De Beer's Ranch ($1 \circ^{\circ}$, BMNH), World's View (now Malindidzimu) in Matobo National Park (1 ค, SAM; 1 ㅇ, TMP).

Tachysphex tryssus Pulawski, sp. nov.

Figures 391, 395.
Derivation of name.- Tryssus is derived from tryssos, Greek for dainty, delicate.
Recognition.- Tachysphex tryssus, an all black southern African species, has well-defined mesopleural punctures (coarse and compressed against each other in many specimens), a flat labrum, a galea longer than wide in profile, and erect setae on the postocellar area. The unusually narrow clypeal lip is distinctive: the corners are equidistant from each other and the adjacent orbit in the female (Fig. 395a) and closer to each other than to the adjacent orbit in the male (Figs. 395b). Subsidiary recognition features in the male are: trimmal carina with an unusually large tooth (Fig. 395b) and apical margin of sternum VIII tridentate (Fig. 395c).

Description.- Galea longer than wide in profile, as long as 0.8 of scape. Supraantennal swelling ill defined. Scutum with well-defined punctures that are up to about one diameter apart on disk in female, less than one diameter apart in male; in many specimens with short, longitudinal ridges next to hindmargin. Mesopleural punctures well defined, varying from about one diameter apart beneath scrobe to coarse and compressed against each other. Propodeal dorsum irregularly ridged longitudinally, somewhat prominent apicomesally; side ridged. Hindcoxal dorsum with inner margin carinate basally, carina somewhat expanded.

Setae erect on each side of oral fossa next to occipital carina (setal length about $0.25 \times$ basal mandibular width in female, about one midocellar diameter in male); erect on postocellar area (slightly longer than midocellar diameter), subappressed on scutum; varying on propodeal dorsum: either oriented obliquely anterad, or oriented obliquely anterad and obliquely posterad on the sides and joining apicomesally, or oriented posterad.

Head, thorax, legs, and gaster black, mandible dark red in some specimens; tarsal apex dark brown. Frontal setae silvery in both sexes. Wing membrane slightly infumate; forewing costal and subcostal veins dark brown. Terga I-IV silvery fasciate apically.

ㅇ.- Clypeus (Fig. 395a): bevel longer than basomedian area; lip markedly arcuate, not incised laterally; lip corners equidistant from each other and respective orbit. Width of postocellar area $1.0-1.2 \times$ length. Dorsal length of flagellomere I $1.8-2.0 \times$ apical width. Dorsal foretibial surface with two spines; outer surface with erect bristle near midlength. Forebasitarsus with $8-11$ rake spines. Apical depression of tergum V punctate and setose throughout. Pygidial plate aciculate, sparsely punctate. Length $7.7-8.5 \mathrm{~mm}$.
0^{\top}.- Mandible: trimmal carina with conspicuous tooth, without cleft. Clypeus (Fig. 395b): bevel about as long as basomedian area; lip free margin arcuate, with corner well defined to rounded; distance between corners $0.6 \times$ distance between corner and orbit. Width of postocellar area $1.1-1.4 \times$ length. Dorsal length of flagellomere I 1.8-2.0 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Sternum VIII tridentate apically, conspicuously so in most specimens (Fig. 395c). Length $6.0-7.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 395d, e.

Geographic distribution (Fig. 391).— Zimbabwe, South Africa.
Records- Holotype: \circ, SOUTH AFRICA: Northern Province: Happy Rest Nature Reserve at $22^{\circ} 59^{\prime} \mathrm{S} 29^{\circ} 46^{\prime} \mathrm{E}, 10 \mathrm{Mar} 1990$, CDE (PPRI). PaRATYPES (ISP = M.E. Irwin, E.I. Schlinger, F.D. Parker): SOUTH AFRICA: Eastern Cape Province: 6 km N Steytlerville, $16-23$ Nov 1999, ISP (1 ơ $^{\circ} ; 1 \mathrm{ơ}^{\circ}$, USU); 30 km S Steytlerville: Wolwekraal Farm, 22 Nov 1999, ISP (o^{7}, USU); 43 km NE Willowmore: Plessierivier, 18-22 Nov 1999, ISP ($1 \delta^{\circ}$, USU); 37 km NW Willowmore in Grootrivierberg Range at $33^{\circ} 11.5^{\prime} \mathrm{S} 24^{\circ} 09.5^{\prime} \mathrm{E}$, 19-24 Nov 1999, ISP ($10^{\circ} ; 1 \delta^{\circ}$, USU); 11 km SW Willowmore at $33^{\circ} 22.3^{\prime} \mathrm{S} 23^{\circ} 24.7^{\prime} \mathrm{E}, 20-24$ Nov 1999 , ISP (1 ơ, $^{\circ}$ USU). Gauteng: Johannesburg: Melville Koppies Reserve, $15-30$ Mar 1987, W. Miller (2 ơ, FSCA); Pretoria E, 22 Mar 1990, MS ($2 \delta^{\star}$). Northern Province: Happy Rest Nature Reserve at $22^{\circ} 59^{\prime} \mathrm{S} 29^{\circ} 46^{\prime} \mathrm{E}$,

Figure 395. Tachysphex tryssus Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - male sternum VIII; d - volsella with outline showing variation of dorsal process; $\mathrm{e}-$ penis valve.

10 Mar 1990, CDE (3 ơ, PPRI); Mogol Nature Reserve, 25-26 Jan 1982, M.W. Mansell (1 ơ, PPRI); same locality, 27-29 Feb 1984, CDE ($2 \sigma^{*} ; 1 \stackrel{\circ}{+} 2 \sigma^{*}$, PPRI). North-West Province: Rustenburg Nature Reserve, 17-20 Mar 1980, CDE, W.A. Harrop, and C.G. Moolman ($1+2$ ơ $^{*} ; 2 \sigma^{*}$, PPRI). Western Cape Province: 40 km E Clanwilliam: Sevilla, 27-28 Nov 1999, F.D. Parker (1 ơ, USU). ZIMBABWE: Mbizi Game Reserve (= Rocky Farm) 20 km SE Harare, 5 Aug 1997, WJP (1 o ${ }^{*}$).

Tachysphex ulonyovu Pulawski, sp. nov.

Figures 396, 397.
Derivation of name.- Ulonyovu, a Ndebele word meaning wasp; a noun in apposition.
Recognition.- The female of ulonyovu has unusually short tarsi (length of midtarsomere II less than twice apical width, length of midtarsomere III $1.2 \times$ apical width), partly red gaster and red legs, and middle flagellomeres with characteristic sensory areas (as in Figs. 38c-e). This combination is shared with asinus, onager, and scaber, but in ulonyovu the labrum is flat and broadly emarginate (rather than convex apically and entire), the propodeal side is not ridged (rather than ridged), and the apical flagellomeres are slightly longer (e.g., length of VII equals 1.2 its width rather that 1.0).

The male can be recognized by the following combination: free margin of clypeal lobe prominently arcuate (Fig. 396b), tarsi short (e.g., length of midtarsomere III 1.5-1.6 \times apical width, that of midtarsomere IV equal to apical width), labrum broadly emarginate to truncate, setae inclined
posterad on the propodeal dorsum and appressed on sterna, gaster and legs partly red, and wings yellowish (insignificantly darkened in the distal third).

Description.- Galea about as long as wide in lateral view, about as long as 0.6 of scape, with well-defined punctures that are several diameters apart (at least anteriorly). Labrum broadly emarginate, truncate in some males. Supraantennal swelling punctate in some specimens. Scutal punctures fine, no more than one diameter apart in female, nearly contiguous in male. Mesopleuron dull, conspicuously microsculptured, with ill-defined punctures. Episternal sulcus complete, effaced anteroventrally in some males. Propodeal dorsum evenly microareolate, side uniformly microsculptured, not ridged. Vein cu-a in hindwing varying: anal end either closer to or further away from wing base than cubital end. Hindcoxal dorsum with inner margin carinate basally. Sternum I with apical depression bisected by obtuse carina.

Setae erect on postocellar area, no longer than midocellar diameter; about equal to midocellar diameter on each side of oral fossa next to occipital carina; appressed on scutum; pointing posterad on propodeal dorsum.

Head and thorax black, mandible reddish mesally. Frontal setae silvery in both sexes. Wing membrane yellow, somewhat darkened in distal third; forewing costal and subcostal veins reddish brown. Femora, tibiae, and tarsi red, male femora black basally (at least fore- and midfemora). Gastral segments I and II red, remainder black (segment I black, with preapical transverse red spot on tergum in male from Harare area, Zimbabwe). Terga I-III silvery fasciate apically.

ㅇ.- Labrum flat, emarginate apically. Clypeus (Fig. 396a): bevel about as long as basomedian area, unsharply delimited from the latter; lip free margin markedly arcuate, with two lateral incisions on each side (inner incision ill defined in some specimens). Width of postocellar area 1.1-1.2 \times length. Dorsal length of flagellomere I 1.4-1.7 \times apical width. Forefemoral venter, in apical half, with minute, sparse punctures and unsculptured interspaces. Dorsal foretibial surface with several inconspicuous, suberect bristles; outer surface sparsely punctate and setose, with two or three thin spines. Tarsi short: length of fore- and midtarsomeres II about 1.3-1.4 and 1.7-1.8 \times apical width, respectively; that of midtarsomere III $1.2 \times$ apical width; of fore-, mid-, and hindtarsomeres IV about $1.0,0.9$, and $1.0 \times$ apical width, respectively. Forebasitarsus with $11-13$ rake spines. Apical tarsomeres stout, with 1-3 (mostly two) preapical ventral spines; lateral margins, in most specimens, with small spine behind midlength. Apical depression of tergum V impunctate and glabrous (except mesally). Pygidial plate emarginate apically, in most specimens finely punctate mesally (punctures less than one diameter apart), lateral punctures larger, at least one diameter apart (Fig. 396c); but all punctures large, averaging more than one diameter apart, in single female from Redbank, Zimbabwe. Length $10.0-13.0 \mathrm{~mm}$.
δ^{π}.- Mandible: trimmal carina with tooth and cleft (tooth rudimentary in some specimens). Clypeus (Fig. 396b): bevel shorter than basomedian area, unsharply delimited from the latter; lip free margin obtusely pointed, with corner present but ill defined; distance between corners $0.9 \times$ distance between corner and orbit. Width of postocellar area $1.0-1.2 \times$ length. Dorsal length of flagellomere I 1.2-1.3× apical width. Forefemoral notch microscopically setose, slightly smaller than average for the genus. Posteroventral midfemoral surface impunctate or with punctures that are many diameters apart. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Length of midtarsomere III $1.5-1.6 \times$ apical width, that of midtarsomere IV equal to apical width. Venters of tarsomeres V each with one or two minute, preapical spines. Sternum VIII apically tridentate or at least convex mesally. Length $7.0-10.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 396d, e.

Geographic distribution (Fig. 397).— Zimbabwe to eastern South Africa.
Records- Holotype: ㅇ, ZIMBABWE: Victoria Falls at $17^{\circ} 56^{\prime}$ S $25^{\circ} 50^{\prime}$ E, 1-8 Feb 1996, WJP

Figure 396. Tachysphex ulonyovu Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - pygidial plate of female showing individual variation; d - volsella; e - penis valve.
(CAS). Paratypes: SOUTH AFRICA: Kwazulu-
Natal: St. Lucia: Fannies Island Campground at $28^{\circ} 10^{\prime} \mathrm{S} 32^{\circ} 25^{\prime} \mathrm{E}, 14-16$ Jan 1981, R.P. Oberprieler (1 ${ }^{\text {on }}$, PPRI); St. Lucia Estuary, 15 Jan-15 Feb 1978, D.J. Brothers (2 ơ, PMA); Tembe Elephant Park, 2 30 Nov 2002, Marek Halada (1 ㅇ, OÖLM). Mpumalanga: Pretoriuskop in Kruger National Park, 17 Jan 1985, CDE (1 \&, PPRI); Skukuza in Kruger National Park, 12-15 Dec 1985, W.R. Mason
 PMA), M. Sanborne ($1 \quad+; 1$ ơ, PMA). Northern Province: D'Nyala Nature Reserve, 8-12 Dec 1989, CDE (1 ${ }^{*}$); Guernsey Farm 15 km E Klaserie, 19-31 Dec 1985, H. and A. Howden (2 ค, 3 ơ, PMA), S. and J. Peck (1 ㅇ, 2 of; 2 ㅇ, 2 ơ, PMA), M. Sanborne (1 ค, 3 ơ; ; 3 ค, 9 of, PMA); Klaserie Hongony, 25 Dec 1985, W.R. Mason (1 i, PMA); Modjadji Nature Reserve, 13-14 Jan 1987, V.M. Uys (1 or, 7, PPRI); Mogol Nature Reserve, 19-23 Nov 1979, S.J. van Tonder, C. Kok, G.L. Prinsloo, M.W.

Figure 397. Collecting localities of Tachysphex ulonyovu and ulothrix.

Mansell (1 ${ }^{\boldsymbol{*}}$, PPRI); Pafuri in Kruger National Park, 23 Sept 1984, L.E.O. Braack (10^{*}, PPRI). ZIMBABWE: 30 km W Harare, 29 Nov 1998, M. Halada (1 ه̛, OÖLM); Mt. Selinda 40 km S Chipinge, 13 Dec 1998,
 [= Trelawney Research Station WNW Harare], 20 Jan 1984, N.J.M. [= N.J. Myers] ($1 \circ$, AMG); Victoria Falls, 1-8 Feb 1996 and 28-31 Mar 1998, WJP (2 ㅇ).

Tachysphex ulothrix Pulawski, sp. nov.

Figures 397-399.
Derivation of name.- Ulothrix is derived from two Greek nouns: oulos, wool, and thrix, hair; an allusion to the dense, sinuous setae of this species; a noun in apposition.

RECOGNITION.- Tachysphex ulothrix shares the following combination with gastrotrichus: labrum convex, protruding beyond clypeal free margin; galea about as long as scape; propodeal side ridged; hindfemoral venter asetose in distal half or so; and setae sinuous (suberect to erect) on gena, most of the thorax, and fore- and midfemoral venters (Figs. 398c, d), but contrastingly straight and appressed on postocellar area (mesopleural setae largely concealing integument). In ulothrix, however, the setae are also appressed or nearly so on tergum I, and the male forefemur is emarginate (Fig. 398d), whereas in gastrotrichus setae are erect on the basal declivity of tergum I and the male forefemur is entire.

Figure 398. Tachysphex ulothrix Pulawski, sp. nov.: a - female clypeus and mandible ($\times 34$); b - male clypeus and mandible ($\times 40$); c - female forefemur ($\times 46$); d - male forefemur ($\times 60$).

DESCRIPTION.- Labrum convex, markedly protruding from beneath clypeus. Galea aciculate, sparsely punctate, markedly longer than wide in profile, as long as 0.9 of scapal length in female, as 1.0 in male. Scutum and mesopleuron with well-defined punctures and shiny interspaces; punctures up to 2-3 diameters apart on scutal disk, on mesopleuron averaging about one diameter apart. Propodeal dorsum longitudinally ridged, but ridges evanescent laterally in many specimens; side with well-defined ridges; upper metapleural pit oblong. Hindcoxal dorsum with inner margin carinate, carina not expanded.

Setae (setal length expressed as a fraction of basal mandibular width): fully concealing integument on frons, nearly so on mesopleuron in female; sinuous on gena, scutum anteriorly, mesopleuron, propodeal dorsum, and fore- and midfemoral venters (Figs. 398c, d); erect on lower gena (length about 0.7) and scutum anteriorly (length about 0.7 in female, $0.9-1.0$ in male), subappressed on forefemoral venter, subappressed on scutal disk, appressed on postocellar area, essentially erect on propodeal dorsum (length about 0.5). Hindfemoral venter glabrous in distal half or so.

Head and thorax black, but mandible (except apically) yellowish red; clypeal bevel, clypeal lip, and labrum yellowish; and pronotal lobe yellowish or reddish apically. Frontal setae silvery in both sexes. Wings hyaline; forewing costal vein yellowish, subcostal vein light brown. Fore- and midfemora red except black dorsally, apical quarter or third all red; hindfemur all red except black basodorsally in some specimens. Tibiae and tarsi red. Gaster red. Terga I-V silvery fasciate apically.

ㅇ.- Clypeus (Fig. 398a): bevel longer than basomedian area; lip free margin arcuate, emarginate mesally, neither incised nor sinuous laterally. Width of postocellar area $0.8-0.9 \times$ length. Dorsal length of flagellomere I $2.8-3.0 \times$ apical width. Base of forefemoral venter with punctures varying from about one to many diameters apart. Dorsal foretibial surface with three or four spines; outer margin with two spines. Forebasitarsus with $8-10$ rake spines. Apical depression of tergum V closely punctate and setose throughout. Length $8.0-10.0 \mathrm{~mm}$.
0°.- Mandible: trimmal carina with low tooth, without cleft. Clypeus (Fig. 398b): bevel longer than basomedian area; lip free margin arcuate; corners rounded, about equidistant from each other and respective orbit. Width of postocellar area $1.0 \times$ length. Dorsal length of flagellomere I 2.0-2.2 \times apical width. Forefemoral notch smaller than average for the genus (Fig. 398d), unsculptured, glabrous. Outer margin of forebasitarsus with five rake spines; outer apical spine of foretarsomere II markedly longer than tarsomere III. Hindfemoral venter with inner (= posterior) margin sharp in distal half. Sterna III-VI (except laterally) each with subbasal, erect fringe of agglutinated setae, although fringe is ill developed on sternum III (fringes visible only when segments are fully extended). Sternum VIII broadly emarginate apically. Length $6.0-8.8 \mathrm{~mm}$. Volsella and penis valve: Fig. 399.

Floral records.- The female from SE Büllsport was collected on flowers of Limeum sulcatum (Klotsch) Hutch. (Molluginaceae), as recorded by F.W. and S.K. Gess, the collectors.

Geographic distribution (Fig. 397).Namibia.

Records.- Holotype: io NAMIBIA:
Karibib District: 65 km SW Usakos, 1 Mar 1990, WJP (CAS). Paratypes: NAMIBIA: Karasburg District: 30 km E Karasburg, 12 Mar 1997, FSG

Figure 399. Tachysphex ulothrix Pulawski, sp. nov.: volsella and penis valve.
(1 ه̛, AMG). Karibib District: 15 km W Karibib, 28 Feb 1990, WJP (1 \uparrow); 97 km from Swakompund on road
 1 Mar 1990, MS (1 ㅇ, 1 ơ $^{\prime} ; 2$ 우, MS), WJP (1 우). Maltahöhe District: SE Büllsport 4 km from road C14 on D854, 11 Mar 2000, FSG (1 \& , AMG). Swakopmund District: Gobabeb, 13 Feb 1979, Wharton (1 ơ, PPRI); Gobabeb, Kuiseb River bed, 27 Jan 1978, O. Lomholdt (1 ơ, ZMUC); same data but 30 Jan 1978
 Homeb in Namib National Park, 23 Jan 1988, R. Miller and L. Stange (1 \&, $4 \sigma^{\circ}$, FSCA); N Homeb at $23^{\circ} 38^{\prime}$ S $15^{\circ} 13^{\prime} \mathrm{E}, 14$ Mar 1983, CDE (3 ㅇ, PPRI); Kuiseb River near Gobabeb, 18 Feb-20 Mar 1983, National Collection Kuiseb Survey (8 ㅇ, 5 o *, PPRI); Mirabeb, 16 Mar 1983, CDE (1 o *, PPRI); Mirabeb 40 km ENE

 $4 \sigma^{*}$), and $9 \operatorname{Dec} 1996$ (1 ㅇ, $3 \sigma^{\text {or }}$).

Tachysphex usakos Pulawski, sp. nov.

Figures 400, 401.
Derivation of name.- Usakos, a locality in Namibia near which many specimens were collected; a noun in apposition to the generic name.

Recognition.- Like several other Tachysphex, usakos combines a convex labrum (protruding beyond the clypeal free margin) and an elongate galea (length about 0.7 of scape) with a ridged propodeal side (only anteriorly so in some specimens), oblong upper metapleural pit, the propodeal dorsum all setose, with setae diverging anterad from the midline, and the cephalic and thoracic setae all straight (appressed on postocellar area).

The female of usakos is similar to aethiopicus. See that species for recognition characters (p. 83).

The male has a broad clypeal lobe (distance between lobe corners $1.1-1.4 \times$ distance between a corner and orbit), and an emarginate forefemur. Unlike aethiopicus and ruber, sterna have no setal fringes, but this character can be seen only when the gastral segments are fully extended. Also, the apicolateral corners of foretarsomeres I and II are not expanded (slightly expanded in aethiopicus, see Fig. 9d), the forefemoral notch is asetose, and gastral segments IV-VII are black (in ruber, the forefemoral notch is setose and the gaster all or partly red in most specimens).

Description.- Labrum convex, markedly protruding from beneath clypeus. Galea aciculate, sparsely punctate, as long as 0.7 of scape. Scutal punctures well defined, mostly about one diameter apart, but averaging up to about 2-3 diameters apart on disk in some females. Mesopleural punctures minute, superficial, mostly about one diameter apart (several diameters apart in some specimens). Propodeal dorsum uniformly microsculptured or with longitudinal ridges at very base; side ridged; upper metapleural pit oblong. Hindcoxal dorsum with inner margin carinate basally, carina not expanded.

Setae appressed on postocellar area and scutum; nearly erect, about one midocellar diameter long on each side of oral fossa next to occipital carina; diverging obliquely anterad from midline on propodeal dorsum, but pointing laterad on sides; practically appressed on midfemoral venter.

Head and thorax black, but mandible (except apically), clypeal bevel and lip, and labrum reddish or (some males) yellowish; pronotal lobe yellowish posteriorly in most males. Frontal setae silvery in both sexes. Wing membrane almost hyaline; forewing costal vein light brown, subcostal vein dark brown. Femora black except red apically, largely red in some males. Tibiae and tarsi red. Gaster segments I-III red (I and II in single male from Bismarck River), remainder black. Terga I-IV in female, I-III to I-V in male, silvery fasciate apically.

ㅇ.- Clypeus (Fig. 400a): bevel slightly longer (most specimens) to slightly shorter than basomedian area; lip minimally arcuate, emarginate or not mesally, not sinuous laterally. Width of post-

Figure 400. Tachysphex usakos Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d - penis valve.
ocellar area 1.2-1.3 \times length. Dorsal length of flagellomere I $2.8-3.2 \times$ apical width. Dorsal foretibial surface with two spines; outer surface with two spines, microsetae sparser than on remaining surface. Forebasitarsus with 6-8 rake spines. Foretarsomeres I-III slightly expanded apicolaterally over bases of rake spines (as in Fig. 9c). Apical depression of tergum V with sparse, minute punctures and inconspicuous setae. Pygidial plate unsculptured, shiny, except for tiny punctures that average many diameters apart (less than that near margins). Length $8.0-9.0 \mathrm{~mm}$.
o^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 400b): bevel shorter than basomedian area, nearly reduced in some specimens, varying from nearly unsculptured between punctures to conspicuously microsculptured; lip free margin slightly arcuate to straight, with well-defined corner; distance between corners about 1.1-1.4 \times distance between corner and orbit. Width of postocellar area $1.2-1.4 \times$ length. Dorsal length of flagellomere I 1.6-1.8 \times apical width. Forefemoral notch microsculptured, asetose. Outer margin of forebasitarsus with five or six rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Sterna without setal fringes. Sternum VIII shallowly emarginate apically. Length $6.1-8.2 \mathrm{~mm}$. Volsella and penis valve: Figs. 400c, d.

Geographic distribution (Fig. 401).— Namibia.
Records- Holotype: ơ, NAMIBIA: Karibib District: 50 km SW Usakos, 21 Feb 1990, WJP (1 \&, CAS). Paratypes: NAMIBIA: Karibib District: 15 km W Karibib, 26 Feb 1990, WJP (1 \&); 50 km SW

Usakos, 21 Feb 1990, MS (8 ㅇ, MS), WJP (2 ํ); 55 km SW Usakos, 25 Feb 1990, MS (1 ơ; 2 ở, $^{\text {Th }}$ MS); same locality but 1 Mar 1990, MS (7 ¢, MS),

 locality but 1 Mar 1990, MS (1 ${ }^{\circ}$, MS), WJP ($1+$ 1 ơ *. Windhoek District: Bismarck River 30 km E Windhoek, 4 Feb 1990, WJP (1 ${ }^{*}$).

Tachysphex vanrhynsi Arnold

Figures 402-404.
Tachysphex vanrhynsi Arnold, 1940:120, ơ. Holotype: 0^{7}, South Africa: Western Cape Province: Vanrhynsdorp (TMP), examined.Bohart and Menke, 1976:277 (listed); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).

Recognition.- Tachysphex vanrhynsi

Figure 401. Collecting localities of Tachysphex usakos and venator.
has a flat labrum, galea shorter than wide in lateral view, crossvein cu-a of the hindwing vertical, and tarsi unmodified (i.e., length of tarsomeres II more than twice apical width, length of tarsomeres IV more than apical width, and tarsomeres V without spines on venter or lateral margins). Unlike most species with this combination of characters, vanrhynsi has an all black gaster, without silvery tergal fasciae, the femora and tibia all black, setae erect or inclined posterad on the propodeal dorsum, the male foretarsus with a conspicuous rake, and male sterna II-VI each with an impunctate apical depression. Tachysphex crassipes, mesembrius, and punctatiformis are similar, but in contrast with these species the setae of vanrhynsi are straight rather than sinuous (at most slightly angled apically) on the postocellar area, lower gena, thorax, and midfemoral venter (scutal setae, near distal end of admedian line, about equal to midocellar diameter in female, up to about 1.5 midocellar diameter in male). Subsidiary recognition features of vanrhynsi are: mesopleuron dull, conspicuously microsculptured, impunctate or with punctures that range from small to evanescent; clypeal lip of female with median emargination and two lateral incisions on each side; and distance between clypeal lip corners, in the male, equal to $0.8-1.1$ of distance between corner and adjacent orbit.

Description.- Scutal punctures well defined, averaging several diameters apart on disk in female and most males, about one diameter apart in some males; interspaces shiny, unsculptured or nearly so. Mesopleuron dull, conspicuously microsculptured, with punctures that range from small to evanescent (several to many diameters apart at center), impunctate in some specimens. Propodeal dorsum longitudinally ridged (ridges irregular in most specimens); side with well-defined ridges.

Setae straight or slightly angled apically; suberect on each side of oral fossa next to occipital carina; erect on postocellar area and mesopleuron; suberect, inclined posterad on scutum and propodeal dorsum; appressed on midfemoral venter (setal length about $0.3 \times$ basal mandibular width on postocellar area and near to occipital carina; scutal setae, near distal end on admedian line, about equal to midocellar diameter in female, up to about $1.5 \times$ midocellar diameter in male).

Body black including legs except mandible dark red at about two thirds of length and tarsal apex brown. Frontal setae silvery in female, varying from golden to silvery in male. Wing membrane infumate, subcostal vein of forewing dark brown, costal vein black. Terga without silvery, apical fasciae.

Figure 402. Tachysphex vanrhynsi Arnold: a - female clypeus and mandible; b - male clypeus and mandible.
ㅇ.- Clypeus (Fig. 402a): bevel longer than basomedian area; lip free margin arcuate, emarginate mesally, with two lateral incisions on each side. Width of postocellar area about $1.0 \times$ length. Dorsal length of flagellomere I 2.2-2.3 \times apical width. Forecoxa with small apicomedian process. Forefemoral posteroventral face sparsely punctate in apical half (punctures up to several diameters apart). Dorsal foretibial surface with two or three spines; outer surface with narrow, unsculptured zone and one or two spines. Forebasitarsus with 6-8 rake spines. Apical depression of tergum V mesally unsculptured and glabrous. Pygidial plate: punctures averaging several diameters apart, interspaces practically unsculptured. Length $8.4-10.6 \mathrm{~mm}$.
o^{7}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 402b): bevel ill defined, about as long as basomedian area; lip free margin arcuate or sinuate, with well-defined but nonprominent corner; distance between corners about $0.8-1.1 \times$ that between corner and orbit. Width of postocellar area 1.0-1.1 \times length. Dorsal length of flagellomere I 1.7-2.0 \times apical width. Forefemoral posteroventral surface sparsely punctate in apical half in a specimen from Kraaiwater (punctures many diameters apart). Forefemoral notch microscopically setose. Outer margin of forebasitarsus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Tergum VII, in some specimens, with punctures up to several diameters apart. Sterna III-VI with well-defined punctures that are visibly larger than those on sternum II basally; apical depressions of sterna II-VI contrastingly impunctate, glabrous. Length 7.5-9.0 mm. Volsella and penis valve: Fig. 403.

Prey.- Two females from Richtersveld National Park, South Africa, are each pinned with prey, a nymphal lithidiine acridid, Eneremius sp., about 10 mm long (det. F.W. Gess).

Figure 403. Tachysphex vanrhynsi Arnold: volsella and penis valve.

Collecting period.- August through October.
Geographic distribution (Fig. 404).- Western Cape and Northern Cape provinces of South Africa.

Records- SOUTH AFRICA: Northern Cape Province: Bowesdorp about 6-7 km N Kamieskroon
at $30^{\circ} 09^{\prime} \mathrm{S} 17^{\circ} 56^{\prime} \mathrm{E}(2 \quad \circ, \mathrm{SAM})$, Colesberg ($1 \stackrel{\circ}{+}$, SAM), Dassiefontein Farm 14 road km E Kamieskroon (2 ㄷ, 3 o $^{*} ; 1$ ㅇ, PPRI), 5 km S Doringbos at $32^{\circ} 01^{\prime} \mathrm{S} 19^{\circ} 13^{\prime} \mathrm{E}$ (1 우), Doringrivier N Nieuwoudtville at $31^{\circ} 18^{\prime} \mathrm{S} 19^{\circ} 07^{\prime} \mathrm{E}$ (2°, PPRI), Garies (4 ㅇ, 2 ơ', AEI), Goegap Nature Reserve $^{\circ}$ (5 ㅇ, 15 o $^{\circ}$, AMG), Goegap: Kraaiwater at $29^{\circ} 38^{\prime} \mathrm{S}$ $18^{\circ} 00^{\prime} \mathrm{E}$ ($1 \delta^{*} ; 1$ ㅇ, AMG), Goegap windmill (3 o°, AMG), Groenkloof 7.5 km SE Leliefontein which is $30^{\circ} 19^{\prime} \mathrm{S} 18^{\circ} 05^{\prime} \mathrm{E}$ (3 +q , AMG), Grootvlei Pass 16 km W Kamieskroon (1 σ^{*}, AMG), Kamiesberg: Bakleikraal at $30^{\circ} 13^{\prime} \mathrm{S} 18^{\circ} 03^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\prime}$, AMG), Kamieskroon (2 σ°, AMG), Klipfontein at $21^{\circ} 51^{\prime}$ S $17^{\circ} 47^{\prime} \mathrm{E}(1 \mathrm{f}, \mathrm{AMG}), 5 \mathrm{~km}$ from Leliefontein on road to Groenkloof ($1 \sigma^{\prime}, \mathrm{AMG}$), Mesklip at $29^{\circ} 48^{\prime} \mathrm{S}$ $17^{\circ} 52^{\prime} \mathrm{E}(1 \quad \circ ; 1$ 우, AMG), Nababeep (2 ㅇ, AMG), Nariep (1 ㅇ, AMG), Nieuwoudtville: Flower Reserve East at $31^{\circ} 21^{\prime} 56^{\prime \prime} \mathrm{S} 19^{\circ} 08^{\prime} 52^{\prime \prime} \mathrm{E}(1 \circ$ ㅇ 1 ㅇ, $2 \delta^{*}, \mathrm{OHL}$), near Nieuwoudtville ($1 \delta^{*}, \mathrm{OHL}$), Nieuwoudtville Botanical Gardens at $31^{\circ} 22^{\prime} \mathrm{S}$

Figure 404. Collecting localities of Tachysphex vanrhynsi and vestitus.
 Richtersveld National Park: Koeroegabvlakte at $28^{\circ} 11^{\prime} \mathrm{S} 17^{\circ} 03^{\prime} \mathrm{E}\left(3 \circ 9,4 \sigma^{\circ}\right.$, AMG) and 1.5 km from Helskloof Gate at $28^{\circ} 18^{\prime}$ S $16^{\circ} 57^{\prime} \mathrm{E}\left(1 \sigma^{\circ}, \mathrm{AMG}\right)$, Sors Sors 9 km NE Kamieskroon (2 + , AMG), Springbok (10^{7}, AEI), Taaiboskraal to Anegas at $30^{\circ} 07^{\prime} \mathrm{S} 18^{\circ} 01^{\prime} \mathrm{E}\left(1+9,10^{\circ}\right.$, AMG). Western Cape Province: Biedouw Valley at $32^{\circ} 08^{\prime} \mathrm{S} 19^{\circ} 14^{\prime} \mathrm{E}\left(20^{\circ}, \mathrm{PPRI}\right)$, Blackheath at $33^{\circ} 58^{\prime} \mathrm{S} 18^{\circ} 41^{\prime} \mathrm{E}(2 \circ$, SAM), Cape (1 우, BMNH, ex coll. F. Smith), Cape of Good Hope Nature Reserve: Olifantsbos at $34^{\circ} 16^{\prime} \mathrm{S} 18^{\circ} 23^{\prime} \mathrm{E}\left(10^{\prime} ; 1 \stackrel{\circ}{\circ}\right.$, SAM), 60 km N

 Clanwilliam Dam (eastern bank): Caleta Cove at $32^{\circ} 13^{\prime} \mathrm{S} 18^{\circ} 57^{\prime} \mathrm{E}$ ($1 \stackrel{\circ}{ }$, AMG), 5 km N Clanwilliam at
 Bokkeveld in Ceres District ($1 \mathrm{o}^{\star}, \mathrm{SAM}$), Die Bos road 30 mi E Clanwilliam ($1 \stackrel{\circ}{+}, \mathrm{KU}$), Graafwater ($1 \stackrel{\circ}{\circ}$;
 Vanrhynsdorp at $31^{\circ} 07^{\prime} 04^{\prime \prime} \mathrm{S} 18^{\circ} 55^{\prime} 18^{\prime \prime} \mathrm{E}$ (1 $\circ ; 2$ ㅇ, OHL), Knersvlakte: railroad station at $31^{\circ} 34^{\prime} 47^{\prime \prime} \mathrm{S}$

 Stellenbosch (2 +), Vanrhynsdorp (2 \& , 3 ơ $^{\circ}$, TMP, including holotype of vanrhynsi), Vanrhyns Pass at $31^{\circ} 22^{\prime} \mathrm{S}$ $19^{\circ} 01^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\star}, \mathrm{PPRI}\right), 20 \mathrm{~km}$ E Velddrif ($\left.1 \mathrm{o}^{\star}, \mathrm{AMNH}\right)$, Yzerfontein (2 \circ, UCD).

Tachysphex venator Arnold

Figures 401, 405.
Tachysphex venator Arnold, 1960a:468, ㄷ. . Holotype: 우, Northern Rhodesia: Abercorn, now Zambia: Mbala (SAM), examined.- Bohart and Menke, 1976:277 (listed).

Recognition.- The female of venator, known only from northern Zambia (the male is unknown), has tarsomeres IV wider than long, with the dorsoapical margin very broadly emarginate (almost straight), apicoventral margins of tarsomeres III and IV projecting or at least convex mesally, tarsomeres V angulate basoventrally, each with a central cluster of small spines on the venter and the apicoventral margin produced into a lobe, and on each leg one claw smaller than the other. It resembles the South African argentifrons in having sparsely setose fore- and midfemoral posteroventral surfaces (setigerous punctures many diameters apart). Unlike that species, the clypeal lip of venator has only one, shallow lateral emargination on each side (Fig. 405), the length of fla-
gellomere I is about $2.25 \times$ apical width (about $0.85 \times$ length of II), the midtrochanteral venter is impunctate, and sternum I has a longitudinal carina that bisects the apical depression. In argentifrons, the clypeal lip has two lateral incisions on each side (incisions may be lost in worn specimens), the length of flagellomere I is $1.4-1.6 \times$ apical width (about $0.6 \times$ length of II), the midtrochanteral venter is punctate, and the apical depression of sternum I is not bisected by a carina.

Description (female only).- Clypeus with obtuse, short carina that emerges from each lip corner. Scutal punctures about 1-2 diameters apart (less than that along margins); interspaces shiny. Mesopleural punctures well defined, about 2-3 diameters at center; interspaces shiny. Propodeal dorsum irregularly ridged longitudinally; side ridged. Hindcoxal dorsum with inner margin carinate basally. Sternum I with longitudinal carina that bisects apical depression.

Setae nearly appressed on postocellar area, suberect on scutum and on each side of oral fossa next to occipital carina (setal length about one midocellar diameter); oriented uniformly posterad on propodeal dorsum.

Head and thorax black, mandible reddish mesally. Frontal setae silvery. Wing membrane slightly infumate; costal and subcostal veins of forewing brown. Femora black; tibiae black, but foretibial inner surface yellowish brown in holotype; tarsal apex brown. Gaster black. Terga I-IV silvery fasciate apically, but fascia broadly interrupted on tergum IV.

ㅇ.-Labrum emarginate. Clypeus (Fig. 405): bevel markedly longer than basomedian area; lip free margin arcuate, shallowly emarginate laterally. Width of postocellar area $1.0 \times$ length. Dorsal length of flagellomere I about $2.25 \times$ apical width. Scutum and scutellum slightly flattened. Midtrochanteral venter impunctate, shiny. Forefemoral venter and midfemoral posteroventral surface with punctures that are many diameters apart, interspaces practically unsculptured. Dorsal foretibial surface with several minute, inconspicuous, suberect bristles; outer surface impunctate, glabrous, with several fine bristles. Forebasitarsus with eight rake spines, apical three with contiguous sockets. Tarsomeres III with apicoventral margin arcuate. Length of fore-, mid-, and hindtarsomeres IV about $0.75,0.8$, and $0.8 \times$ apical width, respectively; dorsoapical emargination broadly obtuse (almost straight), apicoventral margin obtusely prominent; outer margin of foretarsomere IV about 0.5 length of inner margin. Tarsomeres V angulate basoventrally, with central cluster of small spines on venter; lateral margin with row of small spines subbasally; apicoventral margin produced into lobe (as in Figs. 34a, b); outer claw in each pair shorter and thinner than inner claw (opposite on foretarsus). Apical depression of tergum V impunctate, glabrous. Pygidial plate with punctures averaging several diameters apart; interspaces unsculptured. Length 7.5 mm .
0^{7}.- Unknown.
Collecting period: 10 March, 7 July (holotype).
Geographic distribution (Fig. 401).- Known from two localities in Zambia.
Records- ZAMBIA: Northern Province: Mbala ($1 \stackrel{\circ}{ }$, SAM, holotype of venator). Southern Province: 25 km E Kalomo (1 \quad)).

Tachysphex vestitus Kohl

Figures 404, 406-408.
Tachysphex vestitus Kohl, 1892:217, σ^{\star}. Holotype or one syntype: σ^{\star}, Algeria: Biskra (NHMW), here designated as lectotype, examined.- Dalla Torre, 1897:686 (in catalog of world Hymenoptera); Morice, 1911:104 (Algeria, description of +); nec Maidl, 1926:236 (= Tachysphex micans); de Beaumont, 1940:173 (in revision of Egyptian Tachysphex); Honoré, 1942:55 (in checklist of Egyptian Sphecidae); de Beaumont, 1947a:191 (in revision of Egyptian Tachysphex), 1950a:405 (Algeria), 1950b:20 (Egypt), 1955:182 (Morocco), 1956a:198 (Libya), 1958:61 (Algeria), 1960b:239 (Libya); Pulawski, 1964:95 (Egypt), 1971:382 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:12 (Israel); Bohart and Menke, 1976:277 (listed); Dollfuss, 1989:13 (type material in NHMW); Roche and Zalat, 1994:115 (Egypt: Sinai Peninsula).

Recognition.- Tachysphex vestitus is characterized by a convex frons (Figs. 406c-e), membraneous galea, all or partly red femora, mesopleural vestiture completely hiding the integument in fresh specimens; in addition, the gaster is all red in the vast majority of specimens.

In the female, the clypeal bevel is absent, the clypeus being closely punctate from frontoclypeal surface to lip base (Fig. 406a), and the pygidial plate is broadly rounded apically, unsculptured and shiny anteriorly but microscopically (mainly longitudinally) ridged in the posterior half or third (Figs. 407b, c).

The male is further characterized by a largely impunctate tergum VII (punctate near hindmargin only), impunctate and asetose sterna II-VI (except sterna II and III punctate laterally), and outer margin of forebasitarsus with five or six rake spines. Other species are similar, but in vestitus the free margin of the clypeal lobe is nearly straight, slightly arcuate, or has a small median projection (Fig. 406b). Tachysphex deserticola has a similar clypeus, but in vestitus the forefemoral notch is deeper (Fig. 406f), margined both anteriorly and posteriorly, covered with erect microsetae, and the tibiae are closely, uniformly micropunctate and setose. In deserticola, the forefemoral notch is shallower, not margined, glabrous, and each tibia has a sparsely punctate, sparsely setose, shiny zone (outer surface of the foretibia, dorsal surface of mid- and hindtibia).

Description.- Galea membranous. Frons markedly convex (Figs. 406c-e); supraantennal swellings punctate, concealed by vestiture. Gena narrow as seen from above (Figs. 406c, d). Propleuron all or largely unsculptured. Scutal punctures minute, uniform, almost contiguous. Mesopleuron uniformly microsculptured. Punctures of mesothoracic venter less than one diameter apart in female, several to many diameters apart in most males, about one diameter apart in some. Propodeal dorsum and side dull, uniformly microsculptured; posterior surface, in dorsal third or so, with wide median impression. Forewing longer in distal half than in other species (Fig. 408a) except deserticola. Hindcoxal dorsum with inner margin obtusely carinate basally, carina not expanded. Sternum I with ill-defined median carina.

Setae appressed or nearly so, in fresh specimens entirely concealing integument on frons, clypeus (except on lip anteriorly), mesopleuron, propodeal side, and hindfemoral outer surface (Fig. 407a); largely concealing integument of tergum I; suberect on each side of oral fossa next to occipital carina, about $0.4 \times$ basal mandibular width. Setae of propodeal dorsum forming an ill-defined, varying pattern: median setae oriented mostly anterad, adlateral setae directed posterolaterad and joining apicomesally, and lateral setae pointing laterad. Propleuron and sternum I, in most specimens, all or largely asetose.

Head and thorax black, mandible yellowish red (except apically), clypeal lobe reddish near free margin; basal flagellomeres brown or reddish in some specimens, pronotal lobe yellowish brown. Frontal setae silvery in females and most males, golden dorsally in some males. Wings hyaline; forewing costal and subcostal veins light brown. Femora all red or fore- and midfemora (except api-

Figure 406. Tachysphex vestitus Kohl: a - female clypeus and mandible ($\times 44$); b - male clypeus and mandible $(\times 72)$; $\mathrm{c}-\mathrm{female}$ head in dorsal view $(\times 24)$; $\mathrm{d}-$ male head in dorsal view $(\times 34)$; e - male head in lateral view $(\times 35)$; $\mathrm{f}-\mathrm{base}$ of male forefemur showing notch $(\times 59)$.
cally) and hindfemur basally black; tibiae and tarsi red. Gaster all red in the vast majority of specimens, but segments II-V largely darkened in a \circ from Katamia, Egypt. Terga I-IV in female, I-V in male, silvery fasciate apically.

Figure 407. Tachysphex vestitus Kohl: a - female forefemur ($\times 51$); b - pygidial plate of female in dorsal view ($\times 107$); $\mathrm{c}-$ pygidial plate of female in lateral oblique view ($\times 107$).

ㅇ.- Clypeus (Fig. 406a): middle clypeal section flat, closely punctate from frontoclypeal suture to lip base (bevel absent); lip free margin arcuate, not incised laterally. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I 2.4-2.9 \times apical width. Midtrochanteral venter impunctate, glabrous. Forefemoral punctures several diameters apart basoventrally. Dorsal foretibial surface with two spines; outer surface with one spine near midlength or with two spines. Forebasitarsus with 6-8 rake spines. Venter of apical tarsomeres, in most specimens, with median, subbasal spine. Apical depression of tergum V broad, unsculptured. Pygidial plate unsculptured and shiny anteriorly, microscopically (mainly longitudinally) ridged in posterior half or third (Figs. 407b, c). Length $7.5-10.0 \mathrm{~mm}$.
0^{\top}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 406b): middle clypeal
section flat, closely punctate from frontoclypeal suture to lip base (bevel absent); lip free margin almost straight or minimally pointed mesally, corner well defined but not prominent; distance between corners about $0.6 \times$ distance between corner and orbit. Width of postocellar area 0.9-1.0 \times length. Dorsal length of flagellomere I $1.9-2.7 \times$ apical width. Trochanteral venters impunctate, glabrous. Forefemoral notch margined both anteriorly and posteriorly, with erect, sparse microsetae (Fig. 406f). Outer margin of forebasitarsus with five or six rake spines; outer apical spine of foretarsomere II markedly longer than tarsomere III. Tergum VII impunctate except along hindmargin. Sterna II-VI impunctate, asetose (except for usual erect setae bordering apical depressions and for appressed setae on sternum II laterally and sternum III anterolaterally). Length $5.5-8.0 \mathrm{~mm}$. Volsella and penis valve: Figs. 408b, c.

Figure 408. Tachysphex vestitus Kohl: a - forewing; b - volsella; c - penis valve.
Walking behavior.- Like argenticeps, and unlike the other Tachysphex, both females and males walk in straight or circular patterns, then take short flights, as I observed in Sinai Peninsula in May 1993 and in Oman in December 2003.

Geographic distribution (Fig. 404).- North Africa south to Mali and Sudan, Israel, and Arabian Peninsula.

Records- ALGERIA: Biskra ($1 \stackrel{\circ}{ } ; 1 \delta^{*}$, NHMW, lectotype of vestitus), Laghouat (de Beaumont, 1950a), Oued Ti'n Taradjeli in Tassili des Ajjer (de Beaumont, 1958). EGYPT: Al Fayyum: Karanis (4 \uparrow,
 Kerdasa (de Beaumont, 1940), Saqqara (1 ${ }^{\circ}$), Wadi um Assaad near Abu Rawash (de Beaumont, 1940). Al Minya: Wadi Assiuti (de Beaumont, 1940). Al Qahirah (= Cairo): Al Qassasin (Pulawski, 1971), Katamia area 40 km E Maadi (3 ơ $^{*} ; 1$ ㅇ, MSNT), Maadi (Pulawski, 1971), Suez road (de Beaumont, 1940). Al-Wadi al-Jadid: Bir Dibis near Sudan border ($1 \mathrm{o}^{\boldsymbol{\circ}}$), and Dakhla oasis: Balad (1 ค, ZMAN), Ezeb el Kossr (1 ค, ZMAN), and Mut (4 ค, ZMAN). As Suways (= Suez): 13-22 km N Ain Sokhna (Pulawski, 1971), 18-25 km W Suez (Pulawski, 1971). Aswan: Aswan, west bank ($1+1 \delta^{\circ}$). Matruh: NW Bahariya oasis at $29^{\circ} 14^{\prime} 10^{\prime \prime} \mathrm{N}$ $28^{\circ} 53^{\prime} 56^{\prime \prime} \mathrm{E}\left(2 \stackrel{\circ}{ }\right.$, 1 ठ $^{\circ}$, AMNH), El Arig in Siwa oasis (de Beaumont, 1950b). Sawhaj: 4 km W Abydos (60°).

 (de Beaumont, Bytinski-Salz, and Pulawski, 1973, or as indicated): 32 km SE Beersheba $=5 \mathrm{~km}$ E Yeroham ($1 \sigma^{\hbar}$, CSE), Mamshit, Mazad Aqrabbim 45 km SE Beersheba ($1 \mathrm{o}^{2}$, CSE), Revivim 20 km SW Beersheba (Pulawski, 1971), Yeroham. LIBYA: Cyrenaica: Tmimi (de Beaumont, 1960b). Tripolitania: Bir el Hamra (de Beaumont, 1956a), Giosc (de Beaumont, 1960b). MALI: Anefis (1 ㅇ, KMG). MAURITANIA: 25 km SW Moudjéria (1 \&). MOROCCO (de Beaumont, 1955, or as indicated): Agadir, Boumalne between Ksar es Souk and Ouarzazate ($1 \sigma^{\circ}$), Ksar es Souk, Tinerhir. OMAN: 253 km S Nizwa at $20^{\circ} 43.3^{\prime} \mathrm{N} 57^{\circ} 04.4^{\prime} \mathrm{E}(29$, $1 \circ^{\circ}$). SUDAN: Wadi Ain el Brins in Gebel 'Uweinat at $21^{\circ} 50^{\prime} \mathrm{N} 25^{\circ} 05^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$), Wadi Halfa (1 \& $)$.

Tachysphex vulneratus R. Turner

Figures 409-411.
Tachysphex vulneratus R. Turner, 1917a:325, ㅇ, ${ }^{\circ}$. Lectotype: ㅇ, Zambia: Nyamadzi River near Nawalia [N Sinda] (BMNH), designated by Pulawski, 1975:312, examined in 1974.- Arnold, 1923:155 (in revision of southern African Tachysphex), 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:277 (listed); Krombein and Pulawski, 1994:88 (in revision of Sri Lankan Tachysphex); Pretorius, 2005:116 (use of geometric morphometrics to determine sexual dimorphism in wing venation).
Tachysphex karrooensis Arnold, 1923:158, ㄷ, $\boldsymbol{o}^{\boldsymbol{\gamma}}$. Lectotype: 우, South Africa: Eastern Cape Province: Willowmore (SAM), designated by Pulawski in Krombein and Pulawski, 1994:88, examined. Synonymized with Tachysphex vulneratus by Pulawski in Krombein and Pulawski, 1994:88.- Arnold, 1930:3 (in checklist of Afrotropical Sphecidae); Bohart and Menke, 1976:274 (listed); Gess, 1981:19 (South Africa, nesting in friable soils).
Tachysphex foucauldi de Beaumont, 1952c:190, ơ. Holotype: đ̛, Algeria: Hoggar: Tinhamour (LAUSANNE), examined before 1971. Synonymized with Tachysphex vulneratus by Pulawski in Krombein and Pulawski, 1994:88.- de Beaumont, 1956a:197 (Chad, description of 9); Pulawski, 1971:379 (in revision of Palearctic Tachysphex).- As Tachysphex vulneratus foucauldi: Pulawski, 1975:312 (new status); Bohart and Menke, 1976:277 (listed).
As Tachytes fluctuata (part): Magretti, 1884:587 (Eritrea), present correction.
Recognition.- The female of vulneratus has a distinctive pygidial plate that is somewhat constricted preapically, broad apically, sparsely punctate and shiny between punctures anteriorly, and in most specimens contrastingly microsculptured and dull posteriorly (Figs. 409c, 410a). In addition, the gaster is black (apex red in many specimens) whereas the tibiae and tarsi are contrastingly red, and in the vast majority of specimens the clypeal lip has two pairs of lateral incisions (Fig. 409a).

The male of vulneratus has a deeply emarginate inner mandibular margin (just distad of tooth), caused by the reduction of the trimmal carina (Fig. 409b). This feature is shared by two sub-Saharan (erectus, mkomazi) and the following extralimital species: cubanus Pulawski (Cuba, Jamaica), denisi de Beaumont (western Mediterranean), discrepans Turner (Australia), dominicanus Pulawski (Cuba, Hispaniola), haematopus (Sri Lanka), and paiute Pulawski (California, Baja California). In vulneratus, however, the foretarsal rake is well developed and sterna IV-VI are largely impunctate and glabrous. In the other species, the foretarsus has no rake (except paiute) and sterna are densely punctate and setose throughout.

Males of vulneratus in which the mandibles are closed can be recognized by the following combination: sterna IV-VI largely impunctate and glabrous, hindwing crossvein cu-a vertical or with anal end closer to wing base than cubital end, forefemoral notch of average size, outer margin of forebasitarsus with 4-7 rake spines, free margin of clypeal lobe evenly arcuate, thoracic setae all straight or curved but not sinuous, gaster all black or red apically, and legs largely red.

Description.- Scutum punctate, punctures well defined, on disk averaging from less than one to about two or three diameters apart, compressed against each other in many Tanzanian specimens (integument thus appearing areolate). Mesopleuron varying: mostly with well-defined punctures that average less than one diameter apart, but punctures compressed against each other in specimens from Ivory Coast, Ghana, Togo, Kenya, and Tanzania (integument thus appearing regularly areolate); integument dull, with shallow, ill-defined punctures in some specimens from other parts of Africa. Propodeal dorsum irregularly longitudinally ridged to rugose, side ridged (ridges absent in smallest specimens). Hindcoxa: inner margin carinate basally. Sternum I with median carina which is well defined apically (carina lacking in some males).

Setae varying on postocellar area and scutum: nearly appressed in most specimens, but erect on postocellar area and nearly so on scutum in individuals from Tanzania, Namibia, Zimbabwe, and

South Africa (about equal to midocellar diameter on postocellar area); erect on each side of oral fossa next to occipital carina, about $0.3 \times$ basal mandibular width; not obscuring integument of mesopleuron; most setae of propodeal dorsum inclined anterad, but lateral setae inclined posterad and joining apicomesally.

Head and thorax black, but mandible yellowish red mesally and pronotal lobe in many specimens brown posteriorly. Frontal and clypeal vestiture silvery in female, golden in male. Wings hyaline; costal vein of forewing light brown, subcostal vein dark brown. Femora varying from red (except forefemur black basally) to black (except femoral apex red); tibiae and tarsi red. Gaster red apically in most specimens, but all black in specimens from Asia, Burkina Faso, Chad, and in some specimens from Namibia and South Africa. Terga I-IV fasciate apically in most specimens (also tergum V in many males), but only terga I-III fasciate in many southern African specimens.

ㅇ.- Clypeus (Fig. 409a): bevel longer or shorter than basomedian area; lip sinuate or arcuate, mostly with two lateral incisions on each side, but evenly arcuate (not incised) in single female from Table Mountain, South Africa. Width of postocellar area $0.7-0.8 \times$ length. Dorsal length of flagellomere I 2.4-2.7× apical width; apical flagellomeres flattened laterally, their inner and outer surfaces differently sculptured. Forefemoral venter, in most specimens, with punctures that are 1-2 diameters apart (several diameters apart in females from Burkina Faso and Chad, many diameters apart in females from Ivory Coast). Foretibia densely, uniformly punctate and setose throughout or (females from Burkina Faso and Chad, some from South Africa) outer surface glabrous; dorsal surface with two or three spines; outer surface with two or three spines. Forebasitarsus with nine or ten

Figure 409. Tachysphex vulneratus R. Turner: a - female clypeus and mandible ($\times 48$); b-male clypeus and mandible ($\times 48$); c - pygidial plate of female in lateral oblique view ($\times 240$).
rake spines. Venter of apical tarsomeres with one preapical spine and a few basal spines. Tergum V sparsely (most specimens) to densely punctate except apical depression unsculptured. Pygidial plate broad, somewhat constricted preapically, with broadly rounded apex, mostly unsculptured except sparsely punctate, constricted portion evenly alutaceous, impunctate (Figs. 409c, 410a), but microsculpture evanescent in some specimens; inner surface without transverse carina. Length $8.5-10.5 \mathrm{~mm}$.
δ^{7}.- Mandible: trimmal carina with large subbasal tooth, reduced distad of tooth, thus inner mandibular margin with conspicuous, round emargination (Fig. 409b). Clypeus (Fig. 409b): bevel shorter than basomedian area in most specimens, as long as basomedian area in some; lip free margin arcuate, with well-defined corner; distance between corners 1.2-1.3 \times distance between corner and orbit. Width of postocellar area $0.5-0.7 \times$ length. Dorsal length of flagellomere I variable: 2.0 \times apical width in Thai, $1.2-1.7 \times$ in Indian, $1.7-1.9 \times$ in West African and Kenyan, and 1.5-1.9 in South African specimens. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with 4-7 rake spines (some may be shorter than basitarsus width); outer apical spine of foretarsomere II longer than foretarsomere III. Apical tarsomeres without ventral or lateral spines or (some specimens) with one preapical spine on venter. Punctures of tergum VII several diameters apart basomedially. Sterna IV-VI largely impunctate and asetose (also apical depressions of sterna II and III impunctate and asetose). Length $6.1-10.8 \mathrm{~mm}$. Volsella and penis valve: Figs. 410b, c (all volsellar setae spatulate in some individuals).

Figure 410. Tachysphex vulneratus R . Turner: a - pygidial plate of female; b - volsella with outlines showing individual variation of dorsal process; c - penis valve.

Floral records.- The male collected 16 km S of Rosh Pinah, Namibia, was visiting flowers of Indigofera longispina Baker (Papilionaceae), as recorded by F.W. and S.K. Gess, the collectors.

Geographic distribution (Fig. 411).-Africa from Cape of Good Hope to Tropic of Cancer, India to Thailand.

Records.- ALGERIA: Hoggar: Tinhamour ($1 \begin{gathered}\text { or }\end{gathered}$ LAUSANNE, holotype of foucauldi).
 near Bobo Dioulasso. CHAD: Tibesti: Tao (19 , BMNH). ERITREA: Khor Cheru (2 ㅇ, GENOVA) and Khor Gergabb (1 o, GENOVA), all three determined Tachytes fluctuata by P. Magretti. GHANA: Kawampe 45 km N Kintampo at $8^{\circ} 30^{\prime} \mathrm{N} 1^{\circ} 35^{\prime} \mathrm{W}\left(1 \circ+19 \delta^{\circ}\right), 30 \mathrm{~km}$ S Kintampo (3 σ°), 55 km N Tamale ($1 \delta^{\circ}$), Techiman (18 o°). INDIA: Karnataka: Bangalore ($1 \mathrm{o}^{\circ}$), 10 km N Yelburga (1 f), near Yelburga (l°, ZMUC). Maharashtra: Krishnaghiri Upawan National Park 9-12 air km NNW Bombay International Airport ($6 \sigma^{\circ}$). Rajasthan: Mount Abu (o°). IVORY COAST: Bouaké: Foro-foro (4 \& , UCD), 50 km N Bouaké (l°),

56 km N Niakaramandougou (4 o°), 30 km S Odienné ($3 \mathrm{o}^{\text {o }}$), Sinématiali 23 km W Ferkessedougou ($6 \mathrm{o}^{\mathrm{o}}$), 40 km S Toumodi ($1 \mathrm{o}^{\mathrm{o}}$), 50 km S Yamoussoukro ($1 \delta^{\star}$). KENYA: Coast Province: Malindi ($1 \mathrm{o}^{\circ}, \mathrm{MSNT}$), Muhaka at $4^{\circ} 20^{\prime} \mathrm{S} 39^{\circ} 30^{\prime} \mathrm{E}$ (1 \&) , Voi area (1 ㅇ, 9 ơ, OÖLM). Eastern Province: near Ewaso Ng'iro River opposite Archer's Post (1 1). Rift Valley Province: Lodwar ($1 \circ+2 \circ^{\circ}$). MALAWI: Lingadzi ($1 \circ$, BMNH), Mlanje (1 o, BMNH). NAMIBIA: Bethanie District: Barby Farm 25 mi W Helmeringhausen (2 ơ, BMNH). Karasburg District: Farm Altdorn 3 30 km NE Ai Ais at $27^{\circ} 48^{\prime} 16^{\prime \prime} \mathrm{S} 17^{\circ} 40^{\prime} 02^{\prime \prime} \mathrm{E}\left(10^{\circ}\right.$, CSE). Lüderitz District: E Oranjemund 34 km from checkpoint on road to Sendelingsdrif at $28^{\circ} 24^{\prime} \mathrm{S}$ $16^{\circ} 44^{\prime} \mathrm{E}$ ($1+\frac{9}{}$, 2 ơ, AMG), $^{\circ} 16 \mathrm{~km}$ S Rosh Pinah ($1 \mathrm{o}^{\text {º }}$, AMG). Maltahöhe District: Naukluft at $24.3^{\circ} \mathrm{S} 16.2^{\circ} \mathrm{E}\left[=24^{\circ} 18^{\prime} \mathrm{S} 16^{\circ} 12^{\prime} \mathrm{E}\right.$] ($\left.1 \mathrm{o}^{\circ}, \mathrm{CSE}\right)$. Okahandja District: Waldau River 17 km W Okahandja (2 $\stackrel{\circ}{ }, 10 \mathrm{o}^{\mathrm{o}}$). Otjiwarongo District:

Figure 411. Collecting localities of Tachysphex vulneratus (African localities only). Okosongomingo Farm No. 14950 km ESE

 2 o $^{\circ}, \mathrm{NMN}$), Swakop River mouth ($1 \stackrel{\circ}{ }$, $1 \mathrm{o}^{\circ}$). Walvis Bay District: 11 km E Walvis Bay ($1 \mathrm{o}^{\circ}$). Windhoek
 ($1 \mathrm{o}^{\star}, \mathrm{BMNH}$). SENEGAL: Toubacouta ($10^{\star}, \mathrm{FB} ; 60^{7}$, MSNT). SOUTH AFRICA: Eastern Cape Province: 17 mi S Adelaide ($1 \mathrm{o}^{\boldsymbol{\prime}}$, AMG), Belmont Valley 10 km E Grahamstown at $33^{\circ} 19^{\prime} \mathrm{S} 26^{\circ} 38^{\prime} \mathrm{E}(1 \quad \mathrm{o}$, AMG), Elandsheuwels Farm 40 km W Steytlerville (2 ơ $^{\circ}$, USU), Goodehoop Farm 16 km W Steytlerville ($1 \mathrm{o}^{\circ}$, USU), Graaf-Reinet ($2 \sigma^{\circ}$, AMG; $1 \sigma^{\circ}$, BMNH), Grahamstown: Boskey Dell ($1 \mathrm{o}^{\circ}, \mathrm{AMG}$), 17 mi NW Grahamstown
 SAM), Mountain Zebra National Park at $32^{\circ} 15^{\prime}$ S $25^{\circ} 27^{\prime} \mathrm{E}$ ($1 \mathrm{~d}^{\circ}$), Oudebosch ($1 \circ+$ SAM), Resolution 17 air

 30 km S Steytlerville: Wolwekraal Farm ($1 \mathrm{o}^{7} ; 10 \mathrm{o}^{\text {º }}$, USU), Sundays River (1 ㅇ, TMP), Waaipoort Pass 19 km ENE Steytlerville at $33^{\circ} 14.8^{\prime} \mathrm{S} 24^{\circ} 19.8^{\prime} \mathrm{E}\left(2 \sigma^{\circ}\right)$, Willowmore (1 \&, $1 \circ^{\circ}$, SAM, lectotype and paralectotype of karrooensis; 4 \& , $26 \boldsymbol{o}^{\circ}$, TMP), 9 km E Willowmore (1 \&, $4 \circ^{\circ}$), 43 km NE Willowmore at $33^{\circ} 08.3^{\prime} \mathrm{S}$ $23^{\circ} 50.4^{\prime} \mathrm{E}\left(28^{\circ} ; 1 \circ\right.$, CSE), 37 km NW Willowmore in Grootrivierberg Range at $33^{\circ} 11.5^{\prime} \mathrm{S} 24^{\circ} 09.5^{\prime} \mathrm{E}(2+$, $14 \sigma^{\circ}$, USU), 6 km S Willowmore at $33^{\circ} 20^{\prime} \mathrm{S} 23^{\circ} 27^{\prime} \mathrm{E}\left(2 \circ+1 \delta^{\circ}\right), 12 \mathrm{~km}$ W Willowmore at $33^{\circ} 16^{\prime} \mathrm{S} 23^{\circ} 22^{\prime} \mathrm{E}$
 AMG). Northern Cape Province: Anenous in Namaqualand at $29^{\circ} 15^{\prime} \mathrm{S} 17^{\circ} 35^{\prime} \mathrm{E}$ (10°, AMG), Arkoep Farm

 W Loeriesfontein ($2 \sigma^{\circ}$, OÖLM), Middelpos ($1 \sigma^{\circ}$, FSCA), Moedverloor River ($1 \mathrm{o}^{\circ}$, UCD), Nababeep in Namaqualand ($2 \sigma^{\circ}$, AMG), Niekerkshoop ($5 \sigma^{\circ}$, SAM), Nieuwoudtville ($2 \sigma^{\circ}$, AMG), 51 km E Nieuwoudtville at $31^{\circ} 30^{\prime} \mathrm{S} 19^{\circ} 35^{\prime} \mathrm{E}\left(1\right.$ 오, AMG), Olifantshoek (1 ㅇ, FSCA), Richtersveld National Park at $28^{\circ} 18.9^{\prime} \mathrm{S}$ $16^{\circ} 58.3^{\prime} \mathrm{E}\left(1 \delta^{\circ}\right)$, Richtersveld National Park: Koeroegabvlakte at $28^{\circ} 11^{\prime} \mathrm{S} 17^{\circ} 03^{\prime} \mathrm{E}\left(5 \delta^{\circ}, \mathrm{AMG}\right.$) and $28^{\circ} 10^{\prime} \mathrm{S}$ $17^{\circ} 02^{\prime} \mathrm{E}\left(1 \circ+1 \mathrm{o}^{\circ}, \mathrm{AMG}\right)$, near Richtersveld National Park between Annis and Dabie rivers at $28^{\circ} 20^{\prime} \mathrm{S}$ $16^{\circ} 55^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{AMG}\right.$), 35 km W Springbok at $29^{\circ} 37^{\prime} \mathrm{S} 17^{\circ} 31^{\prime} \mathrm{E}\left(1 \mathrm{o}^{\circ}, \mathrm{OHL}\right.$), SW Springbok at Buffel River (100°, OÖLM), Tanqua-Karoo National Park (2 ㅇ, $3 \sigma^{\circ}$, SAM), Theekloof in Fraserburg District (10°, SAM),

VanWyksfontein 8 km W Norvalspont (2 \& , 7 o $^{\circ}$, AMG), Wildeperdehoek Pass at $29^{\circ} 56^{\prime} \mathrm{S} 17^{\circ} 38^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}$, AMG). Northern Province: Afguns ($1 \stackrel{\uparrow}{\circ} 2 \sigma^{*}$, AMG), Ellisras (2 σ^{\star}), 10 km SW Naboomspruit ($1 \circ$, FSCA),
 Beaufort West: Nieuwveldt (3 ${ }^{*}$, SAM), Beaufort West: Oukloof ($3 \stackrel{\circ}{\circ}, 3$ or *, SAM), 20 km SE Beaufort West (2 $\left.\sigma^{\prime}, \mathrm{BMNH}, \mathrm{FSCA}\right)$, Biedouw Valley at $32^{\circ} 08^{\prime} \mathrm{S} 19^{\circ} 14^{\prime} \mathrm{E}\left(2 \sigma^{\circ}, \mathrm{AMNH}\right.$), Cape of Good Hope Nature Reserve
 USNM), Cape Town: Table Mountain at $33^{\circ} 57^{\prime} \mathrm{S} 18^{\circ} 24^{\prime} \mathrm{E}\left(1 \stackrel{\circ}{+}, 7 \sigma^{\circ}\right)$, 50 km N Cape Town ($1 \stackrel{\circ}{\circ}$, OÖLM), 60
 Clanwilliam ($1 \sigma^{*}$, AMG; $\left.1 \quad \circ, 1 \sigma^{*}, S A M\right)$, Citrusdal District ($\left.1 \sigma^{\star}, S A M\right), 20 \mathrm{~km}$ N Citrusdal (1 OÖLM), Clanwilliam ($3 o^{*}$, USU), Clanwilliam-Klawer ($4 \sigma^{*}, S A M$), 11 mi W Clanwilliam ($1 o^{*}$, AMG), Dasklippas in Cederberg Mts. NE Porterville ($1+2$ ơ $^{\text {, }}$, OHL), Doorn River Falls 5 km N Nieuwoudtville

 Farm 30 km WSW Matjiesfontein ($1 \mathrm{o}^{\circ}$), Koup at $33^{\circ} 07^{\prime} \mathrm{S} 21^{\circ} 17^{\prime} \mathrm{E}\left(1 \delta^{\circ}\right)$, Ladysmith at $33^{\circ} 30^{\prime} \mathrm{S} 21^{\circ} 17^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\circ}, \mathrm{AMNH}$), 13 km ENE Laingsburg at $33^{\circ} 11^{\prime} \mathrm{S} 20^{\circ} 59^{\prime} \mathrm{E}$ ($1 \mathrm{o}^{\star}$), Lambert's Bay ($9 \mathrm{o}^{\prime \prime}$, OÖLM), 5 km S

 NE Montagu at $33^{\circ} 40^{\prime} \mathrm{S} 20^{\circ} 16^{\prime} \mathrm{E}\left(1 \stackrel{\circ}{+}\right.$, AMG), Mossel Bay ($1 \stackrel{\circ}{\circ}$, BMNH), Nuwerus ($1 \stackrel{\circ}{ }, 3 \circ^{\circ}$, OÖLM), Oloff Berghfontein at $32^{\circ} 01^{\prime} \mathrm{S} 18^{\circ} 31^{\prime} \mathrm{E}(1$ \& $)$), Oudtshoorn (o^{\star}), Oudtshoorn-Zebra ($2 \sigma^{\circ}, \mathrm{SAM}$), Prince Albert Road
 Swartberg Pass at $33^{\circ} 19^{\prime} \mathrm{S} 22^{\circ} 03^{\prime} \mathrm{E}\left(1 \quad\right.$ ㅇ, PPRI), Swellendam (1 ㅇ, FSCA), Tierberg Farm (1 ㅇ, $50^{\circ} ; 1$ 오, $7 \sigma^{\top}$, AMG; 1 ㅇ, $4 \sigma^{\circ}, \mathrm{OHL}$), 18 km NE Touwsriver ($1 \sigma^{\top}$, SAM), Traveler's Rest 21.5 km ENE Clanwilliam at $32^{\circ} 04^{\prime} 45^{\prime \prime} \mathrm{S} 19^{\circ} 05^{\prime} 00^{\prime \prime} \mathrm{E}\left(1 \sigma^{\circ}, \mathrm{CSE}\right.$), Tulbagh ($4 \sigma^{\circ}$, AMG), Uniondale (3 σ^{\star}, PPRI), Wellington: Rooshoek
(5 ㅇ, $13 \sigma^{\circ}$). Location unknown: Klipfontein in former Cape Province, one of many localities of this name (2 ㅇ, AMG). TANZANIA: Kilimanjaro Region: 61 km NNE Same (1 ${ }^{\text {® }}$). Morogoro Region: 62 road km SW Morogoro ($3 \mathrm{o}^{\boldsymbol{r}}$). Shinyanga Region: Old Shinyanga ($1+$ BMNH). Tanga Region: 73 km NW Korogwe
 km NW Korogwe (3 δ^{*}). THAILAND: Kanchanaburi: Kanchanaburi ($1 \delta^{*}$), Lam Ta Pen River bank 5 km

 Atakpamé (1 ¢ ¢). ZAIRE: Haut-Zaïre: Faradje at $3^{\circ} 40^{\prime} \mathrm{N} 29^{\circ} 40^{\prime} \mathrm{E}(1 \quad \circ$, AMNH). ZAMBIA: Eastern Province: mid and upper Luangwa Valley (R. Turner, 1917a), Nyamadzi River near Nawalia [N Sinda] (1 o, BMNH, holotype of vulneratus). ZIMBABWE: Bembesi River ($1 \circ^{*}, \mathrm{CU}$), Bulawayo (3 우, AMG; 1 ㅇ,

 Penkridge ($1 \delta^{\star}, \mathrm{ZMAN}$), Turk Mine ($1 \circ$, SAM), Umguza River valley ($1 \circ$, SAM; 1 ơ *, TMP), Victoria Falls ($\left.2 \sigma^{7} ; 2 \sigma^{*}, S A M\right)$.

Tachysphex waltoni Arnold

Figures 412-414.
Tachysphex waltoni Arnold, 1940:121, $\&$ (as Waltoni, incorrect original capitalization). Holotype: \circ, South Africa: Eastern Cape Province: Resolution 17 km NNE Grahamstown (TMP), examined.- Bohart and Menke, 1976:277 (listed).

Recognition.- Tachysphex waltoni has a black gaster and red tibiae (the female mid- and hindfemora are also red, all or largely so), the galea longer than wide in profile, the labrum slightly convex anteriorly and slightly protruding from beneath the clypeus (practically flat in small males), and unspecialized hindwing and tarsi (i.e., the two ends of crossvein cu-a are nearly equi-
distant from wing base, length of midtarsomere II $1.9 \times$ width, and apical tarsomeres without ventral or lateral spines).

The female has the clypeal lobe with a free margin prominently arcuate to obtusely pointed (Fig. 412a), and the inner mandibular margin with a low tooth and a widely open cleft (Fig. 412a), a unique such combination (the mandibular cleft is also widely open in mesembrius, modestus, and particularly plicosus). Additional recognition features include: most setae of the propodeal dorsum inclined posterad (but inclined anterad mesally and basally) and forebasitarsus with 10-12 rake spines.

The male has an obtusely pointed clypeal lip whose free margin forms a single curved line with the rest of the clypeal margin (Fig. 412b), the lip corners being absent or rudimentary. The clypeus is similar in braunsi and rufopictus, but in waltoni the midfemur is uniformly micropunctate (or nearly so); setae of the propodeal dorsum are erect or inclined anterad basally and along midline (remaining setae inclined posterad); and setae of sterna III-VI are not fully appressed, markedly longer than those on sternum II basally. In the other two species, the midfemur is impunctate or at most sparsely punctate posteroventrally, setae of the propodeal dorsum are all inclined posterad, and sternal setae are fully appressed, nearly equal in length. Unlike psilonotus and ziziphi, which also have a similar clypeus, the male of waltoni has the propodeal dorsum entirely setose (rather than glabrous apicomesally) and no foretarsal rake.

Description.- Labrum slightly convex anteriorly, slightly protruding beyond clypeal free margin (practically flat in small males). Galea densely punctate, about as long as 0.8 of scape in female, as 0.9 in male. Scutal punctures averaging about $1-2$ diameters apart in some specimens, up to 3-4 diameters in others; interspaces unsculptured or aciculate. Mesopleural punctures large to minute, averaging 2-3 diameters apart beneath scrobe; interspaces unsculptured to conspicuously microsculptured. Propodeal dorsum evenly microsculptured; side in most specimens aciculate, with punctures that are about 2-3 diameters apart (except impunctate along metapleural margin), minutely ridged in one female from Hilton Farm, South Africa. Hindcoxal dorsum with inner margin carinate basally.

Setae erect or nearly so on postocellar area, shorter than midocellar diameter; about as long as midocellar diameter on each side of oral fossa next to occipital carina; suberect, inclined posterad on propodeal dorsum except oriented anterad near propodeal foremargin and along midline (erect in some males); appressed on midfemoral venter.

Head and thorax black, mandible reddish except basally and apically. Frontal setae silvery in both sexes. Wing membrane nearly hyaline to slightly infumate; forewing costal vein reddish, sub-

Figure 412. Tachysphex waltoni Arnold: a - female clypeus; b-male clypeus.
costal vein brown. Female forefemur all black or red apically, mid- and hindfemora red or midfemur black basally; male femora varying from all black (except apically) to all red. Tibiae and tarsi red. Gaster black. Terga I-III or I-IV silvery fasciate apically.

ㅇ.- Mandible: trimmal carina with greatly reduced tooth and broadly open cleft (Fig. 412a). Clypeus (Fig. 412a): middle section markedly convex, bevel with large punctures, longer than basomedian area; lip free margin prominently arcuate to obtusely angulate, not incised laterally. Width of postocellar area $0.9-1.0 \times$ length. Dorsal length of flagellomere I 1.8-2.0 \times apical width. Dorsal foretibial surface with two or three spines; outer surface with one or two spines. Forebasitarsus with $10-12$ rake spines. Hindtarsomere IV: length equal to apical width. Hindtarsomere V: apicoventral margin straight or minimally prominent mesally. Apical depression of tergum V impunctate, asetose. Pygidial plate with punctures averaging many diameters apart; interspaces unsculptured or nearly so. Length $9.1-10.8 \mathrm{~mm}$.
σ^{7}.- Mandible: trimmal carina obtusely broadened mesally, without cleft (Fig. 412b). Clypeus (Fig. 412b): middle section markedly convex, bevel with large punctures, about as long as basomedian area, not clearly delimited dorsally; lip free margin obtusely angulate (concave on each side of midpoint in some specimens), without corner or at most with a rudimentary corner (forming single curved line with rest of clypeal margin). Width of postocellar area 1.0-1.3 \times length. Dorsal length of flagellomere I $1.4 \times$ apical width. Forefemoral notch asetose. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Setae of sterna III-VI not entirely appressed, longer than those on sternum II basally. Length $6.9-10.0 \mathrm{~mm}$. Volsella and penis valve: Fig. 413.

Floral records.- Two specimens from Clifton Farm, South Africa, were collected "on minute flowers of Bergia glomerata L. (Elatinaceae)", as recorded by the collectors, F.W. and S.K. Gess.

Geographic distribution (Fig. 414).Southwestern South Africa to central Namibia.

Records.- NAMIBIA: Karibib District: 65 km SW Usakos ($1 \mathrm{o}^{\circ}, \mathrm{MS}$). Lüderitz District:
 District: Claratal 40 km SSW Windhoek ($1 \mathrm{o}^{\mathrm{o}}$, NMN). SOUTH AFRICA: Eastern Cape Province: 17 mi S Adelaide on road to Grahamstown (2 ㅇ, AMG), Bedford to Somerset East (1 d $^{\circ}$), Clifton Farm 18 km NW Grahamstown (2 \circ, 5 ơ; 7 ㅇ, $21 \delta^{\boldsymbol{\pi}}$, AMG), Grahamstown ($1 \mathrm{o}^{\boldsymbol{*}}, \mathrm{PMA}$), 17 mi NW Grahamstown (1 ㅇ, AMNH), Hilton Farm 18 km WNW Grahamstown ($3 \circ+1 \delta^{\circ} ; 4 \stackrel{\circ}{ }, 3 \sigma^{\circ}$, AMG), Kenton-on-Sea ($16 \stackrel{\circ}{\circ}$, AMG), Loerie ($1 \circ$, SAM), Resolution 17 air km NNE Grahamstown (1 9 , TMP, holotype of waltoni), Rietbron (2 ㅇ, 1 ه̛, AMG), Strowan Farm 5 air km W Grahamstown ($2 \circ ; 4$;

Figure 413. Tachysphex waltoni Arnold: volsella and penis valve.

Figure 414. Collecting localities of Tachysphex waltoni and yarrowi.

AMG), Willowmore (2 o $^{\circ}$, AMG; $1 \stackrel{\circ}{+}, \mathrm{TMP}$), 43 km NE Willowmore at $32^{\circ} 59^{\prime} \mathrm{S} 23^{\circ} 34^{\prime} \mathrm{E}\left(1 \stackrel{\circ}{+}, 2 \mathrm{o}^{\circ}\right)$, 12 km
 Northern Cape Province: Middelpos ($2 \sigma^{*}, ~ F S C A$), SW Springbok ($1 \sigma^{*}$, OÖLM), Steinkopf (1 우, FSCA), 10 km W Steinkopf ($1 \stackrel{\circ}{ }$, FSCA), Tanqua-Karoo National Park ($1 \sigma^{*}$, SAM). Western Cape Province: Beaufort West District ($2 \sigma^{*}, S A M$), 20 km N Citrusdal ($1 \sigma^{\circ}$, OÖLM), Groot Rivier in Knysna District (1 o , AMG), Knersvlakte ($1 \delta^{\star}$), Matjiesfontein ($4 ; 5$ ㅇ, $4 \delta^{\star 7}$, BMNH), Tierberg Farm 23 km NE Prince Albert $\left(2 \div, 1 \delta^{*}\right)$, Wellington: Rooshoek ($1 \circ$, RMNH).

Tachysphex yarrowi de Beaumont

Figures 414, 415.
Tachysphex No. 17: de Beaumont, 1940:178 (Egypt), corrected to Tachysphex yarrowi by de Beaumont, 1960b:239.
Tachysphex yarrowi de Beaumont, 1960b:239, ㅇ. Holotype: ㅇ, Libya: Cyrenaica: Ridotta Capuzzo, now Masai'd (BMNH), examined in 1974.— Pulawski, 1964:96 (Egypt, description of or), 1971:193 (in revision of Palearctic Tachysphex); de Beaumont, Bytinski-Salz, and Pulawski, 1973:9 (Israel); Bohart and Menke, 1976:277 (listed).

Recognition.- Tachysphex yarrowi, a North African species, has a flat labrum (not protruding beyond the clypeal free margin), hindwing crossvein cu-a vertical, and simple tarsi (midtarsomere II more than twice as long as apically wide, apical tarsomeres without spines on venter or lateral margins). It is further characterized by the well-defined mesopleural punctures with shiny interspaces, setae erect on the postocellar area, suberect on midfemoral venter, and inclined anterad on the propodeal dorsum. Also, the wing veins are all pale yellow, the lateral section of the female clypeus has the free margin straight, not concave (Fig. 415a), and the outer apical spine of male foretarsomere II is longer than foretarsomere III. This character combination is shared with anubis.

Unlike anubis, the scutal hindcorner of yarrowi is slightly prominent, punctures near the center of the mesopleuron are more than one diameter apart, the metapleural setae are as dense as those on the mesopleuron, the postocellar area in the female is concave and the midtrochanteral venter has only a few, sparse punctures, and the male clypeal lip is evenly arcuate and with an obtuse lateral corner (Fig. 415b). In anubis, the scutal hindcorner is not prominent (the usual shape), punctures near the center of the mesopleuron are less than one diameter apart, the metapleural setae are denser than those on the mesopleuron, the postocellar area is flat in the female and the midtrochanteral venter densely punctate, and the male clypeal lip is obtusely pointed and without lateral corner (Fig. 26b).

Description.- Free margin of clypeal lateral section unusually shallow (Figs. 415a, b). Scutal hindcorner roundly prominent. Scutal and mesopleural punctures well defined, up to several diameters apart on scutal disk, up to two or three diameters apart near center of mesopleuron; interspaces shiny. Punctures of mesothoracic venter several to many diameters apart except along midline. Propodeal dorsum finely rugose, in many specimens also longitudinally ridged; side ridged in most specimens, unridged in some males. Hindcoxal dorsum with inner margin carinate basally.

Setae erect on postocellar area, about as long as midocellar diameter; nearly erect on each side of oral fossa next to occipital carina, longer than midocellar diameter in female, shorter in male; subappressed to suberect on scutum; inclined anterad on propodeal dorsum, suberect on midfemoral venter (longest midfemoral setae equal to midocellar diameter). Mesopleural setae of female largely concealing integument; sternal setae of male not particularly dense, part of apical depressions asetose.

Head and thorax black, mandible yellowish red mesally. Frontal setae silvery in both sexes.

VK
Figure 415. Tachysphex yarrowi de Beaumont: a - female clypeus and mandible; b-male clypeus and mandible; c - volsella; d - penis valve.

Wing membrane nearly hyaline; costal and subcostal veins of forewing pale yellow. Femora black in most specimens, but mid- and hindfemora largely red in a female from Biskra, Algeria (de Beaumont, 1960b). Tibiae in female black, partly reddish (hindtibia largely reddish in some specimens), in male black, in most specimens reddish basally and apically; tarsi brown to reddish. Gaster varying from all red to all black in female, in male mostly black except tergum I reddish laterally in some specimens; apical depressions of terga translucent. Terga I-V silvery fasciate apically.

ㅇ.- Clypeus (Fig. 415a): bevel about as long as basomedian area; lip free margin arcuate, not emarginate mesally not incised laterally. Postocellar area shallowly concave, $2.1 \times$ as wide as long. Dorsal length of flagellomere I $2.4 \times$ apical width. Dorsal foretibial surface with one spine; outer surface with two spines. Forebasitarsus with five rake spines. Midtrochanteral venter shiny, with a few, sparse punctures. Apical depression of tergum V with a few, sparse setae. Pygidial plate with punctures that average many diameters apart; interspaces aciculate. Length $6.0-8.0 \mathrm{~mm}$.
σ^{7}.- Mandible: trimmal carina angulate subbasally, without real tooth or cleft. Clypeus (Fig. 415b): bevel about as long as basomedian area; lip free margin broadly arcuate, with obtuse but well-defined corner; distance between corners 1.8-1.9 \times distance between corner and orbit. Width of postocellar area 2.6-2.9 \times length. Dorsal length of flagellomere I 1.0 $-1.3 \times$ apical width, its ventral length equal to $0.8-1.0$ apical width. Forefemoral notch glabrous. Outer margin of forebasitar-
sus with four or five rake spines; outer apical spine of foretarsomere II longer than tarsomere III. Apical margin of sternum VIII with minute tooth mesally. Length $3.5-6.5 \mathrm{~mm}$. Volsella and penis valve: Figs. 415c, d.

Geographic distribution (Fig. 414).- North Africa and Israel.
Records.- ALGERIA: Biskra (de Beaumont, 1960b). EGYPT: AI Jizah (= Ghiza): Abu Rawash ($1 \quad+40^{*} ; 1 \delta^{*}$, MSNT), Manshiet Radwan (8 ${ }^{\circ}$), Wadi um Assaad near Abu Rawash (Pulawski, 1971). Location unknown: Ben Yusef (de Beaumont, 1960b). ISRAEL: Bat Yam (Pulawski, 1971). LIBYA: Masai'd at $21^{\circ} 33^{\prime} \mathrm{N} 25^{\circ} 01^{\prime} \mathrm{E}$ (de Beaumont, 1960b, as Ridotta Capuzzo).

Tachysphex zambius Pulawski, sp. nov.

Figures 416, 417.
Derivation of name.- Zambius, a Neolatin masculine adjective derived from Zambia, where most specimens were collected.

RECOGNITION.- The unknown female of zambius is probably characterized by the following features, found in the male and unlikely to be sexually dimorphic: labrum flat, scutal and mesopleural punctures well defined (interspaces shiny), propodeal side ridged, hindwing vein cu-a vertical, setae erect on the postocellar area, about as long as midocellar diameter, and gaster all black, with silvery fasciate basal terga. This combination, however, does not suffice to distinguish zambius from similar species.

A unique feature of the male zambius is the presence of dense, long setae on sternum VII that extend beyond the sternum's hindmargin as a conspicuous fringe (Fig. 416b). Almost unique is a combination of a flat labrum and nonemarginate forefemur. Both features are found in exceptional brevipennis, which lacks the episternal sulcus, and in some scopa, in which the gaster is red and whose sterna are covered with unusually dense, conspicuous setae. In zambius, the episternal sulcus is present, the gaster is black, and sternal setae (except for sternum VII) are inconspicuous.

Description (male only). - Galea longer than wide in profile, about as long as 0.7 of scape. Scutal and mesopleural punctures well defined, interspaces shiny; most scutal punctures about one diameter apart, but some about 2-3 diameters apart; mesopleural punctures, at center, varying from about one to several diameters apart. Propodeal dorsum irregularly ridged to irregularly rugose; side ridged. Hindcoxal dorsum with inner margin carinate. Sternum I with obtuse, longitudinal carina in one specimen.

Setae suberect on each side of oral fossa next to occipital carina, shorter than midocellar diameter; erect on postocellar area and inclined posterad on scutum, about as long as midocellar diameter; oriented posterad on propodeal dorsum.

Head and thorax black, mandible reddish except black basally and apically. Frontal setae golden in male. Wing membrane slightly infumate; costal vein of forewing light brown, subcostal vein brown. Femora black, tibiae and tarsi red. Gaster black. Terga I-IV silvery fasciate apically.
¢ . - Unknown.
δ^{\top}.- Mandible: trimmal carina with tooth, without cleft. Clypeus (Fig. 416a): bevel ill defined, about as long as basomedian area; lip free margin obtusely pointed, with well-defined corner; distance between corners about $1.2 \times$ distance between corner and adjacent orbit. Width of postocellar area $0.9-1.1 \times$ length. Dorsal length of flagellomere I $1.8 \times$ apical width. Forefemur not emarginate. Outer margin of forebasitarsus without preapical spines; outer apical spine of foretarsomere II markedly shorter than tarsomere III. Venter of tarsomeres V with one small, preapical spine. Tergum VI, in one specimen, with punctures that are more than one diameter apart. Sterna III-VI with well-defined punctures that average several diameters apart. Sternum VII (except laterally) with dense, long setae that extend beyond the sternum's hindmargin as conspicuous fringe (Fig.

Fourth Series, Volume 58, Supplement I

Figure 416. Tachysphex zambius Pulawski, sp. nov., male: a - clypeus and mandible; b - sternum VII; c - sternum VIII; d - volsella; e - penis valve.

416b) Sternum VIII broadly, shallowly emarginate apically (Fig. 416c). Length 6.0-6.5 mm. Volsella and penis valve: Figs. 416d, e.

Geographic distribution (Fig. 417).Zambia.

Records.- Holotype: $\boldsymbol{o}^{\text {, }}$, ZAMBIA: Southern Province: 56 road km NE Choma at $16^{\circ} 37^{\prime} \mathrm{S} 27^{\circ} 20^{\prime} \mathrm{E}$, 12 Mar 1995, WJP (CAS). Paratypes: MALAWI: Mombera Bay, 15-19 June 1910, S.A. Neave (1 ơ, BMNH). ZAMBIA: Eastern Province: 32 km E Petauke at $14^{\circ} 17^{\prime} \mathrm{S}$ 31³7${ }^{\circ}$ E, 24-26 Mar 1995, WJP (2 o $^{\top}$).

Figure 417. Collecting localities of Tachysphex zambius and ziziphi.

Tachysphex ziziphi Pulawski, sp. nov.

Figures 417, 418.
Derivation of name.- Named after Ziziphus mucronata Willdenow (Rhamnaceae) to whose flowers this wasp is attracted.

Recognition.- Tachysphex ziziphi has an apically convex labrum, elongate galea (length equal to 0.8 of scape), and the propodeal dorsum glabrous apicomesally (Fig. 418c). The female can be recognized from similar species by a somewhat prominent corner of the clypeal lip (Fig. 418a). In the male, an obtusely pointed clypeal lobe and an edentate inner mandibular margin are distinctive (Fig. 418b) in combination with a red gaster (apex black in some specimens) and a short foretarsal rake (the apical spine of tarsomere II is at least slightly shorter than tarsomere III).

Description.- Labrum convex (but less so than in panzeri or pentheri) and protruding from beneath clypeus, its free margin only slightly arcuate mesally. Galea slightly longer than wide in profile, as long as 0.8 of scape. Scutal punctures fine, averaging about $1-2$ diameters on disk. Mesopleuron microsculptured, dull, with minute, evanescent punctures. Propodeal dorsum evenly microareolate; side finely ridged in female (not ridged posteroventrally), evenly microsculptured in most males but with evanescent ridges in some. Hindcoxal dorsum with inner margin not carinate.

Setae appressed on postocellar area and scutum; nearly appressed, shorter than midocellar diameter on each side of oral fossa next to occipital carina; on propodeal dorsum converging obliquely posterad toward midline, but glabrous apicomesally on at least half length (Fig. 418c).

Figure 418. Tachysphex ziziphi Pulawski, sp. nov.: a - female clypeus and mandible; b-male clypeus and mandible; c - propodeal dorsum showing setal pattern; d - male foretarsomeres I-IV; e-volsella f - penis valve.

Head and thorax black, mandible red (except black apex); also clypeal bevel and labrum red in female and most males. Frontal setae silvery in female, golden in male (clypeal vestiture silvery in many specimens). Wings almost hyaline; costal vein of forewing light brown, subcostal vein brown. Femora, tibiae, and tarsi red, or fore- and midfemora largely black dorsally. Gaster all red or male segments IV-VII black. Terga I-III silvery fasciate apically.

ㅇ.- Clypeus (Fig. 418a): bevel slightly longer than basomedian area; lip free margin arcuate, not incised laterally, corner slightly prominent. Width of postocellar area $0.8 \times$ length. Dorsal length of flagellomere I $2.7 \times$ apical width. Dorsal foretibial surface with two spines; outer surface with two spines, sparsely micropunctate in distal half. Forebasitarsus with eight rake spines. Apical depression of tergum V punctate and setose. Pygidial plate with punctures that average several diameters apart, interspaces aciculate. Length 10.8 mm .
$\delta^{\boldsymbol{T}}$.- Mandible: trimmal carina nearly evenly curved, without tooth or cleft (Fig. 418b). Clypeus (Fig. 418b): bevel slightly longer than basomedian area; lip free margin obtusely pointed, without corner (forming single curved line with rest of clypeal margin). Width of postocellar area $0.8-1.0 \times$ length. Dorsal length of flagellomere I 1.2-1.8 \times apical width. Forefemoral notch microscopically setose. Outer margin of forebasitarsus with three rake spines in most specimens (Fig. 418d), with two spines on one leg and no preapical spines on other in smallest male; outer apical spine of foretarsomere II at least slightly shorter than tarsomere III (markedly shorter in smallest specimens). Length $6.2-8.7 \mathrm{~mm}$. Volsella and penis valve: Figs. 418e, f.

Habitat.- The specimens from Waldau River, Namibia, were collected around blooming trees of Ziziphus mucronata Willdenow (Rhamnaceae) along the shores of the then dry riverbed. They were flying low above the ground and landing periodically.

Geographic distribution (Fig. 417).- Namibia, western South Africa.
Records.- Holotype: ơ, NAMIBIA: Okahandja District: Waldau River 17 km W Okahandja at $21^{\circ} 57^{\prime} \mathrm{S} 16^{\circ} 45^{\prime} \mathrm{E}, 14$ Dec 1996, WJP (CAS). PARATYPES: NAMIBIA: Bethanien District: Riverside 135 [Farm 15 km SW Bethanie], 23-26 Oct 1971, collector unknown (2 σ°, NMN). Okahandja District: same
 District: Namatubis Guest Farm 15 km NW Outjo, 27 Aug 1995, B. Gabriel ($1 \mathrm{o}^{7}$, CSE). Windhoek District: 2 km S Aris, 5 Feb 1990, WJP ($1 \mathrm{o}^{\text {® }}$). SOUTH AFRICA: Northern Cape Province: Niekerkshoop in Griqualand, 1939 [South African] Museum Staff ($1 \mathrm{ơ}^{\text {º }}$, SAM). Western Cape Province: Matjiesfontein, $14-27$ Nov 1928, R.E. Turner ($1 \sigma^{\circ}$, BMNH); Merweville at $32^{\circ} 40^{\prime}$ S $21^{\circ} 30^{\prime}$ E, Jan 1959, H. Zinn (10°, SAM); Tierberg Farm 23 km NE Prince Albert District, 26 Nov-5 Dec 1987, F.W., S.K., and R.W. Gess (ơ $^{\text {º, AMG); }}$ same locality except $33^{\circ} 10^{\prime} \mathrm{S} 22^{\circ} 15^{\prime} \mathrm{E}, 21-22$ Jan 1996, WJP (10°).

AckNowLEDGMENTS

The project was supported by the National Science Foundation (Grant DEB-9306812 for computer equipment, illustrations, and fieldwork in Ethiopia, Madagascar, Mauritania, Namibia, South Africa, Zambia, and Zimbabwe) and the California Academy of Sciences (In-House Research Fund grants for artwork in 1998-2000, Geraldine Lindsay Travel Fund for fieldwork in Kenya in 1999 and 2002 and in Tanzania in 2003). I greatly appreciate the help in organizing my travels to Cameroon (Koen V.N. Maes, Musée Royal de l'Afrique Centrale, Tervuren, Belgium), Ethiopia (Emiru Seyoum, Addis Ababa University, Ethiopia), Madagascar (Alain Pauly, then Mahavelona, Madagascar, currently Bruxelles, Belgium), Kenya (Koen V.N. Maes and Wanja Kinuthia, the National Museums of Kenya, Nairobi, Kenya), Namibia (Eugene Marais, The National Museum of Namibia, Windhoek, Namibia), Niger (Moudy Maman Sani and Abdou Mamadou, Direction de la Protection des Végétaux, Niamey, Niger), Oman (Michael Ohl, Museum für Naturkunde, Berlin, Germany), South Africa (Connal D. Eardley, Plant Protection Research Institute, Pretoria, South Africa; Friedrich W. and Sarah K. Gess, Albany Museum, Grahamstown, South Africa), Tanzania (Marcelian Njau, University of Dar es Salaam, Dar es Salaam, Tanzania), and Zimbabwe (Rudo Sithole, The National Museums and Monuments, Bulawayo, Zimbabwe). I am greatly indebted to Connal D. Eardley, Friedrich W. Gess, and Vladimir L. Kazenas for painstakingly locating obscure place names in South Africa and Kazakhstan, respectively, and to Friedrich W. Gess for determination of acridid prey. I sincerely thank my travel companions for their friendship, assistance, and collection of additional material in Burkina Faso (Maureen H. Bourbin, Sidiki Konaté), Cameroon (Koen V.N. Maes), Kenya (Maureen H. Bourbin, Vincent F. Lee, Koen V.N. Maes, Michael A. Prentice, Jere S. Schweikert), Madagascar (Alain Pauly, Marius S. Wasbauer), Mali (Maximilian Schwarz), Namibia (Maximilian Schwarz), Niger (Madougou Garba and Soumana Samba), Oman (Michael Kuhlmann, Michael Ohl, Till Osten), South Africa (Brian N. Danforth, Connal D. Eardley, Friedrich W. Gess and Sarah K. Gess, Michael Stiller, Kenneth L. Walker), Tanzania (Maureen H. Bourbin, Omary S. Haji, Koen V.N. Maes, Michael A. Prentice), and Zimbabwe (the late Philip Mhlanga). I sincerely thank my wife, Veronica Ahrens, for her skillful collecting of specimens in Egypt, Ethiopia, Namibia, South Africa, and Zimbabwe. My dear memories go to the late Alessandro Mochi, with whom I traveled to the Ivory Coast, Senegal, Egypt, Mauritania, Madagascar, and Zambia, and who died in 1995 in Lusaka while on the joint expedition to the last country. I am greatly indebted to all individuals who sent material for study. I thank Hermann Dollfuss (Mank, Austria), Christian Schmid-Egger (Herrsching-Breitbrunn, Germany), Josef Gusenleitner (Linz, Austria), and Michael Ohl (Berlin, Germany) for donating specimens from Central African Republic, Israel, Namibia, South Africa, and Zimbabwe. I thank the curators who helped my museum work in Europe in 2000: Kees van Achterberg (Nationaal Naturhistorisch Museum, Leiden, the Netherlands), Fritz Gusenleitner (Oberösterreichisches Landesmuseum, Linz, Austria), the late Stefan Schödl (Naturhistorisches Museum, Wien, Austria), Carlo Pesarini (Museo Civico di Storia Naturale, Milano, Italy), Mauro Daccordi and Guido Pagliano (Museo Regionale di Scienze Naturali, Torino, Italy), Roberto Poggi (Museo Civico di Storia Naturale «Giacomo Doria», Genova, Italy), and Sandrine Ulenberg (Zoölogisch Museum, Universiteit van Amsterdam, Amsterdam, the Netherlands). I thank the following staff members of the California Academy of Sciences: Charles E. Griswold an Nina G. Jablonski for providing publications on the geological history of Africa; Darrell Ubick for taking most of the Scanning Electron Microscope micrographs, and Scott Serata for the remaining ones; Jere S. Schweikert for printing these micrographs; Heather Tennison for converting the micrographs into digital images; Colleen D. Sudekum for producing most of the line drawings using the Adobe Illustration program; Erin Herzog, Jennifer Kane, and

Virginia Kirsch for generating remaining line drawings (those marked with their initials in the lower right corner); Vincent F. Lee for editing the SEM digital images in Photoshop; Vincent F. Lee and Robert L. Zuparko for painstakingly reviewing the entire text for grammar, consistency, and conciseness; Jere S. Schweikert for creating a database of all collecting localities with their latitudes and longitudes; Michelle Koo for generating the distribution maps with the GIS program; and April Nobile for generating color images using Auto-Montage technology. My special thanks go to the California Academy of Sciences' Editor of Scientific Publications, Dr. Alan E. Leviton, for his careful handling of the manuscript and many excellent suggestions.

Literature Cited

When two years are given for a publication, the first is the actual publication year, the second (in parentheses) is the intended but erroneous year given on the title page.

AdLerz, G. 1904 (1903). Lefnadsförhållanden och instinkter inom familjerna Pompilidae och Sphegidae. Kungliga Svenska Vetenskapsakademiens Handlingar 37(5):1-181.

- 1916. Gräusteklarnas liv. Magn. Bergvalls Förlag, Stockholm. 318 pp.

Alcock, J. 1980. Notes on the reproductive behaviour of some Australian solitary wasps (Hymenoptera: Sphecidae, Tachysphex and Exeirus). Journal of the Australian Entomological Society 19:259-262.
Antiga y Suner, D.P., and D.J.M. Bofil y Pichot. 1904. Catàlech de Insectes de Catalunya. Hymenòpters. X. Familia.- Sphegids. Institucio Catalana de Ciencias Naturales, Barcelona. 31 pp.

Arnold, G. 1922. The Sphegidae of South Africa. Part I. Annals of the Transvaal Museum 9:101-138.
—. 1923. The Sphegidae of South Africa. Part II. Annals of the Transvaal Museum 9:143-190, pl. 5.
—. 1924. The Sphegidae of South Africa. Part V. Annals of the Transvaal Museum 11:1-73, pls. 1-2.
—. 1929. The Sphegidae of South Africa. Part XIV. Annals of the Transvaal Museum 13:381-418, pls. 7-8.
-. 1930. A check-list of the Sphegidae of the Ethiopian Region. University Press, Cambridge, England. 21 pp.
-. 1935. Scientific results of the Vernay-Lang Kalahari expedition, March to September, 1930. Sphegidae and Psammocharidae. Annals of the Transvaal Museum 16:497-505.
-. 1940. New species of African Hymenoptera No. 4. Annals of the Transvaal Museum 20:101-143, pl. 5.
-. 1944. New species of African Hymenoptera. No. 5. Occasional Papers of the National Museum of Southern Rhodesia 2 (11):1-38.
—. 1945 (1944). The Sphecidae of Madagascar. Cambridge University Press, Cambridge. 193 pp.
-. 1947. New species of African Hymenoptera. No. 7. Occasional Papers of the National Museum of Southern Rhodesia 2(13):131-167.
-. 1949. New species of African Hymenoptera. No. 9. Occasional Papers of the National Museum of Southern Rhodesia 2:261-275.
—. 1951. Sphecidae and Pompilidae (Hymenoptera) collected by Mr. K.M. Guichard in West Africa and Ethiopia. Bulletin of the British Museum (Natural History). Entomology 2:95-183.
-. 1959. New species of African Hymenoptera No. 14. Occasional Papers of the National Museum of Southern Rhodesia 23B:316-339.
-. 1960. Aculeate Hymenoptera from the Drakensberg Mountains, Natal. Annals of the Natal Museum 15:79-87.
-. 1962. New species of African Hymenoptera No. 16. Occasional Papers of the National Museum of Southern Rhodesia No. 26B:844-855.
Asís, J.D., S.F. Gayubo, and J. Tormos. 1987. Notas sobre los estadios preimaginales de los esfécidos ibéricos. II. Descripción de la larva madura de Tachysphex Albocinctus (Lucas, 1848) y algunas consideraciones sobre el capullo y la prepura [sic]. (Hymenoptera: Sphecidae). Eos. Revista Española de Entomología 63:15-18.
-. 1989. Nesting behaviour of three species of Tachysphex from Spain, with a description of the mature larva of Tachysphex tarsinus (Hymenoptera Sphecidae). Ethology, Ecology \& Evolution 1:233-239.
Asís, J.D., and R. Jiménez. 1988. Contribución al conocimiento de la esfecidofauna de la Provincia de

Castellón II: Larrinae, Nyssoninae y Philanthinae (Hymenoptera: Sphecidae). Boletín de la Asociación Española de Entomología. 12:269-279.
axelrod, D.I., and P.H. Raven. 1978. Late Cretaceous and Tertiary vegetation history of Africa. Pages 77-130 in M.J.A. Werger, ed., Biogeography and Ecology of Southern Africa. Junk, The Hague.
Báez, M., and G. Ortega. 1978. Lista preliminar de los Himenópteros de las Islas Canarias. Boletín de la Asociación Española de Entomología. 2:185-199.
Bajári, E. 1957a. XIII. Kötet, Hymenoptera III, 7. Füzet, Kaparódarázs Alkatúak I. Sphecoidea I, Budapest. Pages 1-117 in V. Szekessy, ed., Magyarorszag Allatvilaga - Fauna Hungariae, 20.
-. 1957b. Magyarországi új kaparódarzsak (Hym. Sphecidae) - Aus Ungarn bisher unbekannte Spheciden (Hym.). Rovartani Közlemények (Series Nova) 10:133-144.
Baker, D.B. 1994. The date of the Hymenoptera section of the Exploration scientifique de l'Algérie. Archives of Natural History 21:345-350.
Balthasar, V. 1954 (1952). Ein Beitrag zur Kenntnis der palästinischen Spheciden. Opuscula hymenopterologica XIV. Acta Entomologica Musei Nationalis Pragae 28:267-284.
—. 1972. Fauna ČSSR, Band 20, Grabwespen - Sphecoidea. Academia, Praha. 471 pp., 9 pls.
Balthasar, V., M. Hrubant, and E. Hrubant. 1967. Beitrag zur Hymenopteren Bulgariens (Chrysididae, Sphecidae). Acta Faunistica Entomologica Musei Nationalis Pragae 12:161-176.
Berland, L. 1923a. Notes sur les Hyménoptères fouisseurs de France. II. Synonymie de quelques espèces employés par J.-H. Fabre. Bulletin de la Société Entomologique de France 1923:171-175.
-. 1923b. Notes sur les Hyménoptères fouisseurs de France. III. Annales de la Société Entomologique de France 92:287-288.
-. 1924. Les Hyménoptères fouisseurs et le peuplement des places vides. La Feuille des Naturalistes (Nouvelle Série) No. 6:89-91.
-. 1925. Faune de France. 10. Hyménoptères vespiformes. I (Sphegidae, Pompilidae, Scoliidae, Sapygidae, Mutillidae). Paul Lechevalier, Paris. viii +346 pp.
-. 1932a. Etude d'une colonie d'insectes, principalement Hyménoptères. Compte Rendu Sommaire des Séances de la Société de Biogéographie 9, No. 73:21-25.
Bernard, F. 1933. Observations sur les Hyménoptères vespiformes des environs de Dieulefit (Drôme). Bulletin de la Société Entomologique de France 1933:59-63.
-. 1934. Observations sur les proies de quelques Hyménoptères. Bulletin de la Société Entomologique de France 39:247-250
-. 1935. Hyménoptères prédateurs des environs de Fréjus. Annales de la Société Entomologique de France 104:31-72.
Bingham, C.T. 1898. The Aculeate Hymenoptera procured in Aden by Col. Yerbury, R.A., and Capt. Nurse, I.S.C. The Journal of the Bombay Natural History Society 12:101-114, pl. A.

Bischoff, H. 1913a. Hymenoptera Fossoria. Teil I in L. Schulze, ed., Zoologische und anthropologische Ergebnisse einer Forschungsreise im westlichen und zentralen Südafrika (1903-1905). Denkschriften der medizinisch-naturwissenschaftlichen Gesellschaft zu Jena 17:111-124.
-. 1913b. Psammochariden und Crabroniden aus Rhodesia. Archiv für Naturgeschichte, Abteilung A 79, Heft 3:43-76.
-. 1933. Inventa entomologica itineris Hispanici et Maroccani, quod a. 1926 fecerunt Harald et Håkan Lindberg. XV. Chrysididae, Cleptidae, Scolidae, Tiphiidae, Methocidae, Sapygidae, Sphecidae, Masaridae, Vespidae. Commentationes Biologicae 4, No. 3:1-7.
Bitsch, J., H. Dolfuss, Z. Bouček, K. Schmidt, C. Schmid-Egger, S.F. Gayubo, A.V. Antropov, and Y. Barbier. 2001. Faune de France et régions limitrophes. 86. Hyménoptères Sphecidae d'Europe occidentale. Volume 3. Fédération Française des Sociétés de Sciences Naturelles, Paris. 459 pp.
Bohart, R.M., and A.S. Menke. 1976. Sphecid Wasps of the World. A Generic Revision. University of California Press, Berkeley, Los Angeles, London. 1 color plate, IX +695 pp .
Bonelli, B. 1972. Osservazioni biologiche sugli Imenotteri melliferi e predatori della Val di Fiemme. XXXIX. Bollettino dell'Istituto di Entomologia della Università di Bologna 31:1-11.
-. 1988. Note sul comportamento di nidificazione di Psenulus fuscipennis (Dahlb.), Tachysphex fulvitarsis erythrogaster (Costa), Sphex albisectus Lep. e Serv. e Sphex occitanicus Lep. e Serv. (Hymenoptera-

Sphecidae). Bollettino dell'Istituto di Entomologia "Guido Grandi" della Università degli Studi di Bologna 43:79-88.
Bristowe, W.S. 1925. Solitary wasps and their prey, with special reference to the mantid-hunters. Annals and Magazine of Natural History (Series 9), 16:278-285.
Budrys, E. 1990. Royushchiye osy roda Mimumesa (Hymenoptera, Sphecidae) fauny SSSR - Digger-wasps of the genus Mimumesa Malloch of the fauna of the USSR. Entomologicheskoye Obozreniye 69 (4):941-947. English translation: 1992. Digger-wasps of the genus Mimumesa Malloch (Hymenoptera, Sphecidae) of the USSR. Entomological Review 70:99-106.
-. 1993. Digger wasps of the subfamily Pemphredoninae (Hymenoptera, Sphecidae) from the Baltic and Taimyr amber. Acta Entomologica Lituanica 11:34-56.
Bytinski-Salz, H. 1956. Coleoptera and Hymenoptera from a journey through Asia Minor. Istanbul Universitetsi fen Fakültetsi Macmuasi (Seri B) [= Revue de la Faculté des Sciences de l'Université d'Istanbul (Série B)] 21:211-229.
Cameron, P. 1889. Hymenoptera Orientalis [sic]; or contributions to a knowledge of the Hymenoptera of the Oriental Zoological Region. Memoirs and Proceedings of the Manchester Literary \& Philosophical Society (Series 4) 2:91-152, Errata.
—. 1900. Descriptions of new genera and species of aculeate Hymenoptera from the Oriental Zoological Region. Annals and Magazine of Natural History (Series 7) 5:17-41.
—. 1903. Descriptions of nineteen new species of Larridae, Odynerus and Apidae from Barrackpore. The Transactions of the Entomological Society of London 1903:117-132.
-. 1905. On the Hymenoptera of the Albany Museum, Grahamstown, South Africa (Second Paper). Record of the Albany Museum 1:185-244.
—. 1908. 8. Hymenoptera, 7. Fossores, p. 197-296 in Y. Sjöstedt, ed., Wissenschaftliche Ergebnisse der schwedischen zoologischen Expedition nach dem Kilimanjaro, dem Meru und den umgebenden Massaisteppen Deutsch-Ostafrikas 1905-1906, 2. Band, Abteilung 8-14. P. Palmquists Aktiebolag, Stockholm. 844 pp., 10 pl. (cover dated 1910, but p. 294 dated Mar 1908).
Carpenter, G.D.H. 1929. (1928). Further observations on insects in Uganda. The Proceedings of the Entomological Society of London 3:5-9.
—. 1930. Psammocharidae (Pompilidae) and Sphecidae, collected records of their different methods of filling in the stocked burrow. The Transactions of the Entomological Society of London 78:283-308
Casolari, C., and R. Casolari Moreno. 1980. Cataloghi. I. Collezione Imenotterologica di Massimiliano Spinola. Museo Regionale di Scienze Naturali, Torino. 165 pp.
Ceballos, G. 1956. Catálogo de los Himenópteros de España. Instituto Español de Entomologia, Madrid. 554 pp., 1 map.
—. 1964. Segundo suplemento al Catálogo de los Himenópteros de España. Eos. Revista Española de Entomología 40:43-97.
Compte Sart, A. 1959. Sobre los Esfécidos de Mallorca. Graellsia 17:129-140.
Costa, A. 1867a (1864). Prospetto sistematico degli Imenotteri Italiani da servire di Prodromo della Imenotterologia Italiana. Annuario del Museo Zoologico della R. Università di Napoli 4:59-100.
—. 1867b. Prospetto degli Imenotteri Italiani da servire di Prodromo della Imenotterologia Italiana. Tipografia di Antonio Cons, Napoli. 154 pp.
—. 1882a. Rapporto preliminare e sommario sulle ricerche zoologiche fatte in Sardegna durante la primavera del 1882. Rendiconti della Reale Accademia delle Scienze Fisiche e Matematiche di Napoli Fasc. 10:189-201.
-. 1882b. Notizie ed osservazioni sulla geo-fauna sarda. Memoria Prima. Risultamento di ricerche fatte in Sardegna nel Settembre 1881. Atti della Reale Accademia delle Scienze Fisiche e Matematiche di Napoli 9:1-41, 1 unnumbered p.
-. 1883a. Notizie ed osservazioni sulla geo-fauna sarda. Memoria Seconda. Risultamento di ricerche fatte in Sardegna nella primavera del 1882. Atti della Reale Accademia delle Scienze Fisiche e Matematiche di Napoli (Serie 2) 1:1-109.
—. 1883b Diagnosi di nuovi Artropodi trovati in Sardegna. Bullettino della Società Entomologica Italiana 15:332-341.
—. 1884. Diagnosi di nuovi Artropodi della Sardegna (1). Bullettino della Società Entomologica Italiana 17:240-255.
-. 1885. Notizie ed osservazioni sulla geo-fauna sarda. Memoria Quarta. Atti della Reale Accademia delle Scienze Fisiche e Matematiche di Napoli (Serie 2) 1, No. 13:1-31.
Cros, A. 1936. Etude biologique sur un Hyménoptère chasseur de Mantes Tachysphex fluctuatus. Annales de la Société Entomologique de France 105:355-368.
Cruz-Sánchez, M.A., S.F. Gayubo, J.A. GonzÁlez, and F. Torrez. 2005. La comunidad de avispas Spheciformes de un melojar del oeste español: diversidad y dinámica temporal (Hymenoptera, Apoidea, Ampulicidae, Sphecidae y Crabronidae). Nouvelle Revue d'Entomologie (Nouvelle Série) 21:213-238.
Dahlbom, A.G. 1843-1845. Hymenoptera Europaea praecipue borealia; formis typicis nonnullis Specierum Generumve Exoticorum aut Extraneorum propter nexum systematicus associatis; per Familias, Genera, Species et Varietates disposita atque descripta. Tomus: Sphex in sensu Linneano. Officina Lundbergiana, Lund. xiv +528 pp. (fasc. 1:1-172, 1843; fasc. 2:173-352, 1844; fasc. 3:353-528, unnumbered pl., 10 tables, 1845). Dating after Menke, 1974.
Dalla Torre, C.G. 1897. Catalogus Hymenopterorum hucusque descriptorum systematicus et synonymicus, Volumen VIII: Fossores (Sphegidae). Guilelmi Engelmann, Lipsiae. 749 pp.
de Andrade, N.F. 1949. Esfecídeos de Portugal (Hym. Sphecidae). Memórias e Estudos do Museu Zoológico da Universidade de Coimbra No. 149:1-27.
de Beaumont, J. 1936a. Les Tachysphex de la faune française (Hym. Sphecidae). Annales de la Société Entomologique de France 105:177-212.
—. 1936b. Les Tachytes et les Tachysphex (Hymenoptera Sphecidae) de la collection du Général Radoszkowski. Revue Suisse de Zoologie 43:597-621.
—. 1936c. Les Tachytes et les Tachysphex (Hym. Sphecid.) de la collection Ach. Costa. Annuario del Museo Zoologico della R. Università di Napoli (Nuova Serie) 7:1-8.
-. 1940. Les Tachysphex de la faune égyptienne (Hymenoptera: Sphecidae). Bulletin de la Société Fouad Ier d'Entomologie 24:153-179.
-. 1947a. Nouvelle étude des Tachysphex de la faune égyptienne (Hymenoptera: Sphecidae). Bulletin de la Société Fouad Ier d'Entomologie 31:141-216.
—. 1947b. Sphecidae de l'île de Chypre. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 20:381-402.
—. 1947c. Contribution à l'étude du genre Tachysphex (Hym. Sphecid.). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 20:661-677.
—. 1950a. Sphecidae (Hymenoptera) récoltés en Algérie et au Maroc par M. Kenneth M. Guichard. Bulletin of the British Museum (Natural History). Entomology 1:389-427.
—. 1950b. Résultats de l'expédition de l'Armstrong College à l'oasis de Siwa (Désert libyque), 1935, sous la direction du Professeur J. Omer-Cooper. Sphecidae (Hymenoptera). Bulletin de la Société Fouad Ier d'Entomologie 34:1-21.
—. 1952a. Voyages de M. A. Giordani-Soika au Sahara. Ve note. Sphecidae (Hym.) du Hoggar. Bollettino della Società Veneziana di Storia Naturale e del Museo Civico di Storia Naturale 6:187-199.
—. 1952b. Sphecidae paléarctiques décrits par M. Spinola (Hym.). Bollettino dell'Istituto e Museo di Zoologia dell'Università di Torino 3:39-51.
—. 1953a. Contribution à l'étude du peuplement de la Mauritanie. Hymenoptera Sphecidae. Bulletin de l'Institut Français d'Afrique Noire 15:171-177.
—. 1953b. Notes sur quelques Tachysphex de la faune française (Hym. Sphecid.). Bulletin de la Société Entomologique de France 58:14-15.
—. 1954a. Sphecidae de l'Institut d'Entomologie de l'Université de Bologne. II. Larrinae. Bollettino dell'Istituto di Entomologia della Università di Bologna 20:53-64.
—. 1954b. Sphecidae (Hym.) d'Italie de la collection Giordani Soika. Bollettino della Società Veneziana di Storia Naturale e del Museo Civico di Storia Naturale 7:85-98.
—. 1955 (1954). Hyménoptères récoltés par une mission suisse au Maroc (1947). Sphecidae 3. Bulletin de la Société des Sciences Naturelles et Physiques du Maroc 34:169-197.
—. 1956a. Sphecidae (Hym.) récoltés en Libye et au Tibesti par M. Kenneth M. Guichard. Bulletin of the

British Museum (Natural History). Entomology 4:165-215.
—. 1956b. Résultats de l'expédition zoologique du Professeur Dr. Hakan Lindberg aux îles du Cap Vert durant l'hiver 1953-54, No. 6. Sphecidae et Pompilidae (Hym.). Commentationes Biologicae 15, No. 21:1-7.
-. 1958. Hyménoptères Sphécides de la mission du Tassili des Ajjer (1949). Travaux de l'Institut des Recherches Sahariennes 3:55-71.
—. 1959. Sphecidae italiens de l'Institut National d'Entomologie de Rome (Hymenoptera). Fragmenta Entomologica 3:3-46.
—. 1960a. Sphecidae de l'île de Rhodes (Hym.). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 33:1-26.
—. 1960b. Sphecidae (Hym.) récoltés en Tripolitaine et en Cyrénaïque par M. Kenneth M. Guichard. Bulletin of the British Museum (Natural History). Entomology 9:219-251.
—. 1960c. Contribution à l'étude de la faune de l'Afghanistan 39. Sphecidae. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 33:169-172.
—. 1961a. Sphecidae de l'île de Crète (Hym). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 34:43-52.
—. 1961b. Ergebnisse der Deutschen Afghanistan-Expedition 1956 der Landessammlungen für Naturkunde, Karlsruhe. Sphecidae (Hymenoptera). Beiträge zur Naturkundlichen Forschung in Südwestdeutschland 19:271-276.
—. 1961c. Sphecidae de l'Iraq (Hym.). Opuscula Zoologica (München) No. 56:1-5.
—. 1962. Contribution à l'étude des Sphecidae d'Espagne (Hymenoptera). Eos. Revista Española de Entomología 38:17-40.
—. 1964. Insecta Helvetica, Fauna 3, Hymenoptera: Sphecidae. Imprimerie La Concorde, Lausanne. 169 pp.
—. 1965. Les Sphecidae de la Grèce (Hym.). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 38:1-65.
—. 1966. Quelques Sphecidae de la faune d’Egypte (Hym.). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 38:203-212.
—. 1967. Hymenoptera: Sphecidae. South African Animal Life 13:502-512.
-. 1968. Sphecidae des îles Canaries (Hymenoptera). Bulletin of the British Museum (Natural History). Entomology 21:245-278.
—. 1970a (1969). Beiträge zur Kenntnis der Fauna Afghanistans (Sammelergebnisse von O. Jakeš 1963-1964, D. Povolný 1965, D. Povolný \& Fr. Tenora 1966, J. Šimek 1965-66, D. Povolný, J. Gaisler, Z. Šebek \& Fr. Tenora 1967). Sphecidae, Hym. Časopis Moravského Musea (= Acta Musei Moraviae) 54 (supple-ment):385-406.
—. 1970b. Sphecidae de l'Iran (Hym.) (Résultats de voyages entomologiques de Willi Richter, Stuttgart, en Iran, en 1954 et 1956). Stuttgarter Beiträge zur Naturkunde aus dem Staatlichen Museum für Naturkunde in Stuttgart No. 220:1-18.
de Beaumont, J., H. Bytinski-Salz, and W. Pulawski. 1973. The Sphecidae (Hym.) of Eretz Israel. III. Subfamilies: Astatinae, Larrinae, Trypoxyloninae, Pemphredoninae, Crabroninae, Oxybelinae. Israel Journal of Entomology 8:1-26.
de Gaulle, J. 1908. Catalogue systématique \& biologique des Hyménoptères de France (suite). Feuille des Jeunes Naturalistes 38:102-104, 120-122.
Deleurance, E.Ph. 1945. Sur l'éthologie d'un Tachytes chasseur de Mantes Tachysphex costai Dest. (Hym. Sphegidae). Bulletin du Muséum d'Histoire Naturelle de Marseille 5:25-29.
-. 1946 (1944). Etudes sur quelques éléments de la faunes entomologique du bois de Riège (Camargue). Annales de la Société Entomologique de France 113:31-70.
de Saussure, H. 1867. Reise der österreichschen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859 unter den Befehlen des Commodore B. von Wüllerstorf-Urbair. Zoologischer Theil. Zweiter Band. Hymenoptera. Familien der Vespiden, Sphegiden, Pompiliden, Crabroniden und Heterogynen. Wien. 138 pp., pls. 1-4.
—. 1890-1892. Histoire physique, naturelle et politique de Madagascar publiée par Alfred Grandidier. Volume XX. Histoire naturelle des Hyménoptères. Imprimerie Nationale, Paris, xxi + 590 pp., 27 pls. (1890:i-xxi, 1-176, pls. 1-20; 1892:177-590, pls. 21-27). Dating after Bohart and Menke, 1976.
de Stefani Perez, T. 1882. Osservazioni entomologiche fatte nel territorio de Sciacca e descrizione d'un nuovo Tachytes. Il Naturalista Siciliano 1:38-42, pl. 3.
-. 1895. Catalogo degli Imenotteri di Sicilia. Il Naturalista Siciliano 14:169-152, 224-235.
Diniz, M.A. 1959. Estado actual do conhecimento dos Himenópteros de Portugal. Memórias e Estudos do Museu Zoológico da Universidade de Coimbra No. 259:1-42.
-. 1964. Notas sobre Himenópteros de Portugal - III. Os Larríneos (Hym. Sphec.) de Portugal Continental no Museo Zoológico da Universidade de Coimbra. Memórias e Estudos do Museu Zoológico da Universidade de Coimbra No. 291:1-8.
Dollfuss, H. 1983. Catalogus Faunae Austriae. Ein systematischer Verzeichnis aller auf österreichischem Gebiete festgestellten Tierarten. Teil XVII: Fam.: Sphecidae. Verlag der Österreichischen Akademie der Wissenschaften, Wien. 32 pp.
-. 1987. Neue und bemerkenswerte Funde von Grabwespen (Hymenoptera, Sphecidae) in Österreich. Linzer Biologische Beiträge 19:17-25.
-. 1988. Faunistische Untersuchungen über die Brauchbarkeit von Grabwespen (Hymenoptera, Sphecidae) als Umweltindikatoren durch Vergleich neuer und älterer Aufnahmen von ausgewahlten Lokalfaunen im östlichen Österreich. Linzer Biologische Beiträge 20:3-36.
-. 1989. Verzeichnis der Grabwespentypen am Naturhistorischen Museum in Wien (Hymenoptera, Sphecidae). Kataloge der wissenschaftichen Sammlungen des Naturhistorischen Museums in Wien. Entomologie 7(4):1-26.
-. 1990. Aculeate Hymenoptera collected 1985 in the Republic of Central Africa (Sphecidae, Eumenidae, Vespidae, Pompilidae, Chrysididae and Scoliidae). Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen 42:121-124.
-. 1994. Rote Liste gefährdeter Grabwespen (Hymenoptera, Sphecidae) in J. Gepp, ed., Rote Listen gefährdeter Tiere Österreichs. Grüne Reihe des Bundesministeriums für Umwelt, Jugend und Familie, volume 2. Styria Medien Service, Graz. 355 pp.
Dufour, L. 1854 (1853). Signalements de quelques espèces nouvelles ou peu connus d'Hyménoptères algériens. Annales de la Société Entomologique de France (Troisième série) 1:375-382.
Dusmet, J.M. 1915. Himenópteros de Aragón. Boletín de la Sociedad Aragonesa de Ciencias Naturales 14:81-92.
Erlandsson, S. 1974. Hymenoptera Aculeata from the European parts of the Mediterranean countries. Eos. Revista Española de Entomología 48:11-93.
Evans, H.E. 1958. Studies on the larvae of digger wasps (Hymenoptera, Sphecidae). Part IV: Astatinae, Larrinae, and Pemphredoninae. Transactions of the American Entomological Society 84:109-139, pls. 2-8.
-. 1964. Further studies on the larvae of digger wasps (Hymenoptera, Sphecidae). Transactions of the American Entomological Society 90:235-299, pl. 8-19.
-. 1974. The larva of Tachysphex plicosus Costa (Hymenoptera, Sphecidae). Polskie Pismo Entomologiczne 44:719-722.
Evans, h.E., R.W. Matthesw, and W.J. Pulawski. 1976. Notes on the nests and prey of four Australian species of Tachysphex Kohl, with description of a new species (Hymenoptera: Sphecidae). Journal of the Australian Entomological Society 15:441-445.
Fabre, J.-H. 1886. Souvenirs entomologiques (Troisième série). Études sur l'instinct et les moeurs des insectes. Librairie Ch. Delagrave, Paris. 433 pp.
Ferton, Ch. 1897. Nouvelles observations sur l'instinct des Pompilides (Hyménoptères). Actes de la Société Linnéenne de Bordeaux 52:101-132.
-. 1901a. Notes détachées sur l'instinct des Hyménoptères mellifères et ravisseurs avec la description de quelques espèces. Annales de la Société Entomologique de France 70:83-148, pls. 1-3.
-. 1901b. Les Hyménoptères de la Corse (Apiaires, Sphégides, Pompilides et Vespides). Compte-Rendu de l'Association Française pour l'Avancement des Sciences. Congrès d'Ajaccio, pp. 677-680.
-. 1905. Notes détachées sur l'instinct des Hyménoptères mellifères et ravisseurs (3^{e} Série) avec la description de quelques espèces. Annales de la Société Entomologique de France 74:56-104, pls. 3-4.
-. 1908. Notes détachées sur l'instinct des Hyménoptères mellifères et ravisseurs (4e Série) avec la description de quelques espèces. Annales de la Société Entomologique de France 77:535-586, pl. 14.
-. 1909. Notes détachées sur l'instinct des Hyménoptères mellifères et ravisseurs (5° Série) avec la description d'une espèce nouvelle. Annales de la Société Entomologique de France 78:401-422.
-. 1912 (1911). Notes détachées sur l'instinct des Hyménoptères mellifères et ravisseurs (7^{e} Série) avec la description de quatre espèces nouvelles. Annales de la Société Entomologique de France 80:351-412.
-. 1923. La Vie des Abeilles et des Guêpes. Oeuvres choisies, groupées et annotées par Etienne Ribaud et François Picard. Étienne Chiron, Paris. xv +376 pp.
Frilli, F., and W. Pizzaghi. 1975. Contributo alla conoscenza dell'entomofauna dell'Appennino e della pianura attorno a Piacenza. Entomologica 11:29-80.
Frivaldszky, J. 1877 (1876). Adatok Temes és Krassó megyék faunájahoz - Data ad faunam Hungariae meridionalis comitatum Temes et Krassó. Mathematikai és Természetudomanyi Közlemények 13:285-378, 1 pl .
Fox, W. 1896. The Hymenoptera collected by Dr. A. Donaldson Smith in Northeast Africa. Proceedings of the Academy of Natural Sciences of Philadelphia 1896:547-559.
Gadallah, N.S., and B.M. Assery. 2004. Comparative study of the skeletal parts of the sting apparatus in some sphecid species from Saudi Arabia (Hymenoptera: Sphecidae). Linzer Biologische Beiträge 36:1393-1412.
Gayubo, S.F. 1984a. Contribución al conocimiento de los esfécidos de la Provincia de Salamanca. III. Astatinae, Larrinae y Crabroninae. Graellsia 40:81-97.
—. 1984b. Aportación al conocimiento de los esfécidos de El Algarve (Portugal) (Hym., Sphecidae). Boletim da Sociedad Portuguesa de Entomologia 2:349-387.
-. 1985a. La colección de himenópteros aculeados del C.R.I.D.A. 05 (INIA) (Valladolid), I.- Sphecidae "pro parte" (Hymenoptera). Boletín de la Asociación Española de Entomología 9:165-174.
-. 1985b. Sobre la biologia de los Esfécidos ibericos. II. (Hymenoptera, Sphecidae). Boletim da Sociedad Portuguesa de Entomologia Suplemento 1 (II Congresso Ibérico de Entomologia):483-490.
-. 1986a. Fauna esfecidologica de la Provincia de Zamora. I. Sphecinae, Pemphredoninae, Astatinae y Larrinae (Hymenoptera: Sphecidae). Anales de Biología. Universidad de Murcia 7:27-35.
-. 1986b. Notas sobre la esfecidofauna andaluza (Hymenoptera: Sphecidae). Trabajos y Monografías del Departamento de Zoologia (Nueva Serie). Universidad de Granada (España) 8:31-44.
-. 1986c. Sobre la biología de los esfécidos ibéricos. III. (Hymenoptera: Sphecidae). Actas de las VIII Jornadas de la Asociación Española de Entomología, pp. 996-1002.
-. 1987 (1986). Fauna Esfecidologica de la Provincia de Ciudad Real. I. Sphecinae, Pemphredoninae, Astatinae y Larrinae. Graellsia 42:103-119.
Gayubo, S.F., J.D. Asís, and J. Tormos. 1990 (1989). Nuevos datos sobre la esfecidofauna ibérica II (Hymenoptera: Sphecidae). Eos. Revista Española de Entomología 65:7-21.
Gayubo, S.F., and W. Borsato. 1994 (1991). Contribución al conocimiento de la esfecidofauna italiana (Hymenoptera: Sphecidae). Bollettino del Museo Civico di Storia Naturale di Verona 18:195-225.
Gayubo, S.F., V. Borsato, and G. Osella. 1991 (1988). Esfécidos italianos de la collectión del Museo Civico de Historia Natural de Verona (Italia) (Hymenoptera: Sphecidae). Bollettino del Museo Civico di Storia Naturale di Verona 15:383-424.
-. 1992 (1989). Esfécidos paleárticos de la collectión del Museo Civico de Historia Natural de Verona (Italia) (Hymenoptera: Sphecidae). Bollettino del Museo Civico di Storia Naturale di Verona. 16:269-294.
Gayubo, S.F., J. García, F. Torres, and J.A. González. 1999. Contribución al conocimiento de los esfécidos (Hymenoptera, Sphecidae) de la provincia de Soria (España) - Contribution to the knowledge of the sphecid wasps (Hymenoptera, Sphecidae) from the province of Soria (Spain). Boletín de la Real Sociedad Española de Historia Natural 95:87-99.
Gayubo, S.F., J.A. González, and F. Torres. 2000. Estudio de una comunidad de esfécidos en la zona natural de "Las Arribes del Duero" (Salamanca, Oeste Español) (Hymenoptera, Sphecidae). Fragmenta Entomologica 32:181-209.
Gayubo, S.F., and C. Heras. 1986. Esfecidofauna de las areas de Cuellar y Segovia (Provincias de Segovia y Valladolid). Hymenoptera: Sphecidae. Acta Salamanticensia 78:1-105.
Gayubo, S.F., and E. Mingo. 1988. Sphecidae de España. IV. Larrinae (Hymenoptera). Eos. Revista Española de Entomología 64:73-90.

Gayubo, S.F., and F. Sanza. 1986. Esfecidofauna de la margen derecha de la cuenca alta del Duero (Hymenoptera: Sphecidae). Acta Salmanticensia, Serie Varia 74:1-115.
Gayubo, S.F., J.L. Nieves-Aldrey, J.A. González, J.D. Asís, C. Rey del Castillo, and J. Tormos. 2004. La comunidad de avispas esfeciformes de la Estación biogeológica de el Ventorillo (Sector Medio de la Sierra de Guadarrama, Madrid, España) (Hymenoptera, Apoidea, Ampulicidae, Sphecidae y Crabronidae). Nouvelle Revue d'Entomologie (Nouvelle Série) 21:125-156.
Gayubo, S.F., J.L. Nieves-Aldrey, J.A. González, J. Tormos, C. Rey del Castillo, and J.D. Asís. 2004. Diversidad de avispas Spheciformes (Hymenoptera, Apoidea, Ampulicidae, Sphecidae y Crabronidae) colectadas mediante trampa Malaise en el Monte de El Pardo (Madrid, España). Boletín de la Real Sociedad Española de Historia Natural. Sección Biologica 99:105-113.
Gayubo, S.F., and J. Tormos. 1984. Nuevas aportaciones al conocimiento de la esfecidofauna valenciana (Hym., Sphecidae). Publica Fundación Entomológica "Juan de Torres Sala", Serie Hymenoptera, Cuaderno 1. Valencia. Titlepage, 35 unnumbered pages.
-. 1986. Notas sobre la esfecidofauna de Castellón de la Plana (Hym., Sphecidae). Publica Fundación Entomológica "Juan de Torres Sala", Valencia, Serie Hymenoptera, Cuaderno 3. Valencia. 22 pp.
Gayubo, S.F., and F. Torres. 1991. Efecto de la presión urbana sobre abejas y avispas (Hymenoptera, Aculeata) en Salamanca. IV. Sphecidae. Boletín de la Real Sociedad Española de Historia Natural. Seccíon Biológica 87:73-92.
Generani, M, G. Pagliano, P.L. Scaramozzino, and F. Strumia. 2003 (2001). Gli Imenotteri delle isole di Capraia, Giglio, Gorgona, Pianosa e Montecristo (Arcipelago Toscano) (Insecta: Hymenoptera). Frustula Entomologica 24:51-74.
Georghiou, G.P. 1977. Ta entoma kai akarea tes Kyprou. Kefisia, Athenai. 347 pp.
Gerstaecker, A. 1858. [Übersicht der von Hrn. Peters in Mossambique aufgefundenen und von Hrn. Dr. Gerstaecker bearbeiteten Hymenopteren aus den Familien der Crabronites, Sphegidae, Pompilidae und Heterogyna]. Monatsberichte der Königlichen Preussischen Akademie der Wissenschaften zu Berlin 1857:509-512.
-. 1862. Hymenoptera. Hautflügler. Pages 439-526, pls. 29-32 in W.C.H. Peters, Naturwissenschaftliche Reise nach Mossambique auf Befehl seiner Majestät des Königs Friedrich Wilhelm IV in den Jahren 1842 bis 1848 ausgeführt. Georg Reimer, Berlin. 566 pp., 34 pls.
Gess, F.W. 1981. Some aspects of an ethological study of the aculeate wasps and the bees of a karroid area in the vicinity of Grahamstown, South Africa. Annals of the Cape Provincial Museums. Natural History 14:1-80.
Giner Marí, J. 1934. Contribución al conocimiento de la fauna himenopterológica de España. Eos. Revista Española de Entomología 10:129-146.
—. 1943. Himenópteros de España. Fam. Sphecidae. Instituto Español de Entomología, Madrid. 270 pp.
-. 1945 (1944). Resultados cientificos de un viaje entomológico al Sáhara español y zona oriental del Marruecos español. Eos. Revista Española de Entomología 20:351-385.
-. 1947. Himenópteros del Sahara español. III. Familias: Sphecidae, Apterogynidae, Mutillidae y Psammocharidae. Eos. Revista Española de Entomología 23:17-31.
Giordani Soika, A. 1939. Sesto contributo alla conoscenza degli Imenotteri del Lido di Venezia. Bollettino della Società Entomologica Italiana 71:72-74.
-. 1944. Risultati di raccolte imenotterologiche in Sicilia. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 83:5-21.
Goebel, F. 1937. Beitrag zur Kenntnis der Sphegidenfauna (Hym. acul.) des Posener Landes. Deutsche Wissenschaftliche Zeitschrift für Polen 32:27-54.
González, J.A., S.F. Gayubo, J.D. Asís, J. Tormos, and C. García. 2003. Estructura y dinámica temporal de la comunidad de avispas esfeciformes (Hymenoptera: Apoidea: Ampulicidae, Sphecidae y Crabronidae) en un pastizal de la Cuenca Alta del Duero (España). Boletin de la Sociedad Entomologica Aragonesa 32:59-65.
González, J.A., S.F. Gayubo, and F. Torres. 1998. Estudio comparativo de la biodiversidad de esfécidos colectados mediante trampa Malaise en un sector arenoso de la cuenca de Duero (España) (Hymenoptera: Sphecidae). Nouvelle Revue d'Entomologie (Nouvelle Série) 15:351-370.
-. 1999. Diversidad y abundancia de esfécidos (Hymenoptera, Sphecidae) en un sector arenoso de la Submeseta Norte (España). Boletín de la Real Sociedad Española de Historia Natural 94:71-85.
Gorobchishin, V.A. 1995. Royushchiye osy (Hymenoptera, Sphecidae) Kanevskogo zapovednika i prilegayushchikh territoriy - Digger wasps (Hymenoptera, Sphecidae) of Kanev Reserve and bordering territories. Izvestiya Khar'kovskogo Entomologicheskogo Obshchestva 3:17-19.
-. 1996. Biotopicheskoye raspredeleniye royuschchikh os (Hymenoptera, Sphecidae) Kanevskogo Zapovednika i prilegayushchikh territoriy [= Biotopic distribution of sphecid wasps in Kanev Nature Reserve and adjacent territories, Ukraine]. Zapovidna Sprava v Ukrä̈n 2:52-53.
Graeffe, E. 1911. Übersicht der Grabwespen (Fossores) des Küstenlandes. Bollettino della Società Adriatica di Scienze Naturali in Trieste 25:42-53.
Grandi, G. 1928a. Contributi alla conoscenza biologica e morfologica degli Imenotteri melliferi e predatori. VI. Bollettino del Laboratorio di Entomologia del R. Istituto Superiore Agrario di Bologna 1:2-31, pl. 1.
—. 1928b. (1927). Contributi alla conoscenza degli Imenotteri melliferi e predatori. Primo elenco dei Vespoidea (partim), degli Sphecoidea e degli Icneumonidi raccolti nell'Emilia. Memorie della Società Entomologica Italiana 6:5-20.
—. 1929. Contributi alla conoscenza biologica e morfologica degli Imenotteri melliferi e predatori. IX. Bollettino del Laboratorio di Entomologia del R. Istituto Superiore Agrario di Bologna 2:255-291, pls. 7-10.
-. 1930. Contributi alla conoscenza biologica e morfologica degli Imenotteri melliferi e predatori. XI. Bollettino del Laboratorio di Entomologia del R. Istituto Superiore Agrario di Bologna 3:302-343, pls. 9-12.
-. 1934. Contributi alla conoscenza degli Imenotteri melliferi e predatori. XIII. Bollettino del Laboratorio di Entomologia del R. Istituto Superiore Agrario di Bologna 7:1-144, pls. 1-8.
-. 1935. Contributi alla conoscenza degli Imenotteri Aculeati. XV. Bollettino dell' Istituto di Entomologia della R. Università di Bologna 8:27-121, pls. 1-4.
-. 1937. Contributi alla conoscenca degli Imenotteri Aculeati. XVI. Bollettino dell' Istituto di Entomologia della R. Università di Bologna 9:253-344.
-. 1954. Contributi alla conoscenza degli Imenotteri Aculeati. XXVI. Bollettino dell'Istituto di Entomologia della Università di Bologna 20:81-255.
-. 1957. Contributi alla conoscenza degli Imenotteri Aculeati. XXVII. Bollettino dell' 'stituto di Entomologia della Università di Bologna 22:307-398.
-. 1959. Contributi alla conoscenza degli Imenotteri Aculeati. XXVIII. Bollettino dell' 'stituto di Entomologia della Università di Bologna 23:239-292.
-. 1961. Studi di un Entomologo sugli Imenotteri superiori. Bollettino dell'Istituto di Entomologia della Università di Bologna 25:1-659.
Groh, K. 1982. Zum Auftreten einiger, bisher von den Kapverdischen Inseln nicht oder wenig bekannter Tiergruppen (Articulata und Vertebrata). Courier Forschungsinstitut Senckenberg 52:249-264.
Guichard, K.M. 1978. Additions to the Greek wasp fauna (Hymenoptera Sphecidae). Annales Musei Goulandris 4:267-272.
-. 1980. A preliminary account of the sphecid wasps of Oman (Hymenoptera, Sphecidae). The Journal of Oman Studies. Special Report No. 2:223-232.
-. 1991. Sphecidae (Hymenoptera) from Jordan including a new species of Crabro. Linzer Biologische Beiträge 23:337-343.
Guiglia, D. 1932. Spedizione scientifica all'oasi di Cufra (marzo-luglio 1931). Imenotteri aculeati. Annali del Museo Civico di Storia Naturale Giacomo Doria 55:466-486.
-. 1934. Sphegidae, p. 290-307 in E. Zavattari, ed., Prodromo della fauna della Libia. Tipografia Già Cooperativa, Pavia. 1234 pp.
-. 1938. Contributi alla conoscenza della fauna entomologica della Sardegna. Hymenoptera - Scoliidae, Sapygidae, Vespidae, Sphecidae. Memorie della Società Entomologica Italiana 17:5-14.
—. 1939a. Imenotteri aculeati del Fezzan sud occidentale e dei Tassili d'Aggèr (Missione Scortecci 1936). (Scoliidae, Psammocharidae, Sphecidae, Apidae). Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 78:179-193.
—. 1939b. Hymenoptera Chrysididae, Scolidae, Mutillidae, Vespidae, Psammocharidae, Sphecidae. Pages 45-77 in: Missione Biologica nel paese dei Borana. Raccolte zoologiche. Reale Accademia d'Italia, Roma.
-. 1940. Note sopra alcuni imenotteri aculeati della Libia (Scoliidae, Sphecidae). Annali del Museo Libico di Storia Naturale 2:277-293.
-. 1942. Gli imenotteri della Libia (Sphecidae, Pompilidae, Scolidae, Vespidae, Apidae). Annali del Museo Libico di Storia Naturale 3:227-249.
-. 1943a. Nuove raccolte d'Imenotteri Aculeati compiute nell'Albania settentrionale dal Dr. F. Capra (Scolidae, Vespidae, Pompilidae, Sphecidae). Bollettino della Società Entomologica Italiana 75:90-93.
-. 1943b. Missione biologica Sagan-Omo diretta dal Prof. E. Zavattari. Nuove specie d'Imenotteri Aculeati (Pompilidae - Sphecidae). Diagnosi preventive. Bollettino della Società Entomologica Italiana 75:68-76.
—. 1944. Gli Sfecidi italiani del Museo di Milano (Hymen.). Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 11:1-44, pls. 1-5.
-. 1948. Contributi alla conoscenza della fauna imenotterologica della Sardegna (III). Imenotteri raccolti in Sardegna dal Prof. F.B. Boselli (Scoliidae, Eumenidae, Vespidae, Sphecidae). Annali del Museo Civico di Storia Naturale di Genova 63:197-204.
-. 1950. Missione biologica Sagan-Omo diretta dal Prof. Edoardo Zavattari. Hymenoptera Tenthredinidae, Scoliidae, Pompilidae, Sphecidae. Annali del Museo Civico di Storia Naturale di Genova 64:207-260, pl. 2.
Gusenleitner, J. 1992. Neue und Bemerkenswerte Grabwespenfunde für Österreich (Hymenoptera, Sphecidae). Linzer Biologische Beiträge 24:683-689.
-. 1998. Hymenopterologische Notizen aus Österreich - 9 (Insecta: Hymenoptera aculeata). Linzer Biologische Beiträge 30:497-501.
Gussakovski, V.V. 1933 (1932). Sphecidae i Psammocharidae (Hymenoptera), sobrannyie N. Zarudnym v vostochnoy Persii - Sphecidae et Psammocharidae (Hymenoptera), a cl. N. Zarudnyi in Persia orientali collectae. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR (= Travaux de l'Institut Zoologique de l'Académie des Sciences de l'URSS) 1:269-307. [pagination in error, should be 369-407]
-. 1935. K faune os (Hymenoptera, Sphecodea et Vespodea) Tadzikistana - Sphecodea und Vespodea von Tadjikistan. Trudy Tadzhikskoy Bazy Akademii Nauk SSSR (= Travaux de la Filiale de l'Académie des Sciences de l'URSS au Tadjikistan) 5:409-467.
—. 1952. Novye i maloizvestnye vidy Psammocharidae i Sphecidae (Hymenoptera) zapadnogo Tadzhikistana [= New and little known species of Psammocharidae and Sphecidae of Tajikistan]. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR 10:199-288.
Hancock, D.L., R. Chahwanda, and P. Mhlanga. 1995. A catalogue of the insect type specimens in the Natural History Museum of Zimbabwe. Syntarsus 2:1-46.
Heinrich, J. 1967. Beiträg zur Hymenopteren-Fauna des westlichen Unterfranken. Sphecidae - Grabwespen. Bayerische Tierwelt 1:69-84.
Heldmann, G. 1953. Die Tierwelt, p. 101-113 in: Eberstädter Naturpfad. Darmstadt.
Hensen, R.V., and P.D.J. van Ooijen. 1987. Notes on Turkish Tachysphex Kohl (Hymenoptera: Sphecidae). Entomologische Berichten 47:12-16.
Hohmann, H., F. La Roche, G. Ortega, and J. Barquin. 1993. Bienen, Wespen und Ameisen der Kanarischen Inseln - Abejas, avispas y hormigas de las Islas Canarias - Bees, wasps and ants of the Canary Islands. Veröffentlichungen aus dem Übersee-Museum Bremen. Naturwissenschaften 12, vol. 1:1-465, 12 pls.; vol. 2:493-894.
Honoré, A. 1942. Introduction à l'étude des Sphégides en Egypte (Hymenoptera: Aculeata). Bulletin de la Société Fouad Ier d'Entomologie 26:25-80.
Islamov, Sh.D. 1986. Royushchiye osy (Hymenoptera, Sphecidae) gornykh rayonov Uzbekistana - Diggerwasps (Hymenoptera, Sphecidae) in the mountainous regions of Uzbekistan. Éntomologicheskoye Obozreniye 65:513-534.
Ivanov, K., and T. Ljubomirov. 2001. Tsipokrili nasekomi (Insecta: Hymenoptera) ot Kresnenskiya prolom Hymenoptera (Insecta) in Kresna Gorge (SW Bulgaria). Pages 205-215 in P. Beron, ed., Bioraznoobraziye na Kresnenski prolom - Biodiversity of Kresna Gorge (SW Bulgaria). National Museum of Natural History, Sofia. 349 pp.

Jacobs, H.J., and J. Oehlke. 1990. Beiträge zur Insektenfauna der DDR: Hymenoptera: Sphecidae. 1. Nachtrag. Beiträge zur Entomologie 40:121-229.
Józan, Z. 1981. The scoliid and sphecoid wasp fauna of the Hortobágy National Park (Hymenoptera). The fauna of the Hortobágy National Park, pp. 303-306.
-. 1983. A barcsi borókás fullánkos (Hymenoptera, Aculeata) faunája, I - The aculeate fauna of the juniper woodland of Barcs, Hungary I. Dunántúli Dolgozatok Természettudományi Sorozat 3:89-113.
-. 1985. Dél-Dunátúl kaparódarázs (Hymenoptera, Sphecoidea) faunájának alapvetése— Grundriss der Sphecoidea-Fauna (Hymenoptera) des Süd-Transdanubiens, Ungarn. A Janus Pannonius Múzeum Évkönyve 29:53-86.
-. 1986. The Scolioidea and Sphecoidea Fauna of the Kiskunság National Park. The fauna of the Kiskunság National Park, pp. 365-381.
-. 1992. A Boronka-melléki Tájvédelmi Körzet fullánkos hártyásszárnyú (Hymenoptera, Aculeata) faunájának alapvetése - Grundriss der Aculeaten-Fauna (Hymenoptera) des Landschaftschutzgebietes Boronkamelléki, Ungarn. Dunántúli Dolgozatok Természettudományi Sorozat 7:163-210.
—. 1995. Adatok a tervezett Duna-Dráva Nemzeti Park fullánkos hártyásszárnyú (Hymenoptera, Aculeata) faunájának ismeretéhez - Beiträge zur Kenntnis der Aculeatenfauna (Hymenoptera) des Nationalparkes Duna-Dráva (Ungarn, Süd-Transdanubien). Dunántúli Dolgozatok Természettudományi Sorozat 8:99-115.
KARSAI, I. 1988. Ecofaunistical investigations of sphecoid fauna on a sandy grassland. Acta Biologica (Szeged) 34:97-106.
Kazenas, V.L. 1972. Royushchiye osy (Hymenoptera, Sphecidae) yugo-vostochnogo Kazakhstana Sphecidae (Hymenoptera) of the South-East Kazakhstan. Trudy Vsesoyuznogo Éntomologicheskogo Obshchestva 55:93-186.
—. 1978. Royushchiye osy Kazakhstana i Sredney Azii (Hymenoptera, Sphecidae). Opredelitel' — The digger wasps of Kazakhstan and Middle Asia (Hymenoptera, Sphecidae). The determinant. Izdatelstvo Nauka Kazakhskoy SSR, Alma Ata. 172 pp.
-. 1980. Materialy k faune royushchikh os (Hymenoptera, Sphecidae) Dal'nego Vostoka SSSR [= Contributions to the digger wasp fauna (Hymenoptera, Sphecidae) of the Soviet Far East]. Pages 80-94 in P.A. Lehr, ed., Taxonomiya nasekomykh Dal'nego Vostoka. Akademiya Nauk SSSR, Dal'nevostochnyi Nauchnyi Tsentr, Vladivostok. 122 pp.
-. 2001. Fauna i biologiya royushchikh os (Hymenoptera, Sphecidae) Kazakhstana i Sredney Azii [= Fauna and biology of sphecid wasps (Hymenoptera, Sphecidae) of Kazakhstan and Central Asia]. Kazgos INTI, Almaty. 333 pp .
-. 2002. Royushchiye osy (Hymenoptera, Sphecidae) Kazakhstana [= Sphecid wasps of Kazakhstan]. Tethys Entomological Research 4:3-173.
Kazenas, V.L., and P.A. Esenbekova. 2001. Royushchiye osy (Hymenoptera, Sphecidae) Almatinskogo zapovednika i prilegayushchikh territoriy - The digger wasps (Hymenoptera, Sphecidae) of Almatinskiy reserve and adjacent territories. Selevinia 2001:133-137.
Kazenas, V.L., and S.R. NasYrova. 1991. Royushchie osy (Hymenoptera, Sphecidae) - vragi pryamokrylykh (Orthoptera) v pustynnoy zone Kazakhstana [= Digger wasps (Hymenoptera, Sphecidae) as predators of Orthoptera in the desert zone of Kazakhstan]. Izvestiya Akademii Nauk Kazakhskoy SSR. Seriya Biologicheskaya 6:37-40.
Конц, F.F. 1878 (1877). Hymenopterologischer Beitrag. Verhandlungen der kaiserlich-königlichen Zoologisch-Botanischen Gesellschaft in Wien 27:701-710.
-. 1880. Die Raubwespen Tirol's nach ihrer horizontalen und verticalen Verbreitung, mit einem Anhange biologischer und kritischer Notizen. Zeitschrift des Ferdinandeums für Tirol und Vorarlberg 3, Heft 24:97-242.
—. 1883a. Über neue Grabwespen des Mediterrangebietes. Deutsche Entomologische Zeitschrift 27:161-186.
-. 1883b. Zur Synonymie der Hymenopterengattung Tachysphex. Wiener Entomologische Zeitung 2:226.
-. 1883c. Die Fossorien der Schweiz. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 6:647-684.
-. 1884. (1883). Neue Hymenopteren in den Sammlungen des k. k. zool. Hof-Cabinetes zu Wien. II. Verhandlungen der kaiserlich-königlichen Zoologisch-Botanischen Gesellschaft in Wien 33:331-386, pls.

17a-18.
—. 1885 (1884). Die Gattungen und Arten der Larriden Autorum [sic]. Verhandlungen der kaiserlichköniglichen Zoologisch-Botanischen Gesellschaft in Wien 34:171-267, pls. 8-9, 327-454, pls. 11-12.
-. 1888. Neue Hymenopteren in den Sammlungen des k.k. Naturhistorischen Hofmuseums. III. Verhandlungen der kaiserlich-königlichen Zoologisch-Botanischen Gesellschaft in Wien 38:133-156, pls. 3-4.
—. 1892. Neue Hymenopterenformen. Annalen des k.k. Naturhistorischen Hofmuseums 7:197-234, pls. 13-15.
—. 1893. Zur Hymenopteren-Fauna Niederösterreichs. Verhandlungen der kaiserlich-königlichen ZoologischBotanischen Gesellschaft in Wien 43:20-42.
—. 1898. Neue Hymenopteren. Annalen des k.k. Naturhistorischen Hofmuseums 13:91-102.
—. 1901. Über neue Arten der Hymenopteren-Gattung Tachysphex Kohl. Verhandlungen der kaiserlichköniglichen Zoologisch-Botanischen Gesellschaft in Wien 51:777-784, pl. 8.
—. 1906. Zoologische Ergebnisse der Expedition der kaiserlichen Akademie der Wissenschaften nach Südarabien und Sokotra im Jahre 1898-1899. Hymenopteren. Denkschriften [der] Kaiserlichen Akademie der Wissenschaften in Wien. Mathematisch-Naturwissenschaftliche Klasse 71:169-301, pls. 1-11.
Kohl, F.F., and A. Handlirsch. 1889. Transcaspische Hymenopteren. Verhandlungen der kaiserlichköniglichen Zoologisch-Botanischen Gesellschaft in Wien 39:267-286, pl. 7.
Kolesnikov, V. A. 1977. Royushchiye osy (Hymenoptera, Sphecidae) Bryanskoy oblasti i ikh znachenie kak entomofagov - Sphecid wasps (Hymenoptera, Sphecidae) of the Bryansk region as entomophagous insects. Éntomologicheskoye Obozreniye 56:315-325.
Königsmann, E. 1971. Himenópteros recogidos en Palamós, Provincia de Gerona, por el Profesor Dr. Hans Bischoff. Graellsia 26:99-114.
Krause, D.W. 2003. Late Cretaceous vertebrates of Madagascar: a window into Gondwanan biogeography at the end of the age of dinosaurs. Pages 40-47 in S.M. Goodman and J.P. Benstead, eds., The Natural History of Madagascar. The University of Chicago Press, Chicago and London. 1079 pp.
Krombein, K.V. 1972. Miscellaneous prey records of solitary wasps. VI. Notes on some species from Greece (Hymenoptera: Aculeata). Proceedings of the Entomological Society of Washington 74:383-385.
-. 1974. Supplement to a list of the wasps of Gebel 'Uweinat, Libyan Desert (Hymenoptera, Aculeata). Revue de Zoologie Africaine 88:450-452.
Krombein, K.V., and W.J. Pulawski. 1994. Biosystematic studies of Ceylonese wasps, XX: a revision of Tachysphex Kohl, 1883, with notes on other Oriental species (Hymenoptera: Sphecidae: Larrinae). Smithsonian Contributions to Zoology 552:iv + 106 pp.
Kruger, G.G. 1929. 3. Contributo alla conoscenza della Fauna Marmarica. Notiziario Economico della Cirenaica 2:3-24.
Leclerce, J. 1960. Hyménoptères Sphécides de Madagascar. Bulletin \& Annales de la Société Royale d'Entomologie de Belgique 96:96-100.
—. 1961. Hyménoptères Ampulicides et Sphécides récoltés par le Dr. Fred Keiser à Madagascar. Verhandlungen der Naturforschenden Gesellschaft in Basel 72:100-119.
—. 1967. Quatre Hyménoptères Sphecides nouveaux de Madagascar. Bulletin \& Annales de la Société Royale d'Entomologie de Belgique 103:63-70.
—. 1990. Hyménoptères Sphécides de Madagascar. Bulletin \& Annales de la Société Royale Belge d'Entomologie 126:113-121.
Lepeletier De Saint Fargeau, A.L.M. 1845. Histoire naturelle des Insectes. Hyménoptères. Vol. 3. Librairie Encyclopédique de Roret, Paris. $646+4$ pp., pls. 25-36.
Liubomirov, T. 1999. Preliminary studies on the digger wasp fauna (Insecta: Hymenoptera: Sphecidae) in Vitosha Mountain. Acta Zoologica Bulgarica 51:43-59.
-. 2001. Further investigations on the digger wasp fauna (Insecta: Hymenoptera: Sphecidae) in the Vitosha Mountain (Bulgaria). Acta Zoologica Bulgarica 53:45-59.
Lomholdt, O. 1985. A reclassification of the larrine tribes with a revision of the Miscophini of southern Africa and Madagascar (Hymenoptera: Sphecidae). Entomologica Scandinavica. Supplement 24:1-183.

Longstaff, G.B. 1911. Three weeks in the Sudan. The Entomologist's Monthly Magazine 47:119-127, 194-202.
Lucas, H. 1849. Exploration scientifique de l'Algérie pendant les années 1840, 1841 et 1842 publiée par ordre du gouvernement et avec le concours d'une commission académique, Sciences physiques, Zoologie, 3. Histoire naturelle des animaux articulés, 3. Insectes. Imprimerie Nationale, Paris. 527 pp. Publication date from Sherborn and Woodward, 1901, and Baker, 1994.
Luchetti, D. 1993. Lista preliminaria degli Imenotteri dell'arcipelago della Maddalena (Sardegna). Bollettino della Società Entomologica Italiana 125:103-108.
Madl, M. 1997. Über Sphecidae von der Insel Sainte Marie (Madagascar) (Hymenoptera). Linzer Biologische Beiträge 29:819-822.
Magretti, P. 1884. Risultati di raccolte imenotterologiche nell'Africa orientale. Annali del Museo Civico di Storia Naturale di Genova 21:523-636, pl. 1.
—. 1898. Imenotteri della seconda spedizione di Don Eugenio dei Principi Ruspoli nei paesi Galla e Somala. Annali del Museo Civico di Storia Naturale di Genova 39:25-56.
Maidl, F. 1924. Wissenschaftliche Ergebnisse der mit Unterstützung der Akademie der Wissenschaften in Wien aus der Erbschaft Treitl von F. Werner unternommenen zoologischen Expedition nach dem AngloÄgyptischen Sudan (Kordofan) 1914. XV. Hymenoptera. E. Scoliidae et Sphegidae. Denkschriften der Akademie der Wissenschaften in Wien. Mathematisch-Naturwissenschaftliche Klasse. Abteilung I 99:233-246.
-. 1933. Verzeichnis der von Univ.-Prof. Dr. Franz Werner und Prof. Dr. Richard Ebner 1930 in Marokko gesammelten Sphegiden und Scoliiden (Hym.). Mit Beschreibung einer neuen Art und einem Verzeichnis der übrigen in Marokko gesammelten Hymenopteren. Konowia 12:121-128.
Medina, M. 1896. Datos para el conocimiento de la fauna himenopterológica de España. Actas de la Sociedad Española de Historia Natural 1896:102-106.
Melo, G.A.R. 1999. Phylogenetic relationships and classification of the major lineages of Apoidea (Hymenoptera), with emphasis on crabronid wasps. Scientific Papers. Natural History Museum. The University of Kansas 14:1-55.
Menke, A.S. 1974. The dates of publications of A.G. Dahlbom's Hymenoptera Europaea, vol. 1. Polskie Pismo Entomologiczne 44:315-317.
-. 1988. Pison in the New World: a revision (Hymenoptera: Sphecidae: Trypoxylini). Contributions of the American Entomological Institute 24(3):iv + 171 pp.
-. 1992. Mole cricket hunters of the genus Larra in the New World (Hymenoptera: Sphecidae, Larrinae). Journal of Hymenoptera Research 1:175-234.
Mercet, R.G. 1909. Especies nuevas de «Tachysphex». Boletín de la Real Sociedad Española de Historia Natural 9:194-199.
—. 1910. Los Lárridos de España. Boletín de la Real Sociedad Española de Historia Natural 10:160-166.
Michener, C.D., and A. Fraser. 1978. A comparative anatomical study of mandibular structures in bees. The University of Kansas Science Bulletin 51:463-482.
Minoranskiy, V.A., and A.V. Shkuratov. 1996. K faune royushchikh os (Hymenoptera, Sphecidae) Rostovskoy oblasti. Izvestiya Vysshikh Uchebnykh Zavedeniy. Severo-Kavkazskiy Regyon. Estestvennyie Nauki 1996(4):80-83.
MocsÁry, A. 1879. Hymenoptera nova e fauna Hungarica. Természetrajzi Füzetek 3:115-141.
—. 1897. Ordo. Hymenoptera, pp. 1-113 in: A Magyar Birodalom Állatvilága. A Magyar birodalomból eddig ismert állatok rendszeres lajstroma. Magyarország ezeréves fennállásának emlékére kiadta a k.m. Természettudományi Társulat - Fauna Regni Hungariae. Animalium Hungariae hucusque cognitorum enumeratio systematica. III. Arthropoda. In memoriam regni Hungariae mille abhing annis constituti edidit Regia Societas Scientiarum Naturalium Hungarica. Budapest.
MócZÁr, L. 1938. Einige interessante mediterrane und steppenbewohnende Hymenopteren von de PótharasztPuszta. Fragmenta Faunistica Hungarica 1:79-80.
Morawitz, F. 1891. Ueber Astrachan'sche Fossorien. Horae Societatis Entomologicae Rossicae 25:175-233.
-. 1893. Catalog der von D. Glasunov in Turkestan gesammelten Hymenoptera Fossoria. Horae Societatis Entomologicae Rossicae 27:391-428.
-. 1894. Beitrag zur Raubwespenfauna Turkmeniens. Horae Societatis Entomologicae Rossicae 28:327-365. Morel, A., H. Nouvel, and H. Ribaut. 1956. Les Hyménoptères Vespiformes de la plaine littorale du département des Pyrénées-Orientales. Bulletin de la Société d'Histoire Naturelle de Toulouse 91:335-344.
Morice, F.D. 1897. New or little-known Sphegidae from Egypt. The Transactions of the Entomological Society of London 1897:301-316, pl. 6, 434 (a Correction).
-. 1911. Hymenoptera aculeata collected in Algeria. The Sphegidae (Being Part V of the work commenced by the late Edward Saunders, F.R.S., in Trans. Entomol. Soc., 1901, p. 515). The Transactions of the Entomological Society of London 1911:62-135.
Myartseva, S.N. 1963. Ekologicheskoye raspredeleniye royushchikh os (Hymenoptera, Sphecidae) v nizoviyakh Murgaba [= Ecological distribution of Sphecidae at lower Murgab River]. Izvestiya Akademii Nauk Turkmenskoy SSR. Seriya Biologicheskikh Nauk No. 4:56-63.
—. 1965. Royuchchiye osy (Hymenoptera, Sphecidae) nizoviy Murgaba, pp. 74-99 [= Sphecidae of lower Murgab River] in G.S. Medvedev and A.N. Luppova, eds., Nasekomyie nizoviy Murgaba (yugo-vostochnaya Turkmeniya). Fauna, ekologiya, khozaystvennoye znacheniye. Turkmenskoye Izdatelstvo, Askhabad. 147 pp .
-. 1972a. Fauna sfetsid yuzhnoy Turkmenii [= Sphecidae of southern Turkmenia]. Pages 75-100 in T. Tokgayev and S.N. Myartseva, eds., Nasekomyie yuzhnoy Turkmenii. Ylym, Askhabad. $154+$ [2] pp.
—. 1972b. Parazity i khishchniki royushchikh os Turkmenii [= Parasites and predators o Sphecidae in southern Turkmenia]. Pages 101-115 in T. Tokgayev and S.N. Myartseva, eds., Nasekomyie yuzhnoy Turkmenii. Ylym, Askhabad. 154 + [2] pp.
-. 1976. Zametki po biologii maloizuchennykh sfetsid Turkmenii (Hymenoptera, Sphecidae) [= On the biology of little-known Sphecidae in Turkmenia]. Pages 72-82 in A.O. Tashliev, ed., Ekologiya i khozaystvennoye znachenye nasekomykh Turkmenii. Ylym, Askhabad. 134 pp.
Nadig, A. 1933. Beitrag zur Kenntnis der Hymenopterenfauna von Marokko und Westalgerien. Erster Teil: Apidae, Sphegidae, Vespidae. Jahresbericht der Naturforschenden Gesellschaft Graubündens 71:37-107.
-. 1934. Beitrag zur Kenntnis der Orthopteren und Hymenopterenfauna von Sardinien und Korsika. Jahresbericht der Naturforschenden Gesellschaft Graubündens 72:3-39.
Nazarova, Sh.D. 1998. O royushchikh osakh (Sphecidae) zapovednika "Tigrovaya Balka" [= Sphecid wasps of the Nature Reserve "Tigrovaya Balka", Tajikistan]. Izvestiya Akademii Nauk Respubliki Tadzhikistan. Otdeleniye Biologicheskikh i Meditsinskikh Nauk 139:38-43.
Negrisolo, E. 1991 (1990). Hymenoptera Sphecidae e Scoliidae raccolti nel Friuli-Venezia Giulia e nel Veneto orientale. Gortania, Atti del Museo Friulano di Storia Naturale 12:313-327.
-. 1995a. The aculeate communites (Hymenoptera Aculeata) of two coastal areas of the Veneto region (northeastern Italy). Lavori. Società Veneziana di Scienze Naturali 20:15-25.
-. 1995b. Fascicolo 105. Hymenoptera Sphecidae. Pages 1-12 in A. Minelli, S. Ruffo, and S. La Posta, eds., Checklist delle Specie della Fauna Italiana. 99. Hymenoptera Chrysididae, by Franco Strumia, 100. Hymenoptera Bethylidae, Dryinidae, Sclerogibbidae, Embolemidae, by Massimo Olmi, 101. Hymenoptera Scolioidea, by Guido Pagliano, 102. Hymenoptera Formicidae, by Bruno Poldi, Maurizio Mei, and Fabrizio Rigato, 103. Hymenoptera Vespoidea, by Antonio Giordani Soika, and Walter Borsato, 104. Hymenoptera Pompilidae, by Guido Pagliano, 105. Hymenoptera Sphecidae, by Enrico Negrisolo, 106. Hymenoptera apoidea, by Guido Pagliano. Edizioni Calderini, Bologna. [Each fascicle has a separate pagination, 4 unnumbered introductory pages]
Negrisolo, E., and G. Pagliano. 1993. Su alcuni Sphecidae catturati in Sardinia (Hymenoptera). Bollettino della Società Sarda di Science Naturali 29:89-96.
Nieves-Aldrey, J.L., F. Fontal-Cazalla, A.M. Garrido-Torres, and C. Rey Del Castillo. 2003. Inventario de Hymenoptera (Hexapoda) en El Ventorillo: un rico enclave de biodiversidad en la Sierra de Guadarrama (España central) - Inventory of Hymenoptera (Hexapoda) from "El Ventorillo": a rich biodiversity spot in the Sierra de Guadarrama (central Spain). Graellsia 59:25-43.
Nouvel, H., and H. Ribaut. 1958. Faune terrestre et d'eau douce des Pyrénées-Orientales. Fascicule I. Hyménoptères vespiformes des environs de Banyuls-sur-Mer. Vie et Milieu 9, fasc. 2, Supplément:1-32.
Nurse, C.G. 1903. New species of Indian Aculeate Hymenoptera. Annals and Magazine of Natural History (Series 7) 11:511-526.
-. 1909. New and little known Indian Hymenoptera. The Journal of the Bombay Natural History Society 19:510-517.
Ohl, M., in cooperation with W. Arens, C. Bleidorn, M. Blösch, F. Burger, K. Cöllin, W. Dorow, B. Drewes, R. Franke, A. von der Heide, A. Hinrichsen, H.-J. Jacobs, A. Jakubzik, M. Jessat, J.-C. Kornmilch, M. Kuhlmann, K.E. Lauterbach, K. Mandery, H. Riemann, C. Saure, C. Schmid-Egger, Schmidt, R. Theunert, S. Tischendorf, C. Venne, S. Vidal, J. Voith, F. Wagner, K. Weber, K.-H. Wickl, R. Winter, and H. Woydak. 2001. Sphecidae, pp. 137-143 in H.H. Dathe, A. Taeger, and S.M. Blank, eds., Entomofauna Germanica. Band 4. Verzeichnis der Hautflügler Deutschlands. Entomologische Nachrichten und Berichte. Beiheft 7:1-178.
Olberg, G. 1959. Das Verhalten der solitären Wespen Mitteleuropas (Vespidae, Pompilidae, Sphecidae). VEB Deutscher Verlag für Wissenschaften, Berlin. XIII +402 pp.
PÁDR, Z. 1989. Sphecoidea. Pages 165-171 in Šedivy, ed., Enumeratio Insectorum Bohemoslovakiae. Checklist of Czechoslovak Insects III (Hymenoptera). Acta Faunistica Entomologica Musei Nationalis Pragae 19:1-185.
Pagliano, G. 1980. Fauna imenotterologica delle Langhe (Nota faunistica II - Sphecidae). Rivista Piemontese di Storia Naturale. 1:105-135.
-. 1990. Catalogo degli Imenotteri italiani. II.- Sphecidae. Bollettino del Museo Regionale di Scienze Naturali - Torino 8(1): 53-141.
-. 2003. Ricerche entomologiche nelle isole di Lapmedusa e Pantelleria (Hymenoptera Apocrita). Il Naturalista Siciliano (Serie IV) 27:115-149.
Pagliano, G., and P.L. Scaramozzino. 1995. Hymenoptera Gasteruptiidae, Ichneumonidae e Aculeata (esclusi Chrysidoidea, Mutillidae e Formicidae). Pages $723-738$ in B. Massa, ed., Arthropoda di Lampedusa, Linosa e Pantelleria (Canale di Sicilia, Mar Mediterraneo). Il Naturalista Siciliano 19 (Supplemento).
Partridge, T.C., B.A. Wood, and P.B. Demenocal. 1995. The influence of global climatic change and regional uplift on large-mammalian evolution in East and Southern Africa. Pages 331-355 in E.S. Vrba, G.H. Denton, T.C. Partridge, and L.H. Burckle, eds., Paleoclimate and Evolution, with Emphasis on Human Origins. Yale University Press, New Haven and London.
Perkins, J.F. 1942. Hymenoptera Aculeata captured in Southern Skåne, Sweden, in 1938. Annals and Magazine of Natural History (Series 11) 9:192-202.
Pittion, B. 1950. On the insect fauna of Cyprus. Results of the expedition of 1938 by Harald, Håkan, and P.H. Lindberg. V. Hymenoptera aculeata. I. Diploptera, Fossores und Apoidea der Insel Cypern. Commentationes Biologicae 10, No. 12:1-94.
Pretorius, E. 2005. Using geometric morphometrics to investigate wing dimorphism in males and females of Hymenoptera - a case study based on the genus Tachysphex Kohl (Hymenoptera: Sphecidae: Larrinae). Australian Journal of Entomology 44:113-121.
Pulawski, W.J. 1958. Sphecidae (Hymenoptera) récoltés pendant un voyage en Bulgarie. Polskie Pismo Entomologiczne 27:161-199.
-. 1962. Les Tachytes Panz. de la région paléarctique occidentale et centrale (Hym., Sphecidae). Polskie Pismo Entomologiczne 32:311-475.
-. 1964. Etudes sur les Sphecidae (Hym.) d'Egypte. Polskie Pismo Entomologiczne 34:63-155.
-. 1967. Hymenoptera from Turkey.- Sphecidae, II (Genera Astata Latreille and Tachysphex Kohl). Bulletin of the British Museum (Natural History). Entomology 19:383-410.
-. 1971. Les Tachysphex (Hym., Sphecidae) de la région paléarctique occidentale et centrale. Państwowe Wydawnictwo Naukowe, Wrocław. 464 pp.
-. 1972. Notes synonymiques sur quatre Sphecidae (Hym.) paléarctiques. Polskie Pismo Entomologiczne 42:817-820.
-. 1974a. A revision of the Neotropical Tachysphex Kohl (Hym., Sphecidae). Polskie Pismo Entomologiczne 44:3-80.
-. 1974b. Sur un Tachysphex et trois Astata (Hym., Sphecidae) de la région paléarctique occidentale. Polskie Pismo Entomologiczne 44:299-305.
-. 1975 (1974). Synonymical notes on Larrinae and Astatinae (Hymenoptera: Sphecidae). Journal of the

Washington Academy of Sciences 64:308-323.
-. 1977. A synopsis of Tachysphex Kohl (Hym., Sphecidae) of Australia and Oceania. Polskie Pismo Entomologiczne 47:203-332.
-. 1978. Nadsem. Sphecoidea Pages 173-279 in G.S. Medvedev, ed., Opredelitel' nasekomykh evropeyskoy chasti SSSR, Tom III. Pereponchatokrylyye, Pervaya chast' $[=$ Keys to the Identification of insects of European USSR, Vol. 3, part I]. Nauka, Leningrad. 584 pp.
-. 1979. A revision of the world Prosopigastra Costa (Hymenoptera, Sphecidae). Polskie Pismo Entomologiczne 49:3-134.
-. 1988. Revision of North American Tachysphex wasps including Central American and Caribbean species. Memoirs of the California Academy of Sciences 10:1-211.
-. 1991. A revision of the wasp genus Kohliella (Hymenoptera: Sphecidae). Proceedings of the California Academy of Sciences, Ser. 4, 47:289-302.
-. 1992. World species of the wasp genus Holotachysphex de Beaumont (Hymenoptera: Sphecidae). Proceedings of the Entomological Society of Washington 94:223-242.
-. 1995a. The wasp genus Tachytella Brauns, 1906 (Hymenoptera: Sphecidae). Journal of Hymenoptera Research 4:121-136.
-. 1995b. The wasp genus Gastrosericus Spinola, 1839 (Hymenoptera: Sphecidae). Memoirs of the California Academy of Sciences, no. 18. vi + 173 pp.
-. 2003. Hymenoptera: Heterogynaidae, Ampulicidae, Sphecidae, and Crabronidae: apoid wasps. Pages 793-810 in S.M. Goodman and J.P. Benstead, eds., The Natural History of Madagascar. The University of Chicago Press, Chicago and London. 1079 pp.
Radoszkowski, O. 1877. Sphegidae in Voyage au Turkestan d'A.P. Fedtchenko, fasc. 14, tome 2, partie 5. Izvestiya Imperatorskago Obshchestva Lyubiteley Estestvoznaniya, Antropologii i Étnografii pri Imperatorskom Moskovskom Universitete 26:1-87, pls. 1-8.
-. 1886 (1885-1887). Faune Hyménoptérologique Transcaspienne. Horae Societatis Entomologicae Rossicae 20:3-56, pls. 1-11.
-. 1887. Insecta in itinere Cl. N. Przewalskii in Asia Centrali novissime lecta. Horae Societatis Entomologicae Rossicae 21:41-51, pls. 2-3.
-. 1892. Essai sur une classification des Sphegides in sensu Linneano d'après la structure des armures copulatrices. Bulletin de la Société Impériale des Naturalistes de Moscou (Nouvelle Série) 5:571-596, pls. 19-23.
Roberti, D., F. Frilli, and W. Pizzaghi. 1965. Contributo alla conoscenza dell'entomofauna del Piacentino (Specie raccolte nel decennio 1955-1964). Entomologica 1:1-118.
Roche, C.G., and S.M. Zalat. 1994. The Sphecidae (order: Hymenoptera) of the Sinai Peninsula. Pages 113-118 in: Proceedings of the First Egyptian-Hungarian Conference on Environment, St. Catherine, Sinai, Egypt. April 5-7, 1993. Suez Canal University, Ismailia. 323 pp.
Rodgers, W.A., and K.M. Homewood. 1982. Species richness and endemism in the Usambara mountain forests, Tanzania. Biological Journal of the Linnean Society 18:197-242.
Rungs, CH. 1936. Observations sur quelques Hyménoptères du Maroc (Deuxième note). Bulletin de la Société des Sciences Naturelles du Maroc 16:15-31.
Saunders, E. 1904. Hymenoptera Aculeata from Majorca (1901) and Spain (1901-2). With introduction, notes and appendix by Prof. E.B. Poulton. The Transactions of the Entomological Society of London 1904: 591-665.
-. 1910. Hymenoptera Aculeata collected in Algeria by the Rev. Alfred Edwin Eaton, M.A., F.E.S., and the Rev. Francis David Morice, M.A., F.E.S. Part IV. Descriptions of new Sphegidae. The Transactions of the Entomological Society of London 1910:517-531.
Schembri, S. 1991. Sphecids [sic] wasps of the Maltese Islands. A review (Hymenoptera Sphecidae). Bollettino della Società Entomologica Italiana 122:175-184.
Schmidt, K. 1969. Zur Kenntnis der Grabwespenfauna des Rhein-Mainzgebietes (Hymenoptera, Sphecidae). Senckenbergiana Biologica 60:159-169.
Schmidt, K., and Ch. Schmid-EgGer. 1997. Kritisches Verzeichnis der deutschen Grabwespenarten (Hymenoptera, Sphecidae). Mitteilungen der Arbeitsgemeinschaft Ostwestfälisch-Lippischer Entomologen

13, Beiheft 3:1-35.
Schmidt, K., and P. Westrich. 1983. Beitrag zur Kenntnis der Grabwespenfauna Nord-Griechenlands (Hymenoptera, Sphecidae). Nachrichtenblatt der Bayerischen Entomologen 32:118-126.
Schneid, T. 1941. Die Faltenwespen (Vespidae) und Grabwespen (Sphegidae) der Umgebung Bambergs. Mitteilungen der Münchner Entomologischen Gesellschaft 31:1004-1053.
Schouteden, H. 1930. Les genres congolais de Sphégides. Revue de Zoologie et de Botanique Africaines 20:90-96.
Schulz W. A. 1904. Ein Beitrag zur Faunistik der paläarktischen Spheciden. Zeitschrift für Entomologie (Neue Folge) 29:90-102.
-. 1905. Hymenopteren-Studien. Wilhelm Engelmann, Leipzig. 147 pp.
Scobiola-Palade, X. 1966. Données nouvelles concernant les Hyménoptères du Delta du Danube (II). Travaux du Muséum d'Histoire Naturelle Grigore Antipa 6:389-396.
—. 1967. Ord. Hymenoptera (Suprafam. Tenthredinoidea, Scolioidea, Vespoidea, Sphecoidea et Pompiloidea) in X. Scobiola-Palade et A. Popescu-Gorj, eds., L'entomofaune des forêts du sud de la Dobroudja. Travaux du Muséum d'Histoire Naturelle Grigore Antipa 7:153-164.
-. 1968. L'Entomofaune de l'île de Letea (Delta du Danube). Ord. Hymenoptera, Superfam. Tenthredinoidea, Scolioidea, Vespidea, Pompiloidea et Sphecoidea. Travaux du Muséum d'Histoire Naturelle Grigore Antipa 9:133-147.
—. 1972. Ord. Hymenoptera - sousord. Symphyta, superfam. Vespoidea, Pompiloidea et Sphecoidea. (L'entomofaune du "grind" de Caraorman, delta du Danube). Travaux du Muséum d'Histoire Naturelle Grigore Antipa 12:141-154.
-. 1974. Ord. Hymenoptera (Subord. Symphyta, Superfam. Vespoidea, Pompiloidea, Sphecoidea) L'entomofaune du "grind" Sãrãturile-Sf. Gheorghe (delta du Danube). Travaux du Muséum d'Histoire Naturelle Grigore Antipa 14:141-148.
—. 1985 (1983). Rezultatele cercetãrilor hymenopterologice (Subord. Symphyta; Subord. Aculeata: Suprafam. Scolioidea, Pompiloidea, Sphecoidea) de pe grinurile Letea şi Caraorman (delta Dunãrii) între 1979-1981, Delta Dunãrii. 2. Studii şi Comunicari de Entomologie 1983:91-98.
Sherborn, C.D., and B.B. Woodward. 1901. Dates of publication of the zoological and botanical portions of some French Voyages. - Part II. Ferret and Galinier's 'Voyage en Abyssinie'; Lefebvre's 'Voyage en Abyssinie'; 'Exploration scientifique de l'Algérie'; Castelnau's 'Amérique du Sud'; Dumont d'Urville's 'Voyage de l'Astrolabe'; Laplace's 'Voyage sur la Favorite'; Jacquemont's 'Voyage dans l'Inde'; Tréhouart's 'Commission scientifique d'Islande'; Cailliaud, 'Voyage à Méroé'; 'Expédition scientifique de Morée'; Fabre, ‘Commission scientifique du Nord'; Du Petit-Thouars, 'Voyage de la Vénus'; and on the dates of the 'Faune Française.' Annals and Magazine of Natural History (Series 7) 8:161-164, 333-336, 491-494.
ShKURATOV, A.V. 2000. Materialy po faune royushchikh os (Hymenoptera, Sphecidae) okrestnostey stanitsy Vëshenskaya [= Sphecid wasps in the village Vëshenskaya area, Rostov Oblast', Russia] in: Gosudarstvennyi Muzey-Zapovednik M.A. Sholokhova. Rostovskiy Gosudarstvennyi Universitet. Priroda Gosudarstvennogo Muzeya-Zapovednika M.A. Sholokhova. Sbornik Statey. RostIzdat, Rostov-na-Donu.
-. 2001. K vidovomu sostavu dobychi royushchikh os (Hymenoptera, Sphecidae) nizhnego i srednego Dona i Primanychskikh stepey [= Prey of sphecid wasps in lower and middle Don River and Manych River basin, Russia] in: Ministerstvo Obrazovaniya Rossiyskoy Federatsii. Rostovskiy Gosudarstvennyi Universitet. Nauchnaya Konferentsiya Aspirantov i Soiskateley (Tezisy Dokladov, 2000 g.). Izdatelstvo Rostovskogo Universiteta, Rostov-na-Donu.
-. 2002. Fauna royushchikh os (Hymenoptera, Sphecidae) stepnogo zapovednika "Rostovskiy" i ego osobennosti po sravneniyu c faunoy raznotravo-tipchakovo-kovyl'nykh stepey Rostovskoy oblasti [= Sphecid wasps of the steppe nature reserve "Rostovskiy", Rostov Oblast', Russia], pp. 138-156 in V.A. Minoranskiy, ed., Komitet po Okhrane Okruzhayushchey Sredy i Prirodnykh Resursov Administratsii Rostovskoy Oblasti. Gosudarstvennyi Zapovednik "Rostovskiy". Trudy Gosudarstvennogo Zapovednika "Rostovskiy". Vypusk 1. Rostov-na-Dony. 272 pp.
Shlyakhtenok, A.S., and E. Skibinska. 2002. Zhalonosnye pereponchatokrylye (Hymenoptera, Aculeata) Belarusi: semeystvo royushchiye osy (Sphecidae) - Contribution to the knowledge of aculeate

Hymenoptera of Byelorus. Family digger wasps (Sphecidae). Vestnik Zoologii 36:31-40.
Siesser, W.G. 1978. Aridification of the Namib Desert: evidence from oceanic cores. Pages 105-113 in E.M. van Zinderen Bakker, ed., Antarctic glacial history and world palaeoenvironments. Balkema, Rotterdam.
Simon Thomas, R.T. 1969. Sphecidae collected at Tenerife. Entomologische Berichten 29:120.
-. 1972. Sphecidae (Hymenoptera) collected in Aquitaine, France. Bulletin. Zoologisch Museum, Universiteit van Amsterdam 2:173-190.
-. 1976. Hyménoptères vespiformes récoltés dans la Forêt de Campet (Lot-et-Garonne), France). Verslagen en Technische Gegevens. Instituut voor Taxonomische Zoöogie (Zoölogisch Museum), Universiteit van Amsterdam 8:1-10.
Smit, J. 2000. The wasps of Madeira (Hymenoptera: Chrysididae, Pompilidae, Vespidae, Sphecidae). Entomofauna 21:165-180.
Smith, F. 1856. Catalogue of Hymenopterous Insects in the Collection of the British Museum. Part IV. Sphegidae, Larridae and Crabronidae. Trustees of the British Museum (Natural History), London, pp. 207-497.
Spinola, M. 1805. Faunce Ligustica fragmenta. Decas prima. Typis Petri Cajetani Api, Genuae. 21 pp.
-. 1839 (1838). Compte-rendu des Hyménoptères récueillis par M. Fischer pendant son voyage en Egypte, et communiqués par M. le Docteur Waltl à Maximilien Spinola. Annales de la Société Entomologique de France 7:437-546.
Stadelmann, H. 1897. Bemerkungen zu Dalla-Torre's Fossorienkatalog. Entomologische Nachrichten 23:254-255.
Steiner, A.L. 1955 (1954). Les Hyménoptères prédateurs du Périgord Noir. I — Hyménoptères Sphecoidea de la région des Eyzies (Dordogne). Annales de la Société Entomologique de France 123:127-147.
-. 1981. Digger wasp predatory behavior (Hymenoptera, Sphecidae). IV. Comparative study of some distantly related Orthoptera-hunting wasps (Sphecinae vs. Larrinae), with emphasis on Prionyx parkeri (Sphecini). Zeitschrift fuir Tierpsychologie 57:305-339.
Storey, G. 1916. List of the Hymenoptera Tubulifera and Aculeata in the collection of the Ministry of Agriculture of Egypt. Bulletin de la Société Entomologique d'Egypte 4:100-117.
Suárez, F.J. 1959. Esfécidos de la Provincia de Almería (Hymenoptera). Archivos del Instituto de Aclimatación 8:51-61.
-. 1969. Esfécidos de la Provincia de Almería, II (Hymenoptera, Sphecoidea). Archivos del Instituto de Aclimatación 14:25-37, pls. 1-2.
Taschenberg, E.L. 1880. Hymenopterologische Ergänzungen zu frühern Arbeiten in dieser Zeitschrift. Zeitschrift für die Gesammten Naturwissenschaften 53:769-783.
TJEDER, B. 1954. Öskskånska insekter. 1. Trichoptera och Hymenoptera (partim). Opuscula Entomologica 19:58-69.
Tormos, J., J.D. Asís, and S.F. Gayubo. 1994. Especidofauna [sic] de la Provincia de Albacete (Hymenoptera: Sphecidae). Al-Basit. Revista de Estudios Albacetenses 20:183-246.
Tormos, J., and R. Jiménez. 1987a. Esfécidos de la Provincia de Valencia (Hym., Sphecoidea). Graellsia 42:121-130.
-. 1987b. Estudio comparativo de la esfecidofauna de la Dehesa de El Saler (Hymenoptera, Sphecoidea). Eos. Revista Española de Entomología 62:315-318.
Torregrosa, S.G., S.F. Gayubo, J. Tormos, and J. D. Asís. 1993. Esfécidos de la Provincia de Alicante (Hymenoptera: Sphecidae). Boletín de la Asociación Española de Entomología 17:9-25.
Tsuneki, K. 1972. Ergebnisse der zoologischen Forschungen von Dr. Z. Kaszab in der Mongolei. 284. Sphecidae (Hymenoptera). VI. Acta Zoologica Academiae Scientiarum Hungaricae 18:381-416.
Turner, R. 1911. Fossorial Hymenoptera from the Seychelles and other islands in the Indian Ocean. The Transactions of the Linnean Society of London. Zoology (Series 2) 14:367-374.
-. 1917a. Notes on fossorial Hymenoptera.- XXVII. On new species in the British Museum. Annals and Magazine of Natural History (Series 8) 19:317-326.
-. 1917b. A revision of the wasps of the genus Tachytes inhabiting the Ethiopian Region. Annals and Magazine of Natural History (Series 8) 20:1-43.
-. 1917c. On a collection of Sphecoidea sent by the Agricultural Research Institute, Pusa, Bihar. Memoirs of the Department of Agriculture in India. Entomological Series 5:173-205.
-. 1917d. Notes on fossorial Hymenoptera. - XXIX. On new Ethiopian species. Annals and Magazine of Natural History (Series 8) 20:289-298.
-. 1918. Notes on fossorial Hymenoptera - XXXV. On new Sphecoidea in the British Museum. Annals and Magazine of Natural History (Series 9) 1:356-364.
Vander Linden, P.L. 1829. Observations sur les Hyménoptères d'Europe de la famille de Fouisseurs, deuxième partie, Bembecides, Larrates, Nyssoniens et Crabronites. Nouvelles Mémoires de l'Académie Royale des Sciences et Belles Lettres de Bruxelles 5:11-125.
van Noort, S., G.L. Prinsloo, and S.G. Compton. 2000. Hymenoptera, excluding Apoidea (Apiformes) \& Formicidae (Insecta). Pages 289-364 in A.H. Kirk-Spring and E. Marais, eds., Dâures - Biodiversity of the Brandberg Massif, Namibia. Cimbebasia Memoir 9:1-389.
Voblenko, A.S., V.A. Gorobchishin, and M.A. Nesterov. 1996. Digger wasps (Hymenoptera, Sphecidae) of Ukrainian Polesye. Sphecos 30:14-15.
Vogrin, V. 1955. Prilog fauni Hymenoptera-Aculeata Jugoslavie. Zaštita Bilja 31:3-74.
von Schulthess, A. 1909. Hymenopteren aus Tripoli und Barka (exkl. Formicidae). Nach der Sammlung von Dott. Bruno Klaptocz im Jahre 1906. Zoologische Jahrbücher. Abteilung für Systematik 27:439-446.
-. 1926. Contribution à la connaissance de la faune des Hyménoptères de l'Afrique du Nord. Deuxième Partie - Fossores (en collaboration avec P. Roth). Bulletin de la Société d'Histoire Naturelle de l'Afrique du Nord 17:206-220.
-. 1929. Ricerche faunistiche nelle isole italiane dell'Egeo compiute da Alessandro Ghigi, Raffaele Issel, Alessandro Brian, Renato Santucci, Vittorio Citterio, Federico Alzani per incarico del Governo delle Isole Egee nell' Agosto 1926. Hyménoptères. Archivio Zoologico Italiano 13:133-141.
Ward, J.D., M.K. Seely, and N. Lancaster. 1983. On the antiquity of the Namib. South African Journal of Science 79:175-183.
Weber, K. 1998. Revision der "Wespensammlung" von T. Schneid in Naturkundemuseum Bamberg (Hymenoptera: "Scolioidea", Pompilidae, Vespidae und Sphecidae). Bericht der Naturforschenden Gesellschaft Bamberg 72:113-156.
Williams, M., D. Dunkerley, P. De Deckker, P. Kershaw, and J. Chappel. 1998 (reprinted 2003). Quaternary Environments, Second Edition. Arnold, London. 329 pp.
Wolf, H. 1959. Naussauische Grabwespen (Hym. Sphecoidea) (Beiträge zur Hymenopterenfauna des oberen Lahn-Dill-Sieggebietes VI). Jahrbücher des Nassauischen Verein für Naturkunde 94:20-36.
Zangheri, P. 1969. Repertorio sistematico e topografico della flora e fauna vivente e fossile della Romagna. Memorie Fuori Serie. Tomo IV. Museo Civico di Storia Naturale di Verona No. 1:1-1963.
Zavadil, V., and J. Šnoflák. 1948. Kutilky (Sphecidae) Československé republiky. Entomologické Příručky Entomologických Listû, No. 13, Vyškov. 179 pp.
Zettel, H., H. Gross, and K. Mazzucco. 2001. Liste der Grabwespen-Arten (Hymenoptera: Spheciformes) Wiens, Österreich. Beiträge zur Entomofaunistik 2:61-86.

APPENDIX I

Additional Species

Tachysphex merina Pulawski, sp. nov.

Figures 419, 420.
Derivation of name.- Merina, a Malagasy tribe of the central part of the island, where the holotype was collected; a noun in apposition to the generic name.

Recognition.- Tachysphex merina is an all black endemic of Madagascar. The female differs from the other Malagasy species in having the forefemoral venter, midtrochanteral venter, and midfemoral posteroventral face with large punctures that are several to many diameters apart; in addition, the setae are oriented posterad on the propodeal dorsum, tarsomeres IV are as long as wide, with the apicoventral margin concave, and the apical tarsomeres have one or a few small preapical spines on the venter. The unknown male probably has sparsely punctate forefemoral and/or midfemoral venter, like the female.

The female of merina resembles the southern African ibi, but unlike that species has a wider postocellar area (width $1.5 \times$ length rather than $0.9-1.0$), scutum unridged (rather than finely ridged adjacent to hindmargin), scutal punctures many diameters apart (rather than 2-3 diameter apart or less), mesopleural punctures beneath scrobe several diameters apart (rather than 2-3 diameters apart), and the foretibia all black (rather than with the red inner surface).

Description (based on holotype only).- Scutal punctures minute, many diameters apart except near margins; interspaces unsculptured, shiny. Mesopleural punctures several diameters apart beneath scrobe, interspaces alutaceous. Punctures of mesothoracic venter close to each other near midline, but many diameters apart around signum. Episternal sulcus complete. Propodeal dorsum coriaceous, also with irregular, longitudinal ridges in basal half or so; side ridged. Hindcoxal dorsum carinate basally.

Setae erect on postocellar area but no longer than midocellar diameter; suberect on each side of oral fossa next to occipital carina, about $1.5 \times$ midocellar diameter long; nearly appressed on scutum; oriented posterad on propodeal dorsum.

Body black except mandible reddish mesally and tarsal apex dark brown. Frontal setae silvery in female. Wing membrane slightly infumate; costal vein of forewing dark brown, subcostal vein brown. Terga I and II apically with ill-defined silvery fasciae.

ㅇ.- Labrum with rudimentary emargination. Clypeus (Fig. 419): bevel longer than basomedian area; lip free margin arcuate, not emarginate mesally, with two lateral incisions on each side. Width of postocellar area $1.5 \times$ length. Dorsal length of flagellomere I $1.9 \times$ apical width. Forefemoral venter with large punctures that are many diameters apart; interspaces shiny, practically unsculptured. Foretibial outer surface asetose except for three erect, conspicuous setae. Forebasitarsus with no fewer than 15 rake spines, middle spines shorter than either basal or apical ones. Midtrochanteral venter with a few, sparse punctures, interspaces unsculptured. Midfemoral

Figure 419. Tachysphex merina Pulawski, sp. nov.: female clypeus and mandible.
venter and posteroventral surface with large punctures that are several to many diameters apart; interspaces shiny, practically unsculptured. Hindtarsomere IV as long as wide. Apical tarsomeres each with one or a few preapical spines, apicoventral margin minimally arcuate. Tergum V with punctures that are many diameters apart, apical depression of tergum V unsculptured and asetose (except laterally). Pygidial plate with punctures that are several diameters apart mesally, interspaces unsculptured. Length 8.4 mm .
σ°.- Unknown.
Geographic distribution (Fig. 420).Madagascar.

RECORDS.- Holotype: \uparrow, MADAGASCAR: Ambatolampy, no date or collector, with additional label "Mus. Paris, 1931, Lasère" (MNHN). There are more than 40 localities named Ambatolampy in Madagascar, but most are small villages.

Figure 420. Collecting locality of Tachysphex merina Pulawski, sp. nov. Most probably the specimen was collected near the town of Ambatolampy in the Antananarivo Province, at $19^{\circ} 21^{\prime} \mathrm{S} 47^{\circ} 27^{\prime} \mathrm{E}$ on the main road to the south.

Tachysphex ampijoroa Pulawski, sp. nov.

Figures 90, 421.
Derivation of name.-Ampijoroa, a National Park in Madagascar where the type series was collected; a noun in apposition.

Recognition.- Tachysphex ampijoroa has the setae sinuous on the postocellar area and thorax, but appressed on tergum I. In addition, the hindwing vein cu-a is vertical, and the apical tarsomeres have no spines on the venter. Tachysphex platystethus is similar, but ampijoroa differs in having the propodeal dorsum uniformly, finely ridged transversally, rather than with conspicuous ridges that are diverging basally. Also, in the female of ampijoroa the thorax is not flattened (rather than conspicuously flattened), the clypeal lip has two lateral incisions on each side (no incisions in platystethus), the lateral carinae of the pygidial plate clearly diverge anterad (almost parallel in platystethus) and are present on most of tergal length (only apically in platystethus). The male is unique among the Malagasy Tachysphex in having a pointed clypeal lip, and the apically tridentate sternum VIII differentiates it from platystethus.

Description.- Female clypeus with obtuse carina that emerges from each lip corner. Scutal punctures well defined, about 2-3 diameters apart at center in most specimens, many diameters apart anterolaterally in single female. Mesopleural punctures well defined, several diameters apart at center. Punctures of mesothoracic venter several diameters apart. Episternal sulcus complete or nearly so. Propodeal dorsum finely, transversely ridged; side punctate. Hindcoxal dorsum with inner margin carinate, carina slightly expanded basally.

Setae sinuous, erect or suberect on lower gena, postocellar area, scutum, mesopleuron, propodeum, and midfemoral venter; setal length about 0.6 of basal mandibular width on each side of oral fossa next to occipital carina, about 0.4 on postocellar area, about 0.5 on scutum anterolaterally; oriented obliquely anterad on propodeal dorsum.

Figure 421. Tachysphex ampijoroa Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - volsella; d - penis valve.

Head and thorax black, mandible dark red at about two thirds of length. Frontal setae silvery in both sexes. Wing membrane practically hyaline; costal and subcostal veins of forewing black. Femora and tibiae black, apical tarsomeres reddish brown. Gaster black. Terga I-III (I-IV in some males) silvery fasciate apically.

ㅇ.- Clypeus (Fig. 421a): bevel slightly longer than basomedian area; lip free margin arcuate, with two lateral incisions on each side. Width of postocellar area $1.3 \times$ length. Dorsal length of flagellomere I $1.9 \times$ apical width. Forefemoral venter with small, sparse punctures. Foretibial outer surface with three thick setae. Forebasitarsus with 14 rake spines. Midtrochanteral venter with punctures that are many diameters apart. Terga IV and V with a few, scattered punctures, their apical depression impunctate, glabrous. Pygidial plate with well-defined punctures that are several diameters apart; interspaces unsculptured. Length 12.0 mm .
σ^{7}.- Mandible: trimmal carina without tooth and cleft. Clypeus (Fig. 421b): bevel shorter than basomedian area; lip free margin pointed, without corner, forming single curve line with rest of clypeal margin. Width of postocellar area 1.1-1.2 \times length. Dorsal length of flagellomere I 1.7-1.8 \times apical width. Forefemoral notch: bottom microscopically setose. Outer margin of forebasitarsus with no preapical spines; outer apical spine of foretarsomere II shorter than tarsomere III. Sterna IV and V largely impunctate basally. Sternum VIII tridentate apically. Length $8.7-10.1 \mathrm{~mm}$. Volsella and penis valve: Figs. 421c, d.

Geographic distriubution (Fig. 90).- Known from one locality in Madagascar.
RECORDS.- HOLOTYPE: ${ }^{\text {on }}$, MADAGASCAR: Mahajanga: Ampijoroa [=Ankarafantsika] National Park at $16^{\circ} 19.16^{\prime} \mathrm{S} 46^{\circ} 48.8^{\prime} \mathrm{E}, 7-14$ Sept 2003, Rin'ha Harin'hala (CAS). PARATYPES: same data as holotype

Appendix II

The following data matrix was constructed using the Winclada program by Kevin Nixon, where non-applicable characters are indicated by a dash (-), and missing characters are represented by a question mark (?). Multiple character states are all treated as additive. The characters $33,38,51,58$, 69 , and 77, which caused large sections of the trees collapse in the initial analyses, were deactivated.

Character number

Gastrosericus simplex Holotachysphex mochii Holotachysphex turneri Kohliella anula Parapiagetia genicularis aborigenus
aburi
acanthophorus
actites
acutemarginatus
acutus
adjunctus
aequalis
aethiopicus
aethiops
agilis
alayoi
albocinctus
anceps
anthracinus
antillarum
apicalis
apoctenus
argenticeps
argentifrons
armatus
ashmeadii
asinus
auropilosus
bara
barkeri
beaumonti
belfragei
bengalensis
bipustulosus
brachypus
brasilianus braunsi brevipennis brinckerae brullii bruneiceps
buyssoni
capensis
carinatus
carli
changi
circulans
clarconis
cocopa
conceptus
consocius
contrarius
coquilletti
coriaceus
costae
coxalis
crocodilus
cubanus
curvipes
denisi
depressiventris
deserticola
desertorum

0
$00000000000000100-0000000000000$ $000001-01010000000000010000010001010000000010000000000000100000011201001000000000$ 000000001010000000000010000010011010000000010000000000000100000011201001000000000 $0000000000100000000000000010020000000200110000100000000000000000000-0000100100000$ $0000100000100010000000001000000000100000120000000000000000000000000-0000000100000$ 000000000010000100000000021000000200001001100000000000000001000000210000100000100 011010000010000000000000000000000000002001000001100011000000000000200100000000000 000000000010000000000000000000000000001001000001100121100000000000200000000000000 000000000010000000000000000000000000012102000001000000000000000000200000000000000 010000000010000000000000000100000000000002000001000010000000000000200000000000000 000000000010000000000000000000000000002002000000000000000000000000200000000000000 000010000010000000000000000000000000002001000022100020000000000000200000000000000 010000000010000000000000000000001000012002000002000021100000000000200000000000000 200010000010000000000010000000000000020001100000000000000000000000200000001200000 000000000010000000000000000000000000002011000000000000000000000000200000000000000 010000000010000000000000000000000000022102001002211121010000000000200010000000000 010000000010000000000000000000000000000112001002211120010000000000200000000000000 $0000000000100000000000000220000100000010011000000000000000-2100000200000100000100$ 010000000010000000000000000000000000002002000000000010000000000000200000000000000 010000000010000000000000000000000000022002000011000111000000000010200000000000000 000000000010000200000000000100000000000002000000000000000000000000000000000000000 000000000010000200011100000100000000000001000000000000000000000000200000000000000 100010000010000200000000000000000000000002000000000000000000000000200000000000000 000100000010000000000000020000000100000001000000000100001001110000210100100111001 010000000010000000000000000000000000022102001002211121010000000000200100000000000 000000000010000000000000000000000000000001000012100121100000000000200000000000000 100000000010000000000000000000000000000001001000000000000000000000200000000000000 000010000020000000000000000000001001102001000022000100000020000000210100000001100 001010000010000000000000000000000200000001000000100121000000000000200110000000000 000000000010000000000000000000000000002001000000100121000000000000200100000000000 000010000010000000000000000000000000002002000121000111000000000000200100000001000 000000000010000000000000000000000000000001000020000000000020000010200000000000000 010000000010000000000000000000001000022002000012100020100000000000200000000000000 010000000010000000000000000000000000022102001002211121010000000000200100100000000 010000000111000000000000000000000000002002000021000000000010000000200000000000000 000010000010000000000000000000000000002002000122000111000000000000200100000001000 $0000000000100001000000000220000100000000011000000000000000-2100000200000100000100$ 000010000010000000000000000000000000102011000001000010000000000010200000000001000 000000010010000000100000000000000000000001000000000000000000000000200000000000000 200010000010000000000000100000000000022001000000000000000000000000200000000000000 010010000010000000000000000000000000022001000002100020100000000000200000000000000 $0000000000100000000000000220000100000000011000000000000000-2100000200000100001100$ 200010000010000000000000001000000000020001000000000000000000000000200000000100000 010000000010000000000000000000000000002011000001000010000000000000200000000000000 000010000020000000000000000000000201102002000011000000000020000000200000000001100 000000010010000000100000000000000000002001000000000000000000000000200000000000000 010000000010000000000000000100000000022102001002211121010000000000200100000000000 010010000010000000000000000000000000012001001002000021010000000000200000000000000 000000000010000200000000000000000000000002000000000000000000000000200000000000000 000000000010000000000000000000000000000001000010100121100010000000200000000000000 100010000010000000000000000000000000000002000000000000000000000000200000000000000 000000000010000000000000000000000000002001000000000000000000001000200000000000000 100010000010000000000000020000000000001112000012011121000000000000200000000000000 000100000010000000000000000000000000000001000000000100001001110000210100100110100 010000000010000000000000100000000000022112000012211121010000000000200000000000000 010000000010000000000000011000000200020001000000000101000000000000200000010000000 010000000010000000000000000100000000002002000000000011000000000010200000000000000 $0001000000200000000000000200010002 ? 0000001000000000000001001110 ? 00210000000111001$ 000000000010000000000000000000000000001001000000000000000000000100200000000000000 000100000020000000000000020000000000000001000000000100001000110000210000100111001 010000000010000000000000100000000000022112000012211121010000000100200000000000000 010000000010001000000000100000000000022112000012211120010000000000200000000000000 000100000010010000000000020000000200000001000000000000000100000000200000100110001 000100000010000000000000020000000210000001000000000100000001110000210000100111001

Character number
detritus
diabolicus
diadelus
dignus
diversilabris
dominicanus
erythropus
eucharistus
eurystoma
euxinus
excisus
fanuiensis
flavofimbriatus
foliaceus
fortior
frigidus
fugax
fulgidus
fulvitarsis
gagates
galapagensis
galeatus
gastrotrichus
geniculatus
gessianus
glabrior
graecus
grandissimus
gryllivorus
gujaraticus
gussakovskii
hadronyx
harpax
helveticus aegyptiacus
hippolyta
hopi
hurdi
ibi
incertus
inconspicuus
indicus
insulsus
iridipennis
isis
jujuyensis
julliani
kalaharicus
karoo
khoikhoi
krombeiniellus
lacertosus
lagunaensis
latifrons
limatus
longipalpis
longipes
Iuctuosus
mackayensis
maculipennis
malkovskii
marshalli
mashona
mauretanus
maurus
maximus
maya
mediterraneus
melanius
melas
menkei
mesembrius
micans
mkomazi
mocsaryi
modestus
montivagus
multifasciatus

0
$\begin{array}{ll}1 & 2\end{array}$
010000000
010000000010000000000000022000010200010001000010000101000000000000200000010000000 100010000010000000000000100000000000012001000000000000000000000000200000000000000 2000100000100000000000000000000000000001002000000000000000000000000200000000000000 0000000000100000000000000000000000000000001000000000100000000110000200000100111001 0000000001000000000000000000000000000200100000000000000000001010200000000000000 0000000000100000000000000000000000000001001000000000000000000000100000000000000000 010000000010000000000000022000000200000001000000000111000100000000200100010000000 010000000010000000000000000000001000022001001002100021100000000000200100000000000 000000000010000000000000000000000000002002000022000101000020000000200100000001000 000000000010000000000000000000000000000001000001000000000000000000200000010000000 200010000010000000000010000000000000020001000000000000000000000100100000001200000 010000000010000200000000000000000000022102000002211111000000000000200000000000000 010000000010000000000000022000000200020001000010000101000000000000200000010000000 010000000010000000000000000010000000022112000002211021010000000000200000000000000 010000000010000000000000000000000000002001000000000120110000000000200000000000100 20001000001000000000001000000000000000000100000000000000000000000200000001200000 000000000010000000000000000000000000000001000000000000000000000000200000000000000 20001000001000000000000000000000100000000110000000000000000000000002000000000000000 010000000010000000000000000000000000000001000000000000000000000010200000000000000 010000000010000000000000000000000000022002000002000010100000000000210000000001100 00000000001000020000000000000000000000000010000000000000000000000002000000000000000 0100000000100000000000000000000000000002001000001000120100000000000200000000000100 20001000001000000000001000000001000002000100000000000000000000000200000001200000 $2000100000100010000000000000000000100000010000000000000000000000000-0000000000000$ 00001000001000000000000000000000000001020120000210000000000000000002000000000000100 000000000010000000000000000100000000002002000000000000000000000000200000000000000 010000000010000000000000000000000000001001000002000010100000000000200000000000000 010000000010000000000000022000000200012001000000000001000000000000200100010000000 0000000000100000000000000000000000000102002000020000000000000000000200000000000000 0000000001000000000000000000000000000200100000000000000000000000200000000000000 000000000010000000000000000000000000000001000000000100100000000000200000000000000 2000101000100000000000000000000100000000010000000000000000000000002000000000000000 011010000010000000000000000000000000001002000001100121110010000000200100000000000 0000000001000100000000000000000000000000100000000000000000000000200000000000000 010000000010000000000000000000000000022102000002211121010000000000200110000000000 0000000000100000000000000000000000000001001000000000000000000000000210000000000000 000000000010000000000000000100000000000001000010000000000000000000200000000000000 000000000010000001000000000000000000001011000000000000000000000000200000000000000 2000100000100000000000000000000000000220010000000000000000000000002000000000000000 010000000010000000000000000100000000022102000002201121010000000000200100000000000 $000000000010000100000000022000000000001001100000000000000-2100000200000100000100$ 0100000000100000000000000000000000000002001000001100111000000000000200100000001000 010000000010000200000000000000000000020102001002211121010000000000200000000000000 01000000001001000000000002200000000000000100000000110000000000000200100100000000 010000000010000000000000000000001000002001000001000010000000000000200000000000000 000100000010000000000000020000000000000001000000000100001001110000210100100111001 000000000010000000000000020000000000020001000000000101000000000000200100010000000 00000000001000000000000000000000010000 ? 011000000000000000000000000200000000000000 000010000010000000000000000000000100002011000000000000000000000000200000000000000 010000000010000000000000000000001000022001000001100020100000000000200000000000000 10001000001000000000000010000000000002000100000000000000000000000200000000000000 010000000010000000000010000000000000002002000002000020100000000000200000000000000 01000000001000000000000000000000000000000110000101000000000000000002000000000000000 00000000001000000000000000000000000010101200000000000000000000000200000000000000 20001000001000000000000000100000001000000100000000000000000000000200000000000000 000000000010001000000000000000000000000001000000000000000000000010200000000000000 0000100000100000000000000000000000000002001000000000111000000000000200000010000000 010000000010000000000000000000000000022112000002211021010000000000200000000000000 $000000000010000000000000022000001000000001100000001000000-21000000-0100100000100$ 0000000000100000000000000000000000000220020000010000000000000000002000000000000000 000010000010000000000000101000000000001011000000000010000000000000210000000000000 010000000111000000000000000000000000002000000022000000000020000000200000000001100 000100000010000000000000020000000200000001000000000100001001110000210100100110001 01000000001000000000000000000000010000120010000010000201000000000002000000000000000 010000000010001000000000000000001000022111000022211120010000000000200000000100000 010000000010000000000000000000000000012002000011100020100000000000200000000000000 000000000010000000000000000100000000002001000001000000000000000000200000000001000 2000100000100000000000100000000000000100011000000000000000000000002000000001200000 000010000010001100011000000000000010000000000000000000000000000000200000000000000 010000000010000000000000000000001000002002000000100020000000000000200000100000000 000000000010000000000000000000000010022011000000000000000000000010210000000000000 200010000020000000000000000002000000000001000000000000000000000000200000000000000 000010000010000000000000000000000000002001000000000121010000000100200100000001000 20001000001000000000000000000000000000210010000000000000000000000002000000000000000 00000000001000000000000000000000000100000010000000000000000000000002000000000000000 200010000010000000000010000000000000020001000000000000000000000000200000001200000 010000000010000200000000022000000200002001100000000000000000000000210000100000100

Character number
mundus
musciventris
mycerinus
mzingeli
namaqua
nasalis
nigerrimus
nigrior
nitidus
noar
notogoniaeformis
novarae
oberon
obscuripennis
octodentatus
omoi
onager
orestes
osiris
ovambo
oxychelus
pacificus
paiute
palopterus
panzeri
papago
paulus
pechumani
pectinatus
pentheri
perniger
persistans
pilosulus
pisonoides
pisonopsis
platystethus
plicosus
pompiliformis
priesneri
prosopigastroides
psilocerus
psilonotus
pugnator
pulcher
punctatus
punctatiformis
puncticeps
punctiger
pusulosus
quadricolor
quisqueyus
radiatus
ramses
rapax
remotus
rhacodes
robustior
rotundus
ruber
ruficaudis
rufitarsis
rufopictus
rugicauda
sabulosus
saevus
saturnus
scaber
scaurus
schmiedeknechti
schoenlandi
scopa
scopaeus
semirufus
sericans
sericeus
sexinus
seyrigi

0

010000000010000000000000000000001000012002000001100020100000000000200000000000000 000000000010000000000000000000000000022001000000000000000000000010200000000000000 200010000010000000000000000000000000000001000000000000000000000000200000000000000 001010000010000000000000000000000200000001000000100121100000000000200100000001000 $00001000001000000000000000000000000000 ? 011000000000000000000000000200000000000000$ 000000000110100000000000000000000000012001000000000000000000000010200000000000000 010000000010001000000000000000000000022112000012211111010000000000200000000000000 000000000010000000000000000000000000000002000000000000000000000000200000000000100 000000000010000000000000000000000000000001000000000000000000000010200000000000000 $20001000001000000000000000000000000002000100000000000000000000000020000000000000-$ 200010000010000000000000100000000000020001000000000000000000000000200000000000000 010000000010001000000000000000000000020102001002211021010000000000200000000000100 000000000010000000000000000000000000002001000021000000000000000000200000000001000 010000000010000000000000100000000000022112000002211121010000000000200000000000000 010000000010000000000000000100000000021001000000000000000000000000200000000000000 000000000010001000000000000000000000000002000000000000000000001000200000000000000 000010000020000000000000000000001001102011000021000100000020000000200100000001100 $00000000001000000000000000000000000002200100000000000000000000000020000000000000-$ 010000000010010000000000022000000200000001000000000000000000000000200000010000000 010010000011000000000000000000000000100001000000000100000020000000200100000001000 010000000010000000000000000000000000011002000001000110000000000000200100000000000 100010000010000000000000100000000000002112001002211121010000000000200000000000000 000000000010000000000000000000000000000001000000000000000000000100200000000000000 200010000010000000000000000000000000010001000000000000000000000000200000000000000 200010000010000000000000000000000000020001000000000000000000000000200000000000000 000000010010000000000000000000100000000002000000000000000000000000200000000000000 010000000010000000000000000000000000022001000000000111000000000000200100000000000 000000000010001000000000000000000000002001000000000000000000000000200000000000000 000000000010000000000000000000000000002011000000000010000000000000200000000000000 200010000010000000000010000000000000020001000000000000000000000000100000001200000 010000000010000000000000000000000000002002000000000000000000000000200100000000000 110000000010000000000000000000000000012112000012211121000000000000200000000000000 $0000000000100001000000000220000100000010011000000000000000-2100000200000100000100$ 010000000010000000000001000000000000012001000002100020100000000000200000000000000 010000000010000000000000000000000000012001000002000010000000000000200000000000000 010000000010000000000000000000000000000102000001000010000000000000200000000000000 000000000010000001000000000100000010000002000001000000000000000100200000000000000 000000000010000000000000000000000000001001000000000000000000000000200000000000000 000000000010000000000000000000010000000001000000000000000000000001200000000000000 $001100000010100010000000020000-00001122001000000000100000000000000200000100111010$ 000000010010000000010000000000100000000002000000000000000000000000200000000000000 100010000010000000000000100000000000001001000000000000000000000010200000000000000 100000000010000000000000100000001000001112100002101121010000000000200100000200000 200010000010000000000000000001000000020001000000000000000000000000200000000000000 000010000010000000000000100000000000000011000000000000000000000000200000000000000 000000000010000000000000000000000000012001000000000000000000000000200000000000000 000000000010000000000000000000000000000001000000000000000000000000200000000000100 000010000010000200000000000000010000000011000000000000000000000001200000000000001 000010000111000000000000000000000100001001000000000000000000000000200000000000000 100010000010000000000000100000000000010011000000000000000000000000200000000000000 000000000010000200011100000100000000000002000000000000000000000000000000000000000 010000000010000000000000100000000000022112001012211021010000000010200000000000000 200010000010010000000000000000000000000001100000000000000000000000200000000100000 011010000010000000000000000000000000001001000001100121110000000000200100000000000 $1000100000100002000000000210000000000000011000000000000000-2100000200000100000000$ 000010000020000001000000000100000000011002000020000000000000000000200000000000000 010000000010000000000000000000000000012001000001100020000000000000200000000000000 $2000100000100000000000100000000000000100011000000000000000000000000-0000001100000$ 200010000010000000000010000000000000000001100000000000000000000000200000001200000 000000000010001200010000000100000000000002000000000000000000000000200000000000000 010000000010000000000001000000000000022001000001100011100000000000200000000000000 000010000010000000000000000000000200100011000011000000000000000010200000000000000 000100000010000000000000020000000000000001000000000100000001110000210000100110000 200010000010000000000000100000000000000001000000000000000000000000200000000000000 000000000010000000000000000000000000102011000100000000000020000000200000000000000 000000000010000000000000000000000000002001000001000010000000000000200100000000000 000010000020000000000000000000001001102011000011000000000020000000200000000001100 010000000010000000000000000000000000022112001002211121010000000000200110000001000 000000000010100010000000021002000101100001000000000110000000000000200100100111010 010000000010000000000000022000000200000001000001000111000000000000200000010000000 001010000010000000000000000000000000000002000001110121100000000000100100000000000 000000010010000000011000000100100000000001000000000010000000000000200000000000000 000000000000000000000000000000000000001001000000000000000000000000200000000000000 200010000010000000000000020000000000002001000000000000000000000000200000000000000 010000000010000000000000022000000200000001000000000111000000000000200100010000000 010000000020000000000000000000000000002012000000000000000000000000200000000001000 000000000010000000000000000000000000002002000000000110000000000000200000000001000
similis
sordidus
speciosissimus
spectrum
spinulosus
spretus
sri
stevensoni
stimulator
subcoriaceus
subdentatus
subfimbriatus
sulcidorsum
tanqua
tarsatus
tenuicornis
tenuis
tenuisculptus
terminatus
testaceipes
thysanomerus
titania
toltec
tryssus
ulonyovu
undatus
usakos
utina
vanrhynsi
vardyi
verticalis
vestitus
vitiensis
vividus
vulneratus
walkeri
waltoni
xanthoptesismus
ziziphi

Character number	0	1	2	3	4	5	6	7	8
		0	0	0	0	0	0	0	0

$\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
000000000010000200011100000100000000000002000000000000000000000000200000000000000 010000000010000000000000022000000200022001000000000100000000000000200100010000000 000000000010000000000000000000000000000001000000000100000000000000200000000000000 000000000020000000000000000000000000102002000012000100000020000000200100000000000 000010000010000000000000000000001000002001001001100111000000000000200000000000000 000100000010000000000000000000000000000001000000000000000000000000200000000000000 00000000001000200000000000000 010000000010000000000000000000000000002110001002211121010000000000200100000000000 100000000010000000000000000000000000002112000002100111100000000000200100000000000 010000000010000000000000000000000000022102001002211121010000000000210100000001000 000000000010000000000000000000000000001002000000000000000000000000200000000000000 000000000010000000000000020000000000000001000000000100000000000000200100010000000 000000000010000000010000000000000000000001000000000000000000000000200000000000000 000000000010000000000000000000000000000011000002100021100000000000200100000000000 0000000000100000000000000000000000000130 [02] [12] 033 [12] 00000000000000000000200000 200010100010000000000000000000000000000001000000000000000000000000200000000000000 $0000100000100000000000001000100000000001120000122010200000000000000-0000000000000$ 000100000010000200000000022000000100002001100000000100000001100000200000100000000 000000000010001200011100000100000000000002000000000000000000000000200000000000000 000000000010000000000000020000000000000000000000000101000002100000200000100100100 200010000010000000000010000000000000010001000000000000000000000000200000001200000 000010000010000000000000000000000000000001000000000000000000000010200000000000000 000000000010000000000000000000000000002000000000000000000000000000200000000000000 000010000020000001000000000000000000000002000000000000000000000000200000000000000 010000000020000000000000001000000200000001000021000101000010000000200100000001000 100010000010000000000000000000000000000001000000000000000000000000200000000000000 200010000010000000000010000000000000010001100000000000000000000000200000000200000 010000000010000000000000000000001000012001000011100020100000000000200000000000000 000000000010000000000000000000000000022001000000000000000000000000200000000000000 100010000010000000000000000000000000002112000002101111000000000000200000000000000 000000000010000000000000000100000000002001000000000010000000000000200000000000000 000100000020000000000000020000000000000001000000000000001001110000210000100111001 $0000000000100000000000000001000000000221020010022111210100100000000-0000100000000$ 000010000010000000000000000000000000000100001012101121100000000000200000000000000 000000000010000000000000000000000100002001000000000100000001110100200000100110001 010000000010000000000000000000000000022112000002101121010000000000200000000000000 000010000010000000000000000000000010000001000001000010000000000010200000000000000 010000000010000000000000000000000200022102001002211121010000000000200100000000000 100010000010000000000000100000000000000001000000000000000000000010200000000000000

INDEX OF NAMES OF TACHYSPHEX

(New taxa are in boldface type)

abjectus Kohl 237
ablatus Nurse 473
aburi Pulawski, sp. nov. 79
acrobates (Kohl) 299
actaeon de Beaumont 580
aegyptiacus Morice 335
aemulus Kohl 81
aethiopicus Arnold 83
africanus Pulawski 365
agilis (F. Smith) 88
agnus Pulawski 90
albocinctus (Lucas) 92
algirus Kohl 422
ambiguus Arnold 101
ambositrae Leclercq 104
ampijoroa Pulawski, sp. nov. 688
analis Arnold 243
anceps Arnold 105
angustus Arnold, new status 107
anubis Pulawski 110
arenarius Arnold 378
argentatus Gussakovskij 112
argenticeps Arnold 115
argentifrons Arnold 120
argyrius Gussakovskij 92
asinus Arnold 124
asmara Pulawski, sp. nov. 128
aterrimus Arnold 130
atlanteus de Beaumont 133
aureorufoniger Pulawski, sp. nov. 135
aurifrons (Cameron) 473
aurifrons (Lucas) 473
auropilosus R. Turner 136
baal Pulawski 315
bara Pulawski, sp. nov. 139
barkeri Arnold 142
bemba Pulawski, sp. nov. 145
bipunctatus F. Morawitz 299
bipustulosus Arnold 147
bituberculatus Arnold 147
boer Arnold 142
borealis Pulawski 449
bostryx Pulawski, sp. nov. 150
brachycerus Arnold 544
brachypus Pulawski, sp. nov. 152
braunsi Arnold 154
breijeri (Arnold) 395
brevipecten de Beaumont 157
brevipennis Mercet 159
brinckerae R. Turner 168
bruneiceps Arnold 171
buyssoni Morice 173
cabrerai Mercet 207
caliban Arnold, new status 175
calidus Pulawski, sp. nov. 178
calopteryx Gussakovskij 568
camptopygus Pulawski, sp. nov. 183
canariensis de Beaumont 219
capensis (de Saussure) 187
carinatus Pulawski, sp. nov. 191
cavatus Pulawski, sp. nov. 192
ceylonicus (Cameron) 473
cheops de Beaumont 194
chephren de Beaumont 197
claripennis Arnold 227
claripes Arnold, new status 199
clypeatus Arnold 204
collaris Kohl 404
congoensis Arnold, new status 205
consanguineus Arnold 168
consocius Kohl 207
convexus Pulawski 160
costae (De Stefani Perez) 218
coxalis Pulawski, sp. nov. 225
crassicornis Arnold 358
crassipes Arnold 227
crocodilus Pulawski 230
curvipes Pulawski, sp. nov. 232
cyprius Pulawski 473
debilis Arnold 142
depilosellus R. Turner 524
deserticola de Beaumont 234
desertorum F. Morawitz 237
detritus Arnold, new status 240
diabolicus Arnold 243
dicksoni Arnold 426
dignus Kohl 246
dimidiatus de Saussure 278
discolor (Frivaldszky) 473
dissimulatus Pulawski, sp. nov. 248
diversilabris Arnold 251
dolosus Arnold 254
dubius (Radoszkowski) 299
dusmeti Giner Marí 92
ebeninus Arnold 258
eduardi Morice 315
egregius Arnold 496
erectus Pulawski, sp. nov. 261
erythrogaster (A. Costa) 299
erythrogaster Cameron 262
erythrophorus Dalla Torre 262
erythropus (Spinola) 265
erythrurus Pulawski, sp. nov. 271
eurystoma Pulawski, sp. nov. 273
excavatus Pulawski, sp. nov. 275
excerptus R. Turner 288
excisus Arnold 278
fallax Arnold 524
fasciatus Morice 282
fasciipennis Gussakovskij 568
fertoni Pulawski 219
filicornis Kohl 287
flavofimbriatus Arnold, new status 283
flavogeniculatus (Taschenberg) 265
fluctuatus (Gerstaecker) 579
fortunatus de Beaumont 473
foucauldi de Beaumont 654
frigidus Pulawski, sp. nov. 285
fugax (Radoszkowski) 287
fulgidus Arnold 297
fulvicornis R. Turner 159
fulvitarsis (A. Costa) 299
gagates Arnold 302
gallicus Kohl 495
gastrotrichus Pulawski, sp. nov. 304
geniculatus (A. Costa) 352
geniculatus (Spinola) 306
georgii Arnold 309
gessianus Pulawski, sp. nov. 312
glaber Kohl 314
gracilicornis Mercet 315
gracilitarsis Morice 318
grandii de Beaumont 207
grandissimus Gussakovskij 319
gujaraticus Nurse 323
hadronyx Pulawski, sp. nov. 326
halictiformis Arnold 557
halophilus Arnold 399
harpax Arnold 329
heliophilus Nurse 568
heliopolites Morice 265
helveticus Kohl 335
hermia Arnold 338
heterochromus de Beaumont 159
hippolyta Arnold 340
horus de Beaumont 343
iaphetes Pulawski, sp. nov. 345
ibericus (de Saussure) 449
ibi Pulawski, sp. nov. 347
imperfectus de Beaumont 159
incanus de Beaumont 349
incertus (Radoszkowski) 352
inermis Arnold 458
inextricabilis Pulawski 356
insulsus Arnold 358
inventus Nurse 266
isis de Beaumont 362
julliani Kohl 364
kalaharicus Arnold, new status 369
kallipygus Pulawski 352
karoo Pulawski, sp. nov. 374
karrooensis Arnold 654
khoikhoi Pulawski, sp. nov. 375
lacertosus Arnold 378
lanatus Arnold 404
laniger Pulawski 323
laticeps Arnold 219
latissimus R. Turner 262
lebedevi Gussakovskij 594
lilliputianus R. Turner 159
limatus Arnold 380
lindbergi de Beaumont 382
liriformis Pulawski 81
longipalpis de Beaumont 385
longipes Pulawski, sp. nov. 388
luctuosus Arnold, new status 390
lugubris (Arnold) 159
luxuriosus Morice 393
maidli de Beaumont 240
mantiraptor Ferton 92
mantivorus de Beaumont 266
maracandicus (Radoszkowski) 265
maroccanus de Beaumont 422
marshalli R. Turner 395
mashona Arnold, new status 399
mauretanus Pulawski 402
mediterraneus Kohl 404
melanius Pulawski, sp. nov. 409
merina Pulawski, sp. nov. 687
mesembrius Pulawski, sp. nov. 412
micans (Radoszkowski) 414
micromegas de Saussure 288
miniatulus Arnold 418
minutulus Arnold 207
minutus Nurse 159
miscophoides (Arnold) 159
mkomazi Pulawski, sp. nov. 420
mocsaryi Kohl 422
modestus Arnold 426
montivagus Arnold, new status 430
mookonis Tsuneki 446
morosus (F. Smith) 290
mycerinus de Beaumont 432
mzingeli Pulawski, sp. nov. 435
namaqua Pulawski, sp. nov. 437
nanus Arnold 482
nattereri Kohl 352
nigripes Tsuneki 237
niloticus Pulawski 439
nitidior de Beaumont 441
nitidissimus de Beaumont 446
nitidus (Spinola) 449
notogoniaeformis Nadig 452
nubilipennis de Beaumont 93
oberon Arnold 454
obscurus Pulawski 424
octodentatus Arnold 458
omoi Guiglia 461
onager Pulawski, sp. nov. 463
oraniensis (Lepeletier de Saint Fargeau) 473
ornatipennis Gussakovskij 568
osiris de Beaumont 465
ovambo Pulawski, sp. nov. 467
palopterus (Dahlbom) 470
panzeri (Vander Linden) 473
paulus Pulawski, sp. nov. 480
pectoralis Pulawski 262
peculator Nurse 92
pentheri Cameron 482
perniger Arnold 491
platystethus Pulawski, sp. nov. 493
plicosus (A. Costa) 495
priesneri de Beaumont 499
prosopigastroides Bischoff 502
pseudofasciatus Pulawski, sp. nov. 506
psilonotus Pulawski, sp. nov. 508
psilopus Kohl 568
ptah Pulawski 510
pulcher Pulawski 512
pulverosus (Radoszkowski) 473
punctatiformis Arnold 514
punctatus (F. Smith) 518
punctiger Pulawski, sp. nov. 520
punctiventris Arnold 426
pusulosus de Beaumont 522
pygidialis Kohl 352
quadricolor (Gerstaecker) 524
quadrifurci Pulawski 160
ramses Pulawski 529
rapax Pulawski, sp. nov. 531
redivivus Kohl 597
rhacodes Pulawski, sp. nov. 534
rhodesianus Bischoff 537
rhodius de Beaumont 160
rotundus Pulawski, sp. nov. 540
ruber Pulawski, sp. nov. 543
ruficrus (Dufour) 92
rufiventralis Ferton 352
rufiventris (Spinola) 473
rufopictus Arnold, new status 544
rugosipleuris Pulawski, sp. nov. 547
rugosus Gussakovskij 159
sabulosus Pulawski, sp. nov. 549
saevus Arnold 551
sahelensis Pulawski, sp. nov. 553
samburu Pulawski, sp. nov. 555
sareptanus Pulawski 474
satanas Pulawski 568
saturnus Arnold 557
scaber Pulawski, sp. nov. 562
scabrosus Arnold 369
scaurus Arnold 564
schmiedeknechti Kohl 568
schoenlandi Cameron 572
scopa Pulawski, sp. nov. 575
selectus Nurse 579
semenovi Gussakovskij 365
sericeus (F. Smith) 579
seth Pulawski 393
sexinus Leclercq 585
seyrigi Arnold 587
sikorae de Saussure 288
silvestris Pulawski, sp. nov. 589
simillimus Gussakovskij 241
simplex Pulawski 385
sinaiticus Pulawski 160
sipapomae Arnold 502
socotrae Pulawski, sp. nov. 592
sordidus (Dahlbom) 594
speciosissimus Morice 597
spectrum Pulawski, sp. nov. 600
stevensoni Arnold 602
strigatus R. Turner 502
strigosus (Mocsáry) 299
striolatus Cameron 496
suavis Arnold 604
subcoriaceus Arnold 607
subeditus Leclercq 607
subfimbriatus Arnold 610
subfuscatus R. Turner 502
sulcidorsum de Beaumont 613
sycorax Arnold, new status 615
syriacus Kohl 92
tadzhikus Gussakovskij 219
taita Pulawski, sp. nov. 617
tanqua Pulawski, sp. nov. 620
tarsinus (Lepeletier de Saint Fargeau) 622
tembe Pulawski, sp. nov. 624
tenax Pulawski 81
tenuicornis Bischoff 626
terrificus Arnold 395
theseus Arnold 629
thysanomerus Pulawski, sp. nov. 631
titania Arnold 634
tridentatus Arnold 458
trifasciatus Arnold 199
tryssus Pulawski, sp. nov. 638
tuckeri Arnold 187
ulonyovu Pulawski, sp. nov. 639
ulothrix Pulawski, sp. nov. 642
unguiculatus Arnold 329
usakos Pulawski, sp. nov. 644
vanrhynsi Arnold 646
venator Arnold 648
verhoeffi Pulawski 329
vestitus Kohl 650
viarius Arnold 340
villosus Arnold 283
vulneratus R. Turner 654
waltoni Arnold 658
willowmorensis Arnold 634
yarrowi de Beaumont 661
zambius Pulawski, sp. nov. 663
zarudnyi Gussakovskij 219
zavattarii Guiglia 482
ziziphi Pulawski, sp. nov. 665

[^0]: Figure 56. Tachysphex bemba Pulawski, sp. nov.: a - female clypeus and mandible; b - male clypeus and mandible; c - propodeal dorsum showing ridges and setal pattern; d - volsella; $e-$ penis valve.

